M2AM: Fluids and Dynamics
Problem Sheet 6 - SOLUTIONS

1. A graph of a(k) against k is a simple Gaussian curve centred at ko, as shown below for
the case kg = 1. Note that we can write

a(k)eikx _ e—a(k—ko)Q—i-ikx _ 6—0k2+2kk¢00—0k’g+ik:c
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where we have “completed the square”. Hence
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To compute the integral
/ ¢~ (k= (ko-+ia/20))? gp 3)

first introduce the change of variable m = k — (ko + iz/20) so that it becomes the line
integral in the complex m-plane

oco+iz /20 )
/ e 7™ dm. 4)
—oo+iz/20
To compute this, consider the closed contour integral
j{ e ™ dm =0 5)
Cr

where CF, is the boundary of the rectangular region in the complex m-plane shown in the
figure below and where the integral is zero by Cauchy’s theorem (the integrand is analytic
everywhere inside the curve Cg). Split Cr up into C; UC, UC3 U Cy as shown in the figure
where C; runs along the real m-axis and Cj is parallel to it along the line Im[m| = z/20.
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In the limit R — oo, the integral along C’; is the integral we need; simple estimates can
be used to show that, as R — oo, the contributions from C5 and Cj tend to zero and the
contribution from C} is the integral given in the hint. It follows that the integrals along C

and Cj3 are equal and, hence,
n(x,0) = \/je"ﬂ/ oetor, (6)

as required.

If n(z, 0) has a large number of crests in a wave packet, then o must be large in order that
the exponential factor e==*/4 is not exponentially small over the large z-interval. On the
other hand, this means that a(k) is exponentially small except for values of k very close to

ko.

2. Following the single-fluid example in lectures, the linearized kinematic boundary con-
ditions are that, on y = 0,

on o0 oy _ o0 -

ot Oy’ ot Oy
Similarly, with no surface tension, the boundary condition that the pressures are contin-
uous, i.e. p; = p reduces, in the linearized form, to the following condition evaluated at
y=0:

Do

dPy
PLpp T PLIN = P2+ P20 8)

Now assume k£ > 0 and let
n = Acos(kx — wt), $1 = BekYsin(kx — wt), by = Ce ™ sin(kx —wt)  (9)
where A, B and C are constants. On substitution of these forms into (7) and (8) we find
Aw = Bk, Aw = —Ck, —p1wB 4+ p1gA = —powC + pagA (10)

On eliminating B and C from these three equations we arrive at the dispersion relation

2[P2 PL] _
w [k + k} (p1 — p2)g, (11)
or, on use of the fact that c = w/k,
s (p1—p2)g
= 12
k(p1 + p2) (12)
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Performing a similar analysis for k£ < 0 produces the required result

2_ 9 (pL—p2)
¢ = —= (13)
k] (p1 + p2)
3. We know 4
¢ i0
s U3 14
s °¢ (14)
Hence ) ) .
d°z .df ;5 .dOdz
i A il 1
ds?  'ds. dsds (15
so that ) 2. s
d id“z/ds
= —=—-—— 1
"= s dz/ds ’ (16)
as required. Now let y = 7(x) so that
z=x+iy =z +in(x), 17)
then .
ds* = da® + 0/ (z)?da?, é = —(1+4n/(z)?)1/? (18)
where the minus sign is chosen so that the fluid is on the left as s increases. By the chain
rule,
dz dz /ds (1+in'(z)) .
Ml e LR S A Y ¢ | 19
dS dx/dx (1+?7’($)2)1/2 ( +177 (x))ﬁ ( )
where we have linearized for small 7/(x). Similarly, the chain rule implies
d*z  d(dz/ds)/dx .,
ko el Bl 20
ds? ds/dx () 20)
in a linearized approximation. It follows from (16) that the linearized curvature is
k= —n"(z). (21)
4(a). Clearly
2
9y W g Tk
=5 =>4+— 22
so that 1o
T
c= [g + k] (23)
ko p
Now A\ = 27 /k so
gh  2Tm 1/2
= |Z= 4+ == . 24
‘ [% T ] -

A sketch of a typical graph of c against A is shown in the figure.



(b) The quantity 2 will have a local minimum when ¢ has a local minimum and this
occurs when

dc? g T
%:—ﬁ+;:0, (25)
that is, when
K=k = %, (26)

The corresponding minimum value of c is

Cmin = ¢(kmin) = [M] 1/4. (27)
p
(c) Now the group velocity ¢, is obtained by direct differentiation:
2
o
(d) From part (c), we can write
g+3Tk*/p 29)

Cy = ,
* 2Vk(g + TR/ p)V/?

which is positive and, like ¢, clearly becomes infinite as k — 0 and as & — oo so it also
has a single local minimum, "™ say. Assuming that qualitatively similar properties hold
for 2D capillary-gravity waves on a pond, since the energy of a wave packet travels with
velocity c,, after a time 7', all wave packets generated by the dropped stone will have
travelled at least a distance ¢ T from the point at which the stone was dropped and this

g
explains why no remaining ripples would be observed within this distance.

5 (a). Now, since the walls are impenetrable, the z-velocity of the fluid must vanish at
x = 0, a so that
9¢;

120, =00, j=1,2 (30)
oz



where ¢;, j = 1,2 are the harmonic velocity potentials in each fluid.

(b) Following Q2, the linearized boundary conditions on y = 0 are

on  0¢;
—_— = =1,2
at 8y ) ) )

31
8¢1 + B a¢2 . -7 ”(SU) ( )
pli@t P19M Pziat p29M n )

where we have now included surface tension 7'. Possible solutions, satisfying (30), are

—nrny/a

1= b, e/ a cos(nmz/a) sin wyt, P2 = cpe cos(nmz/a) sin wyt (32)

where b, ¢,, and w,, are constants and n > 1 is any positive integer. The boundary condi-
tions (31) then force the functional form

1 = ayn cos(nmx/a) cos wyt (33)

for some constant a,,. Substitution of all these forms into (31) produces

—wnan = (n7/a)by Wnay = (n/a)cy, P1Wnbn—pP1gan—pawncn—pagan = T(n*7?/a?)ay,
(34)
Elimination of b,, and ¢,, produces the dispersion relation
2_2
9 nm Tnm
n CL(/Ol + p2) (pl P2)g a2 ( )

(o) If po > py then w,, can be pure imaginary — and hence the system unstable — if

Tn?r2 — a?
5— < (p2 —p1)9, or T'< W- (36)
a n2mw
Thus the n = 1 mode is unstable if
2 _
T < Mpzifﬂg 37)
T

Higher order modes become successively unstable as 7" gets smaller.



