Mechanical Engineering Mathematics ME3.6 Problem Sheet 1: Linear Autonomous Systems

1. Find and classify the critical points of the following systems of linear ODEs. In each case find the general solutions for x(t) and y(t).

Find the lines along which dy/dx = 0 and $dy/dx = \infty$. Also determine the sign of dy/dx on the x and y axes.

Putting all of this information together, sketch a few trajectories of each system in the x - y phase plane and use arrows to indicate the direction of increasing *t*.

(i)
$$dx/dt = 2x + 5y$$
, $dy/dt = x - 2y$;
(ii) $dx/dt = -3x + y$, $dy/dt = -x - 3y$;
(iii) $dx/dt = -4x + 3y$, $dy/dt = -2x + y$;
(iv) $dx/dt = -2x - 2y$, $dy/dt = 3x + 2y$;
(v) $dx/dt = -2x - 2y + 3$, $dy/dt = 3x + 2y - 4$.

2. A spring of mass *m* and stiffness *k* has damping coefficient γ . Show that the equation of motion can be written in the form

$$dx/dt = y$$
, $dy/dt = -(\gamma/m)y - (k/m)x$.

Show that dy/dx is infinite along the *x*-axis, and dy/dx is a negative constant along the *y*-axis. Show also that dy/dx = 0 when $y = -(k/\gamma)x$.

Classify the critical point of this system, distinguishing between the cases $(\gamma/m)^2 > 4(k/m)$ and $(\gamma/m)^2 < 4(k/m)$.

Sketch the phase plane for the two specific cases:

(i) $(\gamma/m) = 2$, (k/m) = 3/4;

(ii) $(\gamma/m) = 1$, (k/m) = 3/4.

What is the essential difference between them in terms of the motion of the spring?