
ME3.6 Sheet 2 Answers

1(i) We have dx/dt 6x 2xy 8 f x,y ,dy/dt y2 x2 g x,y .
The critical points satisfy g 0 y x and f 0 6x 2xy 8 0.
Substitute y x to get 6x 2x2 8 0 x 4 x 1 0 x 4 or 1.
If instead we substitute y x we get 6x 2x2 8 0 which has no real solutions.
Therefore the critical points are 4,4 and 1, 1 .

The Jacobian J x,y
fx fy
gx gy

6 2y 2x
2x 2y

J 4,4
2 8
8 8

The eigenvalues of J 4,4 satisfy

2 8 64 0 2 10 80 0 5 i 55
4,4 is an unstable spiral.

J 1, 1
8 2
2 2

. The eigenvalues satisfy

8 2 4 0 2 10 20 0 5 5 .
Both roots are therefore real and negative so that we have a stable node at 1, 1 .

1(ii) We have dx/dt 2x y 2 f x,y ,dy/dt xy g x,y .
The critical points satisfy g 0 x 0 and/or y 0 and f 0 2x y 2 0.
Substitute x 0 to get y 2.
If instead we substitute y 0 we get 2x 2 0 x 1.
Therefore the critical points are 0,2 and 1,0 .

The Jacobian J x,y
fx fy
gx gy

2 1
y x

J 0,2
2 1
2 0

The eigenvalues of J 0,2 satisfy

2 2 0 2 2 2 0 1 i
0,2 is a stable spiral.

J 1,0
2 1
0 1

. The eigenvalues satisfy

2 1 0 2 and 1,
Both roots are therefore real and of opposite sign so that we have a saddle at 1,0 .

1(iii) We have dx/dt 4 4x2 y2 f x,y ,dy/dt 3xy g x,y .
The critical points satisfy g 0 x 0 and/or y 0 and f 0 4 4x2 y2 0.
Substitute x 0 to get 4 y2 0 y 2.
If instead we substitute y 0 we get 4 4x2 0 x 1.
Therefore the critical points are 0,2 , 0, 2 , 1,0 , 1,0 .

The Jacobian J x,y
fx fy
gx gy

8x 2y
3y 3x

J 0,2
0 4
6 0

which has eigenvalues i 24 center at 0,2 .



J 0, 2
0 4
6 0

. Eigenvalues i 24 center at 0, 2 .

J 1,0
8 0
0 3

. Eigenvalues 8 and 3 saddle at 1,0 .

J 1,0
8 0
0 3

. Eigenvalues 8 and 3 saddle at 1,0 .

1(iv) We have dx/dt siny f x,y ,dy/dt x x3 g x,y .
The critical points satisfy f 0 y n , (n 0, 1, 2,
and g 0 x 0 (since 1 x2 0 has no real roots).
C.P. s are at 0,n .

The Jacobian J x,y
fx fy
gx gy

0 cosy
1 3x2 0

.

J 0,n
0 1 n

1 0
which has eigenvalues 2 1 n.

n even 1 C.P.’s are saddles at 0,0 , 0,2 , 0,4 ,
n odd i C.P.’s are centers at 0, , 0, 3 , 0, 5 , .

1(v) We have dx/dt y f,dy/dt 2 g y2 x/ 1 x2 G, say.
C.P.’s occur when y 0 and 2 g y2 x 0 x 0 C.P. is at 0,0 .

J x,y
fx fy
Gx Gy

0 1
1 x2 2 g y2 / 1 x2 2 2yx/ 1 x2

.

J 0,0
0 1
2 g 0

2 g 1/2.

If 2 g 0 we have a saddle at 0,0 ;
If 2 g 0 we have a center at 0,0 .

2. Write as 1st order system: dx/dt y f and dy/dt x x3 g.
Critical points occur when f 0 y 0 and g 0 x x2 1 0 x 0, 1.
Therefore C.P’s are 0,0 , 1,0 , 1,0 .

Jacobian J x,y
fx fy
gx gy

0 1
3x2 1 0

.

J 0,0
0 1
1 0

i center at 0,0 .

J 1,0
0 1
2 0

2 saddle at 1,0 .

J 1,0
0 1
2 0

. Eigenvalues as above. Saddle at 1,0 .

Original equation multiplied by dx/dt is

xx x x3 x 0.

Integrate with respect to t :



1
2 x 2 x2/2 x4/4 C .

Therefore V x x2/2 x4/4. We want the solution that passes through 1,0 .
Substituting y dx/dt 0,x 1 into C 1/4.
Thus the trajectories are y2 x2 x4/2 1/2 y x2 1 / 2 .
For sketch see separate sheet.

3. We have dx/dt x 1 x y f, dy/dt y 3 x 2y g.
C.P.’s occur when f g 0.
Both equations satisfied if x 0 & y 0 or x 0 & 3 x 2y 0 ( y 3/2 ,
or 1 x y 0 & y 0 ( x 1 or 1 x y 0 & 3 x 2y 0 ( y 2,x 1 .
This last solution is not in the 1st quadrant.
Thus the C.P.’s are 0,0 , 0,3/2 , 1,0 .

Jacobian J x,y
fx fy
gx gy

1 2x y x
y 3 x 4y

.

J 0,0
1 0
0 3

1,3 unstable node at 0,0 .

Eigenvectors:
1 0
0 3

x1
y1

0.

1
x1
y1

1
0

. 3
x1
y1

0
1

.

J 0,3/2
1/2 0
3/2 3

1/2, 3 stable node at 0,3/2 .

Eigenvectors:
1/2 0
3/2 3

x1
y1

0.

1/2
x1
y1

1
3/5

. 3
x1
y1

0
1

.

J 1,0
1 1
0 2

1,2 saddle at 1,0 .

Eigenvectors:
1 1
0 2

x1
y1

0.

1
x1
y1

1
0

. 2
x1
y1

1
3

.

For sketch see separate sheet.
As t all solutions which have y 0 end up at the stable node at 0,3/2 .
i.e. chemical x is used up and chemical y 3/2.

4. dF/dt F M F f, dM/dt M M F g.
C.P.’s occur when f g 0. Clearly F,M 0,0 is a solution.
Now f 0 F 0, so if F 0 we have / .
Substitute into g 0 F / M. (
Now, / 1 exp kM / .



Solving forM : M 1/k ln 1 / M0, say.
Then from : F / k ln 1 / F0, say.
The solutions for F0 andM0 are real provided 1 / 0, i.e. .
C.P.’s are therefore 0,0 , F0,M0 .

Jacobian J F,M
fF fM
gF gM

F
F

.

Note that 0 0, 0 k.

J 0,0
0

0
(repeated) 0,0 is an inflected stable node.

For the stability of F0,M0 recall that / & M0 k 1 / .

J F0,M0
0 2/ 1 / ln 1 /
/ 1 / ln 1 /

.

The eigenvalues satisfy
2 1 / ln 1 / 1 / ln 1 / 0.

We can spot that satisfies this equation.
The product of the roots equals 1 / ln 1 / 0.
Therefore the second eigenvalue must be positive. It follows that F0,M0 is a saddle.

5. dH/dt a1H b1H2 c1HP f, dP/dt a2P c2HP g.
The term proportional to H2 has coefficient b1 and so reduces the host population.
H2 indicates a self-interaction and represents population reduction due to overcrowding.
C.P.’s occur when f g 0. g 0 P 0 or H a2/c2.
Substitute P 0 into f 0 H a1 b1H 0 H 0,a1/b1.
Substitute H a2/c2 into f 0 P a1c2 b1a2 / c1c2 D/ c1c2 .
Therefore the C.P.’s are H,P 0,0 , a1/b1, 0 , a2/c2,D/ c1c2 .

Jacobian J H,P
fH fP
gH gP

a1 2b1H c1P c1H
c2P a2 c2H

.

J 0,0
a1 0
0 a2

a1, a2 0,0 is a saddle.

J a1/b1, 0
a1 a1c1/b1
0 D/b1

a1,D/b1 stable node if D 0, saddle if D 0.
So, for (i) we have a stable node. For (ii) and (iii) it is a saddle.

J a2/c2,D/ c1c2
b1a2/c2 a2c1/c2
D/c1 0

2 b1a2/c2 a2D/c2 0.

2 b1a2/c2 where a2/c2 b12a2/c2 4D .
Case (i) real roots of opposite sign saddle
Case (ii) real roots both negative stable node
Case (iii) complex roots with negative real part stable spiral.

6. (i) Interaction between (a) and (b) leads to a decrease in (a), i.e.

dx/dt xy 1



y increases due to interaction with group (a) - so on the RHS of the equation
for dy/dt we get a term xy
y decreases due to interaction with group (c), which contributes a term yz
y also decreases due to interaction with all the other members of (b) so this gives y y 1 .
Putting all this together

dy/dt xy yz y y 1 . 2

z increases due to interaction with group (b) on the RHS of the equation
for dz/dt we have a term yz.
z also increases due to group (b) members interacting, contributing a term y y 1 .

dz/dt yz y y 1 3

(ii) Adding together equations (1)-(3) we have dx/dt dy/dt dz/dt 0
x y z constant N. Thus z N x y.

Substituting for z in (2):

dy/dt 2 xy N 1 y 4

Equation (4) divided by equation (1) gives dy/dx 2 N 1 /x. Integrating

y 2x N 1 lnx C 5

(iii) At time t 0 (say) we have x 0 N 1,y 0 1, z 0 0.
Substituting into (5) C 2N 1 N 1 ln N 1 .
Suppose that x xf as t . Also, y 0 as t (eventually everyone meets).
Substitute into (5): 0 2xf N 1 lnxf 2N 1 N 1 ln N 1 .
Rearrange to obtain desired result.

7. For sketch of set-up see separate sheet.
In equilibrium the force upwards due to the spring balances the forces downwards due to the
magnetic attraction and gravity.

kx mg A/L2 1 .

When the magnet is in motion we have that the net force down equals mass multiplied by
downwards acceleration.

m d2z
dt2

mg A
L z 2 k x z 2 .

Substituting for kx from (1) we obtain the equation given in the question.
As a first order system this is

dz
dt w f, dw

dt
A/m
L z 2 k/m z A/m

L2
g.

C.P. occurs when f g 0 z,w 0,0 is a critical point.

Jacobian J z,w
fz fw
gz gw

0 1
2A/m
L z 3

k/m 0
.

J 0,0
0 1

2A
mL3

k/m 0
2A
mL3

k
m

1/2
.

Thus, 0,0 is a saddle if 2A/mL3 k/m, and a center if 2A/mL3 k/m.



Oscillations will occur in the latter case, i.e. when A kL3/2.

8. Writing as a first-order system: dx/dt y f,dy/dt 1 x2 y x g.
Easy to see that only C.P. is at 0,0 .

Jacobian J x,y
fx fy
gx gy

0 1
2 xy 1 1 x2

.

J 0,0
0 1
1

2 1 0 2 2 4 .

Thus, if 0 2 we have complex roots with positive real part
0, 0 is an unstable spiral.

If 2 both roots are real and positive 0,0 is an unstable node.
For the numerical part of this question see the Mathematica Notebook vanderpol.nb
on the website http://www.ma.ic.ac.uk/~agw/me.html.




