M4A32 Vortex dynamics: solutions (2006)

1. (a) Since
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then, on integration, we get the following contribution to the streamfunction
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Adding in the contribution from the two point vortices at +ic we get
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This is the required streamfunction.
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(b) Now
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The non-self-induced velocity component at z = ic is therefore
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Setting this to zero gives
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(c) Expanding the velocity field in part (b) about z = ic yields
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(d) Consider the velocity field around the elliptical vortex patch. It will have

the form )
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where C,(z) will decay for large z. By continuity of velocity, on 0D we have
Ci(z) — C,(2) = éz + bz

where

The conformal mapping from the interior of a unit {-disc to the exterior of
this elliptical patch has the form
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where « is a real parameter and 3 is complex. Now, on 0D,
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so that, on 0D,
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2. (a) Consider a (complex) (-plane through the equator of the sphere. Pick
a point P on the spherical surface. Draw a straight line between P and the
north pole N of the sphere. Extrapolate this line if necessary so that it hits
the plane through the equator. This construction gives a one-to-one mapping
(the stereographic projection) of points P on the spherical surface and points
¢ in the plane. The north pole NV corresponds to the point at infinity in the
plane. The south pole S corresponds to ¢ = 0. If (0, ¢) are the usual angles
in spherical polar coordinates, simple geometrical considerations lead to the
relation

¢ =cot (0/2) "
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(b) The south pole corresponds to ¢ = 0. The streamfunction associated
with a point vortex, of unit circulation, at this point is
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(c) Note that the streamfunction of part (b) can be written

% = —% (log(CC) — log(1 + CC))

The first logarithmic term correponds to the point vortex, the second log-
arithmic term to the background of uniform vorticity covering the entire
spherical surface. If only half the surface (the southern hemisphere) is cov-
ered in uniform vorticity then, to satisfy the Gauss constraint that the total
vorticity on the surface is zero, then it will be necessary to double the mag-
nitude of this second term. Thus, the global streamfunction will now be
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since the projected region |(| < 1 corresponds to the southern hemisphere.
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(d) Since the equatorial circle is now a vortex jump then, for an equilibrium,
we require that the velocity field is continuous there and that the equatorial
circle is a streamline. To verify these conditions, note that
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but this quantity (which is proportional to the complex fluid velocity on the
equatorial circle) is identically zero on the equator || = 1. Since the flow in
the northern hemisphere vanishes, the velocities are continuous.
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Note also that o o0
dyp = 6—CdC + a—gdg

which is zero on |¢| = 1 since 9vy/0¢ = /O = 0 there.
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3.(a) The Green’s function G((; v, @) is the function which is harmonic ev-
erywhere in || < 1 except that, near { = a,
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and is such that G = 0 everywhere on the boundary [(| = 1.
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(b) First, it is clear that G((;«, @) is the imaginary part of the analytic
function of ¢ given by
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so it is harmonic everywhere in |(| < 1 except at ( = « where, clearly,
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Note also that, for ¢ on the unit circle where ¢ = (1,
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so that G = 0 on the unit circle, as required.
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(c) From [1], it is clear that
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(d) The Joukowski slit mapping
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takes the interior of the unit (-disc to the n-plane exterior to a slit between
-2 and +2 on the real n-axis. Composing this with the Mdbius mapping

1
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gives the required result since this map takes the slit [—2, 2] on the real n-axis
to (—o0, —1/2] U [1/2,00) on the real z-axis. The final mapping is
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Note that z(0) = 0.
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(e) Taking the derivative of the above map,
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On use of this in the transformation formula for the Hamiltonians we get
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The vortex trajectories, in this case of a single vortex, are the contours of
H®)(z,,2,). They are given by
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where c is some constant. By the symmetry of the configuration, the critical
trajectory must pass through z, = 0 which corresponds to a = 0. Therefore,
the critical trajectory corresponds to ¢ = 1. This trajectory is therefore given
by L

(1= a(z)a(2)]1 - a(2)?| = [1 + (a(2)*)[?

where
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Solving this quadratic equation for o as a function of z
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where we have taken the —ve sign so that a(0) = 0.
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4. (a) The flow is steady, two-dimensional and incompressible which means

there exists a streamfunction ¢ (x,y) such that
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But, in two dimensions, the vorticity field w(z, y) is
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where V? denotes the planar Laplacian operator.

(b) The steady vorticity equation in two dimensions reduces to

u.Vw =0
which can be rewritten as
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for some differentiable function A then
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and then [*] is satisfied identically.

(c) Let

ARy e
=——1lo -
Y= g<(1+f(z) <z>>2>

which implies
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so that
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Therefore
w=-V2)=—dip,; = —4e”%¥

so w is purely a function of 1 and therefore ¢ is a possible steady solution
from part (b).
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(d) If, near z = q,

f(z)= b + analytic
—a

z
then ;
f'(z) = _(z — oy + analytic
so that
/ ; _ b
f'(z) @ ~ 2T + regular
U+ @F@)? (U + iy P

as z — a. Thus, ¢ is not singular as z — a if f(z) has a simple pole at a.
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(e) Let
a
where a and b are complex constants. Then
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Comparing with
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for a point vortex of circulation I' at z = 0, it is clear that the circulation of
the point vortex is
['=2(N - 1)
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5. (a) It is known that
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Since the vorticity w is given by
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then, on use of the expression for ), this equals wy except possibly at any
singularities of S(z).
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(b) At a vortex jump, the fluid velocities must be continuous and the jump
must be a streamline. However, since S(z) = z on the vortex jump 9D,
then from part (a) it is clear that the velocities are continuous at 0D since
u — 1v = 0 there. Moreover, since

dy = a—wdz—i-a—?d,é:o on 0D
0z 0z
then 0D is also a streamline.
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(c) Since
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and since || = 1 corresponds to 0D then, on 9D,
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where we have used the fact that ( = (! on D and the fact that a and b
are real.
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(d) Tt is clear, from inspection, that S(z) has simple poles at ¢ = 0, +1/a.
Since |a| > 1 then +1/a are points inside the unit (-disc and, hence, inside
the vortex patch D. These are at z(0) and z(£1/a) or explicitly,
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(e) A simple pole of S(z) means that u — iv has a simple pole. It also
has pure imaginary residue and therefore corresponds, physically, to a point
vortex singularity. There are therefore point vortex singularities at the three
points found in (d). In equilibrium, the point vortices must be steady. Thus,
the parameters a and b must be such that the non-self-induced velocity at
each of the three point vortices must be zero. These are the extra conditions

on a and b.
3 marks
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