ME3.6 Sheet 2 Answers

1(i) We have $d x / d t=-6 x+2 x y-8=f(x, y), d y / d t=y^{2}-x^{2}=g(x, y)$.
The critical points satisfy $g=0 \Rightarrow y= \pm x$ and $f=0 \Rightarrow-6 x+2 x y-8=0$.
Substitute $y= \pm x$ to get $-6 x+2 x^{2}-8=0 \Rightarrow(x-4)(x+1)=0 \Rightarrow x=4$ or -1 .
If instead we substitute $y=-x$ we get $-6 x+2 x^{2}-8=0$ which has no real solutions.
Therefore the critical points are $(4,4)$ and $(-1,-1)$.
The Jacobian $J(x, y)=\left(\begin{array}{cc}f_{x} & \overline{f_{y}} \\ g_{x} & g_{y}\end{array}\right)=\left(\begin{array}{cc}-6+2 y & 2 x \\ -2 x & 2 y\end{array}\right)$
$\Rightarrow J(4,4)=\left(\begin{array}{cc}2 & 8 \\ -8 & 8\end{array}\right)$ The eigenvalues of $J(4,4)$ satisfy
$(2-\lambda)(8-\lambda)+64=0 \Rightarrow \lambda^{2}-10 \lambda+80=0 \Rightarrow \lambda=5 \pm i \sqrt{55}$
$\Rightarrow(4,4)$ is an unstable spiral.
$J(-1,-1)=\left(\begin{array}{cc}-8 & -2 \\ 2 & -2\end{array}\right)$. The eigenvalues satisfy
$(-8-\lambda)(-2-\lambda)+4=0 \Rightarrow \lambda^{2}+10 \lambda+20=0 \Rightarrow \lambda=-5 \pm \sqrt{5}$.
Both roots are therefore real and negative so that we have a stable node at $(-1,-1)$.
1(ii) We have $d x / d t=-2 x-y+2=f(x, y), d y / d t=x y=g(x, y)$.
The critical points satisfy $g=0 \Rightarrow x=0$ and/or $y=0$ and $f=0 \Rightarrow-2 x-y+2=0$.
Substitute $x=0$ to get $y=2$.
If instead we substitute $y=0$ we get $-2 x+2=0 \Rightarrow x=1$.
Therefore the critical points are $(0,2)$ and $(1,0)$.
The Jacobian $J(x, y)=\left(\begin{array}{ll}f_{x} & \overline{f_{y}} \\ g_{x} & g_{y}\end{array}\right)=\left(\begin{array}{cc}-2 & -1 \\ y & x\end{array}\right)$
$\Rightarrow J(0,2)=\left(\begin{array}{cc}-2 & -1 \\ 2 & 0\end{array}\right)$ The eigenvalues of $J(0,2)$ satisfy
$(-2-\lambda)(-\lambda)+2=0 \Rightarrow \lambda^{2}+2 \lambda+2=0 \Rightarrow \lambda=-1 \pm i$
$\Rightarrow(0,2)$ is a stable spiral.
$J(1,0)=\left(\begin{array}{cc}-2 & -1 \\ 0 & 1\end{array}\right)$. The eigenvalues satisfy
$(-2-\lambda)(1-\lambda)=0 \Rightarrow \lambda=-2$ and $\lambda=1$,
Both roots are therefore real and of opposite sign so that we have a saddle at $(1,0)$.
1(iii) We have $d x / d t=4-4 x^{2}-y^{2}=f(x, y), d y / d t=3 x y=g(x, y)$.
The critical points satisfy $g=0 \Rightarrow x=0$ and/or $y=0$ and $f=0 \Rightarrow 4-4 x^{2}-y^{2}=0$.
Substitute $x=0$ to get $4-y^{2}=0 \Rightarrow y= \pm 2$.
If instead we substitute $y=0$ we get $4-4 x^{2}=0 \Rightarrow x= \pm 1$.
Therefore the critical points are $(0,2),(0,-2),(1,0),(-1,0)$.
The Jacobian $J(x, y)=\left(\begin{array}{ll}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right)=\left(\begin{array}{cc}-8 x & -2 y \\ 3 y & 3 x\end{array}\right)$
$\Rightarrow J(0,2)=\left(\begin{array}{cc}0 & -4 \\ 6 & 0\end{array}\right)$ which has eigenvalues $\lambda= \pm i \sqrt{24} \Rightarrow$ center at $(0,2)$.
$J(0,-2)=\left(\begin{array}{cc}0 & 4 \\ -6 & 0\end{array}\right)$. Eigenvalues $\lambda= \pm i \sqrt{24} \Rightarrow \underline{\text { center at }(0,-2)}$.
$J(1,0)=\left(\begin{array}{cc}-8 & 0 \\ 0 & 3\end{array}\right)$. Eigenvalues $\lambda=-8$ and $3 \Rightarrow$ saddle at $(1,0)$.
$J(-1,0)=\left(\begin{array}{cc}8 & 0 \\ 0 & -3\end{array}\right)$. Eigenvalues $\lambda=8$ and $-3 \Rightarrow$ saddle at $(-1,0)$.
1(iv) We have $d x / d t=\sin y=f(x, y), d y / d t=x+x^{3}=g(x, y)$.
The critical points satisfy $f=0 \Rightarrow y=n \pi,(n=0, \pm 1, \pm 2, \ldots)$ and $g=0 \Rightarrow x=0$ (since $1+x^{2}=0$ has no real roots).
\Rightarrow C.P.'s are at $(0, n \pi)$.
The Jacobian $J(x, y)=\left(\begin{array}{cc}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right)=\left(\begin{array}{cc}0 & \cos y \\ 1+3 x^{2} & 0\end{array}\right)$.
$\Rightarrow J(0, n \pi)=\left(\begin{array}{cc}0 & (-1)^{n} \\ 1 & 0\end{array}\right)$ which has eigenvalues $\lambda^{2}=(-1)^{n}$.
n even $\Rightarrow \lambda= \pm 1 \Rightarrow \underline{\text { C.P.'s are saddles at }((0,0),(0,2 \pi),(0,4 \pi), \ldots)}$
n odd $\Rightarrow \lambda= \pm i \Rightarrow \underline{\text { C.P.'s are centers at }((0, \pi),(0,3 \pi),(0,5 \pi), \ldots)}$.
$\mathbf{1}(\mathbf{v})$ We have $d x / d t=y=f, d y / d t=\left(\omega^{2}-g-y^{2}\right) x /\left(1+x^{2}\right)=G$, say.
C.P.'s occur when $y=0$ and $\left(\omega^{2}-g-y^{2}\right) x=0 \Rightarrow x=0 \Rightarrow$ C.P. is at $(0,0)$.
$J(x, y)=\left(\begin{array}{ll}f_{x} & f_{y} \\ G_{x} & G_{y}\end{array}\right)=\cdots=\left(\begin{array}{cc}0 & 1 \\ \left(1-x^{2}\right)\left(\omega^{2}-g-y^{2}\right) /\left(1+x^{2}\right)^{2} & -2 y x /\left(1+x^{2}\right)\end{array}\right)$.
$J(0,0)=\left(\begin{array}{cc}0 & 1 \\ \omega^{2}-g & 0\end{array}\right) \Rightarrow \lambda= \pm\left(\omega^{2}-g\right)^{1 / 2}$.
If $\boldsymbol{\omega}^{2}-g>0$ we have a saddle at $(0,0)$;
If $\omega^{2}-g<0$ we have a center at $(0,0)$.
2. Write as 1st order system: $d x / d t=y=f$ and $d y / d t=-x+x^{3}=g$.

Critical points occur when $f=0 \Rightarrow y=0$ and $g=0 \Rightarrow x\left(x^{2}-1\right)=0 \Rightarrow x=0, \pm 1$.
Therefore C.P's are $(0,0),(1,0),(-1,0)$.
Jacobian $J(x, y)=\left(\begin{array}{ll}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ 3 x^{2}-1 & 0\end{array}\right)$.
$J(0,0)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \Rightarrow \lambda= \pm i \Rightarrow \underline{\text { center at }(0,0)}$.
$J(1,0)=\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right) \Rightarrow \lambda= \pm \sqrt{2} \Rightarrow \underline{\text { saddle at }(1,0)}$.
$J(-1,0)=\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)$. Eigenvalues as above. Saddle at $(-1,0)$.
Original equation multiplied by $d x / d t$ is

$$
\dddot{x} \ddot{x}+\left(x-x^{3}\right) \dot{x}=0 .
$$

Integrate with respect to t :

$$
\frac{1}{2}(\dot{x})^{2}+\left(x^{2} / 2-x^{4} / 4\right)=C(*)
$$

Substituting $y=d x / d t=0, x= \pm 1$ into $(*) \Rightarrow C=1 / 4$.
Thus the trajectories are $y^{2}+x^{2}-x^{4} / 2=1 / 2 \Rightarrow y= \pm\left(x^{2}-1\right) / \sqrt{2}$.
For sketch see separate sheet.
3. We have $d x / d t=x(1-x-y)=f, d y / d t=y(3-x-2 y)=g$.
C.P.'s occur when $f=g=0$.

Both equations satisfied if $x=0 \& y=0$ or $x=0 \& 3-x-2 y=0(\Rightarrow y=3 / 2)$,
or $1-x-y=0 \& y=0(\Rightarrow x=1)$ or $1-x-y=0 \& 3-x-2 y=0(\Rightarrow y=2, x=-1)$.
This last solution is not in the 1 st quadrant.
Thus the C.P.'s are $(0,0),(0,3 / 2),(1,0)$.
$\operatorname{Jacobian} J(x, y)=\left(\begin{array}{ll}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right)=\left(\begin{array}{cc}1-2 x-y & -x \\ -y & 3-x-4 y\end{array}\right)$.
$J(0,0)=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right) \Rightarrow \lambda=1,3 \Rightarrow$ unstable node at $(0,0)$.
Eigenvectors: $\left(\begin{array}{cc}1-\lambda & 0 \\ 0 & 3-\lambda\end{array}\right)\binom{x_{1}}{y_{1}}=0$.
$\lambda=1 \Rightarrow \underline{\binom{x_{1}}{y_{1}}=\binom{1}{0}} \cdot \lambda=3 \Rightarrow\binom{x_{1}}{y_{1}}=\binom{0}{1}$.
$J(0,3 / 2)=\left(\begin{array}{cc}-1 / 2 & 0 \\ -3 / 2 & -3\end{array}\right) \Rightarrow \lambda=-1 / 2,-3 \Rightarrow$ stable node at $(0,3 / 2)$.
Eigenvectors: $\left(\begin{array}{cc}-1 / 2-\lambda & 0 \\ -3 / 2 & -3-\lambda\end{array}\right)\binom{x_{1}}{y_{1}}=0$.
$\lambda=-1 / 2 \Rightarrow\binom{x_{1}}{y_{1}}=\binom{1}{-3 / 5} \cdot \lambda=-3 \Rightarrow\binom{x_{1}}{y_{1}}=\binom{0}{1}$.
$J(1,0)=\left(\begin{array}{cc}-1 & -1 \\ 0 & 2\end{array}\right) \Rightarrow \lambda=-1,2 \Rightarrow$ saddle at $(1,0)$.
Eigenvectors: $\left(\begin{array}{cc}-1-\lambda & -1 \\ 0 & 2-\lambda\end{array}\right)\binom{x_{1}}{y_{1}}=0$.
$\lambda=-1 \Rightarrow\binom{x_{1}}{y_{1}}=\binom{1}{0} \cdot \lambda=2 \Rightarrow\binom{x_{1}}{y_{1}}=\binom{1}{-3}$.
For sketch see separate sheet.
As $t \rightarrow \infty$ all solutions which have $y \neq 0$ end up at the stable node at $(0,3 / 2)$.
i.e. chemical x is used up and chemical $y \rightarrow 3 / 2$.
4. $d F / d t=-\alpha F+\beta \mu(M) F=f, d M / d t=-\alpha M+\gamma \mu(M) F=g$.
C.P.'s occur when $f=g=0$. Clearly $(F, M)=(0,0)$ is a solution.

Now $f=0 \Rightarrow F(-\alpha+\beta \mu)=0$, so if $F \neq 0$ we have $\mu=\alpha / \beta$.
Substitute into $g=0 \Rightarrow F=(\beta / \gamma) M .(*)$
Now, $\mu=\alpha / \beta \Rightarrow 1-\exp (-k M)=\alpha / \beta$.

Solving for $M: M=\frac{-(1 / k) \ln (1-\alpha / \beta)=M_{0}}{(\beta}$, say.
Then from $(*): F=-\overline{(\beta / \gamma k) \ln (1-\alpha / \beta)=F_{0}}$, say.
The solutions for F_{0} and M_{0} are real provided $1-\alpha / \beta>0$, i.e. $\beta>\alpha$.
C.P.'s are therefore $(0,0),\left(F_{0}, M_{0}\right)$.
$\operatorname{Jacobian} J(F, M)=\left(\begin{array}{ll}f_{F} & f_{M} \\ g_{F} & g_{M}\end{array}\right)=\left(\begin{array}{cc}-\alpha+\beta \mu & \beta F \mu^{\prime} \\ \gamma \mu & -\alpha+\gamma F \mu^{\prime}\end{array}\right)$.
Note that $\mu(0)=0, \mu^{\prime}(0)=k$.
$J(0,0)=\left(\begin{array}{cc}-\alpha & 0 \\ 0 & -\alpha\end{array}\right) \Rightarrow \lambda=-\alpha$ (repeated) $\Rightarrow \underline{(0,0) \text { is an inflected stable node } .}$
For the stability of $\left(F_{0}, M_{0}\right)$ recall that $\mu=\alpha / \beta \& \mu^{\prime}\left(M_{0}\right)=k(1-\alpha / \beta)$.
$J\left(F_{0}, M_{0}\right)=\left(\begin{array}{cc}0 & -\left(\beta^{2} / \gamma\right)(1-\alpha / \beta) \ln (1-\alpha / \beta) \\ \gamma \alpha / \beta & -\alpha-\beta(1-\alpha / \beta) \ln (1-\alpha / \beta)\end{array}\right)$.
The eigenvalues satisfy

$$
\lambda^{2}+(\alpha+\beta(1-\alpha / \beta) \ln (1-\alpha / \beta)) \lambda+\alpha \beta(1-\alpha / \beta) \ln (1-\alpha / \beta)=0
$$

We can spot that $\lambda=-\alpha$ satisfies this equation.
The product of the roots equals $\alpha \beta(1-\alpha / \beta) \ln (1-\alpha / \beta)<0$.
Therefore the second eigenvalue must be positive. It follows that $\left(F_{0}, M_{0}\right)$ is a saddle.
5. $d H / d t=a_{1} H-b_{1} H^{2}-c_{1} H P=f, d P / d t=-a_{2} P+c_{2} H P=g$.

The term proportional to H^{2} has coefficient $-b_{1}$ and so reduces the host population.
H^{2} indicates a self-interaction and represents population reduction due to overcrowding.
C.P.'s occur when $f=g=0 . g=0 \Rightarrow P=0$ or $H=a_{2} / c_{2}$.

Substitute $P=0$ into $f=0 \Rightarrow H\left(a_{1}-b_{1} H\right)=0 \Rightarrow H=0, a_{1} / b_{1}$.
Substitute $H=a_{2} / c_{2}$ into $f=0 \Rightarrow P=\left(a_{1} c_{2}-b_{1} a_{2}\right) /\left(c_{1} c_{2}\right)=D /\left(c_{1} c_{2}\right)$.
Therefore the C.P.'s are $(H, P)=(0,0),\left(a_{1} / b_{1}, 0\right),\left(a_{2} / c_{2}, D /\left(c_{1} c_{2}\right)\right)$.
Jacobian $J(H, P)=\left(\begin{array}{cc}f_{H} & f_{P} \\ g_{H} & g_{P}\end{array}\right)=\left(\begin{array}{cc}a_{1}-2 b_{1} H-c_{1} P & -c_{1} H \\ c_{2} P & -a_{2}+c_{2} H\end{array}\right)$.
$J(0,0)=\left(\begin{array}{cc}a_{1} & 0 \\ 0 & -a_{2}\end{array}\right) \Rightarrow \lambda=a_{1},-a_{2} \Rightarrow \underline{(0,0) \text { is a saddle } .}$
$J\left(a_{1} / b_{1}, 0\right)=\left(\begin{array}{cc}-a_{1} & -a_{1} c_{1} / b_{1} \\ 0 & D / b_{1}\end{array}\right)$
$\Rightarrow \lambda=-a_{1}, D / b_{1} \Rightarrow$ stable node if $D<0$, saddle if $D>0$.
So, for (i) we have a stable node. For (ii) and (iii) it is a saddle.
$J\left(a_{2} / c_{2}, D /\left(c_{1} c_{2}\right)\right)=\cdots=\left(\begin{array}{cc}-b_{1} a_{2} / c_{2} & -a_{2} c_{1} / c_{2} \\ D / c_{1} & 0\end{array}\right) \Rightarrow \lambda^{2}+\left(b_{1} a_{2} / c_{2}\right) \lambda+a_{2} D / c_{2}=0$.
$\Rightarrow 2 \lambda=-\left(b_{1} a_{2} / c_{2}\right) \pm \sqrt{\Delta}$ where $\Delta=\left(a_{2} / c_{2}\right)\left(b_{1}^{2} a_{2} / c_{2}-4 D\right)$.
Case (i) \Rightarrow real roots of opposite sign \Rightarrow saddle
Case (ii) \Rightarrow real roots both negative \Rightarrow stable node
Case (iii) \Rightarrow complex roots with negative real part $\Rightarrow \underline{\text { stable spiral. }}$
6. (i) Interaction between (a) and (b) leads to a decrease in (a), i.e.

$$
d x / d t=-\mu x y
$$

y increases due to interaction with group (a) - so on the RHS of the equation for $d y / d t$ we get a term $\mu x y$
y decreases due to interaction with group (c), which contributes a term $-\mu y z$
y also decreases due to interaction with all the other members of (b) so this gives $-\mu y(y-1)$.
Putting all this together

$$
\begin{equation*}
\underline{d y / d t=\mu x y-\mu y z-\mu y(y-1)} . \tag{2}
\end{equation*}
$$

z increases due to interaction with group (b) \Rightarrow on the RHS of the equation for $d z / d t$ we have a term $\mu y z$.
z also increases due to group (b) members interacting, contributing a term $\mu y(y-1)$.

$$
\Rightarrow \underline{d z / d t=\mu y z+\mu y(y-1)} \text { (3) }
$$

(ii) Adding together equations (1)-(3) we have $d x / d t+d y / d t+d z / d t=0$
$\Rightarrow x+y+z=$ constant $=N$. Thus $z=N-x-y$.
Substituting for z in (2):

$$
\begin{equation*}
d y / d t=2 \mu x y-\mu(N-1) y \tag{4}
\end{equation*}
$$

Equation (4) divided by equation (1) gives $d y / d x=-2+(N-1) / x$. Integrating \Rightarrow

$$
y=-2 x+(N-1) \ln x+C
$$

(iii) At time $t=0$ (say) we have $x(0)=N-1, y(0)=1, z(0)=0$.

Substituting into (5) $\Rightarrow C=2 N-1-(N-1) \ln (N-1)$.
Suppose that $x \rightarrow x_{f}$ as $t \rightarrow \infty$. Also, $y \rightarrow 0$ as $t \rightarrow \infty$ (eventually everyone meets).
Substitute into (5): $0=-2 x_{f}+(N-1) \ln x_{f}+2 N-1-(N-1) \ln (N-1)$.
Rearrange to obtain desired result.
7. For sketch of set-up see separate sheet.

In equilibrium the force upwards due to the spring balances the forces downwards due to the magnetic attraction and gravity.

$$
\Rightarrow k x=m g+A / L^{2}(1) .
$$

When the magnet is in motion we have that the net force down equals mass multiplied by downwards acceleration.

$$
\Rightarrow m \frac{d^{2} z}{d t^{2}}=m g+\frac{A}{(L-z)^{2}}-k(x+z)(2) .
$$

Substituting for $k x$ from (1) we obtain the equation given in the question.
As a first order system this is

$$
\frac{d z}{d t}=w=f, \frac{d w}{d t}=\frac{A / m}{(L-z)^{2}}-(k / m) z-\frac{A / m}{L^{2}}=g .
$$

C.P. occurs when $f=g=0 \Rightarrow(z, w)=(0,0)$ is a critical point.

Jacobian $J(z, w)=\left(\begin{array}{cc}f_{z} & f_{w} \\ g_{z} & g_{w}\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ \frac{2 A / m}{(L-z)^{3}}-k / m & 0\end{array}\right)$.
$J(0,0)=\left(\begin{array}{cc}0 & 1 \\ \frac{2 A}{m L^{3}}-k / m & 0\end{array}\right) \Rightarrow \lambda= \pm\left(\frac{2 A}{m L^{3}}-\frac{k}{m}\right)^{1 / 2}$.
Thus, $(0,0)$ is a saddle if $2 A / m L^{3}>k / m$, and a center if $2 A / m L^{3}<k / m$.

Oscillations will occur in the latter case, i.e. when $A<k L^{3} / 2$.
8. Writing as a first-order system: $d x / d t=y=f, d y / d t=\varepsilon\left(1-x^{2}\right) y-x=g$. Easy to see that only C.P. is at $(0,0)$.
Jacobian $J(x, y)=\left(\begin{array}{ll}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ -2 \varepsilon x y-1 & \varepsilon\left(1-x^{2}\right)\end{array}\right)$.
$J(0,0)=\left(\begin{array}{cc}0 & 1 \\ -1 & \varepsilon\end{array}\right) \Rightarrow \lambda^{2}-\varepsilon \lambda+1=0 \Rightarrow 2 \lambda=\varepsilon \pm \sqrt{\varepsilon^{2}-4}$.
Thus, if $0<\varepsilon<2$ we have complex roots with positive real part $\Rightarrow(0,0)$ is an unstable spiral.
If $\varepsilon>2$ both roots are real and positive $\Rightarrow(0,0)$ is an unstable node.
For the numerical part of this question see the Mathematica Notebook vanderpol.nb on the website http://www.ma.ic.ac.uk/~agw/me.html.

Problem Sheet 2
Q2.

Q3. y

Q7.

