ME3.6 Sheet 1 Answers

1(i) We have $d x / d t=2 x+5 y, d y / d t=x-2 y$.
Critical point is when the RHS's vanish simultaneously, i.e. when $x=y=0$.
So the critical point is at the origin.
For this problem $A=\left(\begin{array}{cc}2 & 5 \\ 1 & -2\end{array}\right)$, and so the eigenvalues satisfy

$$
(2-\lambda)(-2-\lambda)-5=0 \Rightarrow \lambda^{2}-9=0 \Rightarrow \underline{\lambda= \pm 3}
$$

i.e. we have a saddle at $(0,0)$.

The eigenvectors satisfy $\left(\begin{array}{cc}2-\lambda & 5 \\ 1 & -2-\lambda\end{array}\right)\binom{x_{1}}{y_{1}}=0$.
For $\lambda=3$ this gives $-x_{1}+5 y_{1}=0$ and so $\binom{x_{1}}{y_{1}}=C_{1}\binom{5}{1}$.
For $\lambda=-3$ we have $x_{1}+y_{1}=0$ and so $\binom{x_{1}}{y_{1}}=C_{2}\binom{1}{-1}$.
Thus the general solution is

$$
\binom{x}{y}=C_{1}\binom{5}{1} e^{3 t}+C_{2}\binom{1}{-1} e^{-3 t}
$$

Since $d y / d x=(x-2 y) /(2 x+5 y)$ we see that $d y / d x=0$ on $y=x / 2$ and $d y / d x=\infty$ on $y=-2 x / 5$. For sketch see separate sheet.

1(ii) We have $d x / d t=-3 x+y, d y / d t=-x-3 y$.
Critical point is when the RHS's vanish simultaneously, i.e. when $x=y=0$.
So the critical point is at the origin.
For this problem $A=\left(\begin{array}{cc}-3 & 1 \\ -1 & -3\end{array}\right)$, and so the eigenvalues satisfy

$$
(-3-\lambda)(-3-\lambda)-(-1)=0 \Rightarrow \lambda^{2}+6 \lambda+10=0 \Rightarrow \lambda=-3 \pm i
$$

i.e. we have a stable spiral at $(0,0)$.

The eigenvectors satisfy $\left(\begin{array}{cc}-3-\lambda & 1 \\ -1 & -3-\lambda\end{array}\right)\binom{x_{1}}{y_{1}}=0$.
For $\lambda=-3+i$ this gives $-i x_{1}+y_{1}=0$ and so $\binom{x_{1}}{y_{1}}=C_{1}\binom{1}{i}$.
For $\lambda=-3-i$ we have $i x_{1}+y_{1}=0$ and so $\binom{x_{1}}{y_{1}}=C_{2}\binom{1}{-i}$.
Thus the general solution is

$$
\binom{x}{y}=C_{1}\binom{1}{i} e^{-3 t} e^{i t}+C_{2}\binom{1}{-i} e^{-3 t} e^{-i t}
$$

Since $d y / d x=(-x-3 y) /(-3 x+y)$ we see that $d y / d x=0$ on $y=-x / 3$ and $d y / d x=\infty$ on $y=3 x$.
To get direction of spiral note that if $y>3 x$ then $d x / d t>0$ i.e. x increases as t increases. Therefore the trajectories spiral in clockwise. For sketch see separate sheet.

1(iii) We have $d x / d t=-4 x+3 y, d y / d t=-2 x+y$.
Critical point is when the RHS's vanish simultaneously, i.e. when $x=y=0$.
So the critical point is at the origin.
For this problem $A=\left(\begin{array}{cc}-4 & 3 \\ -2 & 1\end{array}\right)$, and so the eigenvalues satisfy

$$
(-4-\lambda)(1-\lambda)-(-6)=0 \Rightarrow \lambda^{2}+3 \lambda+2=0 \Rightarrow \lambda=-2 . \text { and }-1
$$

i.e. we have a stable node at $(0,0)$.

The eigenvectors satisfy $\left(\begin{array}{cc}-4-\lambda & 3 \\ -2 & 1-\lambda\end{array}\right)\binom{x_{1}}{y_{1}}=0$.
For $\lambda=-2$ this gives $-2 x_{1}+3 y_{1}=0$ and so $\binom{x_{1}}{y_{1}}=C_{1}\binom{3}{2}$.
For $\lambda=-1$ we have $-3 x_{1}+3 y_{1}=0$ and so $\binom{x_{1}}{y_{1}}=C_{2}\binom{1}{1}$.
Thus the general solution is

$$
\binom{x}{y}=C_{1}\binom{3}{2} e^{-2 t}+C_{2}\binom{1}{1} e^{-t}
$$

Since $d y / d x=(-2 x+y) /(-4 x+3 y)$ we see that $d y / d x=0$ on $y=2 x$ and $d y / d x=\infty$ on $y=4 x / 3$.
Also note that as $t \rightarrow \infty$ the $e^{-2 t}$ term is negligible so that $x \sim y$ as $t \rightarrow \infty$.
This means that all solutions (except those that start on $y=2 x / 3$) are drawn in along $y=x$. For sketch see separate sheet.

1(iv) We have $d x / d t=-2 x-2 y, d y / d t=3 x+2 y$.
Critical point is when the RHS's vanish simultaneously, i.e. when $x=y=0$.
So the critical point is at the origin.
For this problem $A=\left(\begin{array}{cc}-2 & -2 \\ 3 & 2\end{array}\right)$, and so the eigenvalues satisfy

$$
(-2-\lambda)(2-\lambda)-(-6)=0 \Rightarrow \lambda^{2}+2=0 \Rightarrow \underline{\lambda= \pm i \sqrt{2}}
$$

i.e. we have a center at $(0,0)$.

The eigenvectors satisfy $\left(\begin{array}{cc}-2-\lambda & -2 \\ 3 & 2-\lambda\end{array}\right)\binom{x_{1}}{y_{1}}=0$.
For $\lambda=i \sqrt{2}$ this gives $-(2+i \sqrt{2}) x_{1}-2 y_{1}=0$ and so $\binom{x_{1}}{y_{1}}=C_{1}\binom{2}{-(2+i \sqrt{2})}$.

For $\lambda=-i \sqrt{2}$ we have $-(2-i \sqrt{2}) x_{1}-2 y_{1}=0$ and so $\binom{x_{1}}{y_{1}}=C_{2}\binom{2}{-(2-i \sqrt{2})}$.
Thus the general solution is

$$
\binom{x}{y}=C_{1}\binom{2}{-(2+i \sqrt{2})} e^{i \sqrt{2} t}+C_{2}\binom{2}{-(2-i \sqrt{2})} e^{-i \sqrt{2} t}
$$

Since $d y / d x=(3 x+2 y) /(-2 x-2 y)$ we see that $d y / d x=0$ on $y=-3 x / 2$
and $d y / d x=\infty$ on $y=-x$.
To get direction of orbit, look, for example at 1st quadrant.
Here we have $d x / d t<0$ and $d y / d t>0$ so that as t increases x decreases and y increases.
Therefore the trajectories are clockwise. For sketch see separate sheet.
1(v) We have $d x / d t=-2 x-2 y+3, d y / d t=3 x+2 y-4$.
Critical point is when the RHS's vanish simultaneously,
i.e. when $-2 x-2 y+3=0,3 x+2 y-4=0$.

Adding these equations together: $x-1=0 \Rightarrow x=1$.
Substitute back to get $2 y=4-3 x=1$. So the critical point is at $(1,1 / 2)$.
Now write $x=1+X, y=1 / 2+Y$. Then X, Y satisfy

$$
d X / d t=-2 X-2 Y, d Y / d t=3 X+2 Y
$$

and so the equations are now the same as in part (iv).
Sketch is same except that the orbits are now centered around $(1,1 / 2)$ instead of $(0,0)$.
2. Using Newton's law we have

$$
m d^{2} x / d t^{2}=-k x-\gamma d x / d t
$$

If we write $y=d x / d t$ then we obtain the two equations given in the question.
The critical point occurs when the 2 RHS's are zero simultaneously, i.e. when $x=y=0$.
Thus the critical point is at $(0,0)$.
We have $d y / d x=-(\gamma / m)-(k / m)(x / y)$
$\Rightarrow d y / d x=0$ when $y=-(k / \gamma) x$. Also, when $x=0$ we have $d y / d x=-\gamma / m$ provided $y \neq 0$.
i.e. the slope is negative along the y-axis.

For this problem $A=\left(\begin{array}{cc}0 & 1 \\ -k / m & -\gamma / m\end{array}\right)$, and so the eigenvalues satisfy

$$
\lambda^{2}+(\gamma / m) \lambda+(k / m)=0 \Rightarrow 2 \lambda=-(\gamma / m) \pm \sqrt{\left((\gamma / m)^{2}-4(k / m)\right.} .
$$

Case 1: If $(\gamma / m)^{2}>4(k / m)$, then the values of λ are both real and negative.
$\Rightarrow(0,0)$ is a stable node.
The eigenvectors satisfy $\left(\begin{array}{cc}-\lambda & 1 \\ -k / m & -\gamma / m-\lambda\end{array}\right)\binom{x_{1}}{y_{1}}=0$.
This means that for both eigenvalues we have $y_{1}=\lambda x_{1}$.
When t is large the less negative eigenvalue dominates.
The trajectories are therefore drawn in along $y=\lambda_{1} x$
where λ_{1} is the eigenvalue with $+\sqrt{ }$ above.
Case 2: If $(\gamma / m)^{2}<4(k / m)$, then the values of λ are complex with negative real part.
$\Rightarrow(0,0)$ is a stable spiral.
The two phase planes are shown on a separate sheet.
The essential difference is that in case 1 if the spring has a positive displacement initially, it subsequently comes to rest at $x=0$ without passing into a region where $x<0$.
i.e. it does not oscillate about the origin because it is heavily damped.

Q1
(i)

(ii)

QI

(v) Sketch is same as above except that orbits are now centred around $\left(1, \frac{1}{2}\right)$ instead of the origin.

QQ
(i) $\frac{\gamma}{m}=2, \frac{k}{m}=\frac{3}{4}$ (heavy Damping)

(ii) $\frac{\gamma}{m}=1, \frac{k}{m}=\frac{3}{4}$ (light damping)

