Mechanical Engineering Mathematics ME3.6
 Problem Sheet 1: Linear Autonomous Systems

1. Find and classify the critical points of the following systems of linear ODEs. In each case find the general solutions for $x(t)$ and $y(t)$.

Find the lines along which $d y / d x=0$ and $d y / d x=\infty$. Also determine the sign of $d y / d x$ on the x and y axes.

Putting all of this information together, sketch a few trajectories of each system in the $x-y$ phase plane and use arrows to indicate the direction of increasing t.
(i) $d x / d t=2 x+5 y, d y / d t=x-2 y$;
(ii) $d x / d t=-3 x+y, d y / d t=-x-3 y$;
(iii) $d x / d t=-4 x+3 y, d y / d t=-2 x+y$;
(iv) $d x / d t=-2 x-2 y, d y / d t=3 x+2 y$;
(v) $d x / d t=-2 x-2 y+3, d y / d t=3 x+2 y-4$.
2. A spring of mass m and stiffness k has damping coefficient γ. Show that the equation of motion can be written in the form

$$
d x / d t=y, d y / d t=-(\gamma / m) y-(k / m) x .
$$

Show that $d y / d x$ is infinite along the x-axis, and $d y / d x$ is a negative constant along the y-axis. Show also that $d y / d x=0$ when $y=-(k / \gamma) x$.

Classify the critical point of this system, distinguishing between the cases $(\gamma / m)^{2}>4(k / m)$ and $(\gamma / m)^{2}<4(k / m)$.

Sketch the phase plane for the two specific cases:
(i) $(\gamma / \mathrm{m})=2,(\mathrm{k} / \mathrm{m})=3 / 4$;
(ii) $(\gamma / m)=1,(k / m)=3 / 4$.

What is the essential difference between them in terms of the motion of the spring?

