
M2AM: Fluids and Dynamics
Problem Sheet 6 - SOLUTIONS

1. A graph of a(k) against k is a simple Gaussian curve centred at k0, as shown below for
the case k0 = 1. Note that we can write

a(k)eikx = e−σ(k−k0)
2+ikx = e−σk

2+2kk0σ−σk20+ikx

= e−σ(k
2−2kk0−ikx/σ+k20)

= e−σ(k−(k0+ix/2σ))2−σk20+σ(k0+ix/2σ)2

(1)

where we have “completed the square”. Hence

η(x, 0) = e−σk
2
0+σ(k0+ix/2σ)2

∫ ∞
−∞

e−σ(k−(k0+ix/2σ))2dk

= eik0x−x
2/4σ

∫ ∞
−∞

e−σ(k−(k0+ix/2σ))2dk.

(2)
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To compute the integral ∫ ∞
−∞

e−σ(k−(k0+ix/2σ))2dk, (3)

first introduce the change of variable m = k − (k0 + ix/2σ) so that it becomes the line
integral in the complex m-plane ∫ ∞+ix/2σ

−∞+ix/2σ
e−σm

2
dm. (4)

To compute this, consider the closed contour integral∮
CR

e−σm
2
dm = 0 (5)

where CR is the boundary of the rectangular region in the complex m-plane shown in the
figure below and where the integral is zero by Cauchy’s theorem (the integrand is analytic
everywhere inside the curve CR). Split CR up into C1∪C2∪C3∪C4 as shown in the figure
where C1 runs along the real m-axis and C3 is parallel to it along the line Im[m] = x/2σ.
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In the limit R → ∞, the integral along C3 is the integral we need; simple estimates can
be used to show that, as R → ∞, the contributions from C2 and C4 tend to zero and the
contribution from C1 is the integral given in the hint. It follows that the integrals along C1

and C3 are equal and, hence,

η(x, 0) =

√
π

σ
e−x

2/4σeik0x, (6)

as required.
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If η(x, 0) has a large number of crests in a wave packet, then σ must be large in order that
the exponential factor e−x

2/4σ is not exponentially small over the large x-interval. On the
other hand, this means that a(k) is exponentially small except for values of k very close to
k0.

2. Following the single-fluid example in lectures, the linearized kinematic boundary con-
ditions are that, on y = 0,

∂η

∂t
=
∂φ1
∂y

,
∂η

∂t
=
∂φ2
∂y

. (7)

Similarly, with no surface tension, the boundary condition that the pressures are contin-
uous, i.e. p1 = p2 reduces, in the linearized form, to the following condition evaluated at
y = 0:

ρ1
∂φ1
∂t

+ ρ1gη = ρ2
∂φ2
∂t

+ ρ2gη. (8)

Now assume k > 0 and let

η = A cos(kx− ωt), φ1 = Beky sin(kx− ωt), φ2 = Ce−ky sin(kx− ωt) (9)

where A,B and C are constants. On substitution of these forms into (7) and (8) we find

Aω = Bk, Aω = −Ck, −ρ1ωB + ρ1gA = −ρ2ωC + ρ2gA (10)

On eliminating B and C from these three equations we arrive at the dispersion relation

ω2
[ρ2
k

+
ρ1
k

]
= (ρ1 − ρ2)g, (11)

or, on use of the fact that c ≡ ω/k,

c2 =
(ρ1 − ρ2)g
k(ρ1 + ρ2)

. (12)
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Performing a similar analysis for k < 0 produces the required result

c2 =
g

|k|
(ρ1 − ρ2)
(ρ1 + ρ2)

. (13)

3. We know
dz

ds
= eiθ. (14)

Hence
d2z

ds2
= i

dθ

ds
eiθ = i

dθ

ds

dz

ds
(15)

so that

κ ≡ dθ

ds
= − id2z/ds2

dz/ds
, (16)

as required. Now let y = η(x) so that

z = x+ iy = x+ iη(x), (17)

then
ds2 = dx2 + η′(x)2dx2,

ds

dx
= −(1 + η′(x)2)1/2 (18)

where the minus sign is chosen so that the fluid is on the left as s increases. By the chain
rule,

dz

ds
=
dz

dx

/
ds

dx
= − (1 + iη′(x))

(1 + η′(x)2)1/2
≈ −(1 + iη′(x)), (19)

where we have linearized for small η′(x). Similarly, the chain rule implies

d2z

ds2
=
d(dz/ds)/dx

ds/dx
≈ iη′′(x) (20)

in a linearized approximation. It follows from (16) that the linearized curvature is

κ = −η′′(x). (21)

4(a). Clearly

c2 =
ω2

k2
=
g

k
+
Tk

ρ
(22)

so that

c =

[
g

k
+
Tk

ρ

]1/2
(23)

Now λ = 2π/k so

c =

[
gλ

2π
+

2Tπ

ρλ

]1/2
. (24)

A sketch of a typical graph of c against λ is shown in the figure.
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(b) The quantity c2 will have a local minimum when c has a local minimum and this
occurs when

dc2

dk
= − g

k2
+
T

ρ
= 0, (25)

that is, when
k2 = k2min =

gρ

T
. (26)

The corresponding minimum value of c is

cmin = c(kmin) =

[
4gT

ρ

]1/4
. (27)

(c) Now the group velocity cg is obtained by direct differentiation:

cg =
dω

dk
=

g + 3Tk2/ρ

2(gk + Tk3/ρ)1/2
(28)

(d) From part (c), we can write

cg =
g + 3Tk2/ρ

2
√
k(g + Tk2/ρ)1/2

, (29)

which is positive and, like c, clearly becomes infinite as k → 0 and as k → ∞ so it also
has a single local minimum, cming say. Assuming that qualitatively similar properties hold
for 2D capillary-gravity waves on a pond, since the energy of a wave packet travels with
velocity cg, after a time T , all wave packets generated by the dropped stone will have
travelled at least a distance cming T from the point at which the stone was dropped and this
explains why no remaining ripples would be observed within this distance.

5 (a). Now, since the walls are impenetrable, the x-velocity of the fluid must vanish at
x = 0, a so that

∂φj
∂x

= 0, x = 0, a, j = 1, 2, (30)
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where φj , j = 1, 2 are the harmonic velocity potentials in each fluid.

(b) Following Q2, the linearized boundary conditions on y = 0 are

∂η

∂t
=
∂φj
∂y

, j = 1, 2,

ρ1
∂φ1
∂t

+ ρ1gη − ρ2
∂φ2
∂t
− ρ2gη = −Tη′′(x),

(31)

where we have now included surface tension T . Possible solutions, satisfying (30), are

φ1 = bne
nπy/a cos(nπx/a) sinωnt, φ2 = cne

−nπy/a cos(nπx/a) sinωnt (32)

where bn, cn and ωn are constants and n ≥ 1 is any positive integer. The boundary condi-
tions (31) then force the functional form

η = an cos(nπx/a) cosωnt (33)

for some constant an. Substitution of all these forms into (31) produces

−ωnan = (nπ/a)bn ωnan = (nπ/a)cn, ρ1ωnbn−ρ1gan−ρ2ωncn−ρ2gan = T (n2π2/a2)an
(34)

Elimination of bn and cn produces the dispersion relation

ω2
n =

nπ

a(ρ1 + ρ2)

[
(ρ1 − ρ2)g +

Tn2π2

a2

]
. (35)

(c) If ρ2 > ρ1 then ωn can be pure imaginary – and hence the system unstable – if

Tn2π2

a2
< (ρ2 − ρ1)g, or T <

(ρ2 − ρ1)a2g
n2π2

. (36)

Thus the n = 1 mode is unstable if

T <
a2(ρ2 − ρ1)g

π2
. (37)

Higher order modes become successively unstable as T gets smaller.
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