
M2AM: Fluids and Dynamics

Problem Sheet 4 - SOLUTIONS

1. The ODE for s(t) comes from the shock condition as derived in lectures. The ODE can
be written

ds

dt
− u0s

2(1 + u0t)
= k +

u0(1− kt)
2(1 + u0t)

.

This is a first-order linear ODE and the integrating factor is easily found to be (1+u0t)−1/2.
Then,

d

dt

(
s(t)

(1 + u0t)1/2

)
=

k

(1 + u0t)1/2
+
u0 − k(u0t+ 1) + k)

2(1 + u0t)3/2
,

=
k

2(1 + u0t)1/2
+

(u0 + k)
2(1 + u0t)3/2

.

Integration yields

s(t)
(1 + u0t)1/2

=
k

u0
(1 + u0t)1/2 −

1
u0

(u0 + k)
(1 + u0t)1/2

+ C

where C is a constant. Hence

s(t) = kt− 1 + C(1 + u0t)1/2.

When we use the initial condition that s = 1 + k/u0 when t = 1/u0 we get C =
√

2.

2. The characteristics for the equation are

dx

dt
= ρ

and, making use of the fact that ρ is constant on these, we get the set of straight lines

x =


ζ ζ < 0,
ζt+ ζ 0 ≤ ζ ≤ 1/2,
(1− ζ)t+ ζ 1/2 ≤ ζ ≤ 1,
ζ ζ > 1.


One method of finding the shock formation time is to compute (∂x/∂ζ)|t and examine
where it vanishes. We find

(∂x/∂ζ)|t =


1 ζ < 0,
t+ 1 0 ≤ ζ ≤ 1/2,
−t+ 1 1/2 ≤ ζ ≤ 1,
1 ζ > 1.


Hence, this equals zero when t = ts = 1. This is the shock formation time.

An implicit form of the solution is easily found to be (e.g. using the method of character-
istics)

ρ = f(x− ρt)
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where f is an arbitrary function. This function is determined by initial conditions. At
t = 0,

ρ(x, 0) = f(x) =


0 x < 0,
x 0 ≤ x ≤ 1/2,
(1− x) 1/2 ≤ x ≤ 1,
0 x > 1.


Hence, on rearrangement (as in Q1), we get the explicit solution

ρ(x, t) =


0 x < 0,
x/(1 + t) 0 ≤ x ≤ (t+ 1)/2,
(1− x)/(1− t) (t+ 1)/2 ≤ x ≤ 1,
0 x > 1.


Now, rewriting the equation in conservative form

∂ρ

∂t
+
∂Q

∂x
= 0

with Q = ρ2/2, the shock condition gives

ds

dt
=

[Q]+−
[ρ]+−

where s(t) denotes the shock position. Using the explicit solution just found, this gives

ds

dt
=

s

2(1 + t)

which is a separable ODE easily solved to give

s(t) =

√
1 + t

2

where we have used the initial conditions s(1) = 1.

3. (a) It is clear that ρ = ρ0 = constant is a solution of the governing equation. Since

∂

∂t

(x
t

)
= − x

t2
,

∂

∂x

(x
t

)
=

1
t

it is easily verified that ρ = (x/t) is also a solution. This is just a triangular shaped wave
with a jump discontinuity at the point x = s(t) (which, for now, is arbitrary). See Figure
below.

(b) The shock condition is that the shock speed ds/dt is given by

ds

dt
=

[Q]+−
[ρ]+−

where Q(ρ) = ρ2/2. For the solution in part (a), this gives

ds

dt
=
ρ2
0/2− (s/t)2/2
ρ0 − (s/t)

=
1
2

(
ρ0 +

s

t

)
,

which is the required equation.
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(c) This ODE can be rewritten as

ds

dt
− s

2t
=
ρ0

2
.

It is a first-order linear ODE and the integrating factor is 1/t1/2 so

d

dt

( s

t1/2

)
=

ρ0

2t1/2
,

hence integration produces ( s

t1/2

)
= ρ0t

1/2 + C.

Alternatively,
s = ρ0t+ Ct1/2.

The value of C must come by enforcing that the total area under the graph is the same
as for the initial condition. The total area of the triangle (above the level ρ0) is clearly
(1/2)[Ct1/2][Ct−1/2] = C2/2 and, since this must equal A (the total area of the initial
condition above the level ρ0), we must have C =

√
2A, hence the result.
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4. Consider the perturbation
u = ũ, ρ = ρ0 + ρ̃

where |ũ| � 1 and |ρ̃| � ρ0. Then, substitution into the conservation of mass equation
gives, on linearization,

∂ρ̃

∂t
+ ρ0

∂ũ

∂x
= 0.

Differentiation with respect to t gives

∂2ρ̃

∂t2
+ ρ0

∂2ũ

∂t∂x
= 0.

We need to find an expression for ∂2ũ
∂t∂x . This comes from the Euler equation. Substitution

of the forms for u and ρ into the Euler equation gives

(ρ0 + ρ̃)
(
∂ũ

∂t
+ ũ

∂ũ

∂x

)
= −k2ργ−1

0 (1 + ρ̃/ρ0)γ−1 ∂ρ̃

∂x
.
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But, on use of a Taylor series (binomial theorem),

(1 + ρ̃/ρ0)γ−1 = 1 + (γ − 1)
ρ̃

ρ0
+ ...

hence, the linearized Euler equation is

ρ0
∂ũ

∂t
= −k2ργ−1

0

∂ρ̃

∂x
.

Differentiation of this with respect to x gives

ρ0
∂2ũ

∂x∂t
= −k2ργ−1

0

∂2ρ̃

∂x2
.

This is another expression for ∂2ũ
∂t∂x which, when substituted into the earlier equation derived

above, yields the required wave equation for ρ̃. The general solution is

ρ̃(x, t) = f(x− a0t) + g(x+ a0t)

where a2
0 = k2ργ−1

0 is the speed of wave propagation.

5. From the third of the Rankine-Hugoniot equations: p1−p2 = ρ2u
2
2−ρ1u

2
1 = ρ1u1(u2−u1),

since ρ1u1 = ρ2u2. Dividing this by p1 :

1− (p2/p1) = (ρ1u1/p1)(u2 − u1) = (γ/a2
1)(u1u2 − u2

1),

using the definition a2
1 = γp1/ρ1. In the lectures we established that

u1u2 = 2
(γ − 1)
(γ + 1)

(
1
2
u2

1 +
a2

1

γ − 1

)
.

Using this expression to substitute for u1u2 we obtain

1− (p2/p1) = (γ/a2
1)
(

2
(γ − 1)
(γ + 1)

(
1
2
u2

1 +
a2

1

γ − 1

)
− u2

1

)
=

2γ
γ + 1

(
1−M2

1

)
.

Hence the result for the pressure ratio.

To find the Mach number relation we start with the second of the Rankine-Hugoniot
equations in the form a2

2 = a2
1 + 1

2(γ − 1)(u2
1 − u2

2). Divide by u2
2 :

1
M2

2

=
a2

1

u2
2

+
1
2

(γ − 1)

((
u1

u2

)2

− 1

)
.

The first term on the RHS can be written as (1/M2
1 )(u1/u2)2 and hence

1
M2

2

=
(
u1

u2

)2( 1
M2

1

+
1
2

(γ − 1)
)
− 1

2
(γ − 1).

From the lecture notes we know u2/u1 in terms of M1. Substitute this in to get:

1
M2

2

=
1
4

(
γ + 1
γ − 1

)2( 2M2
1 (γ − 1)

M2
1 (γ − 1) + 2

)2( 1
M2

1

+
1
2

(γ − 1)
)
− 1

2
(γ − 1),
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which simplifies to the desired result.

Hypersonic flow implies that M1 � 1. Take limit as M1 →∞ to obtain asymptotic results.

6. Examining the piston problem from the notes we see that s = u−2a/(γ−1) is constant
throughout the flow region. Hence u1 − 2a1/(γ − 1) = −2a0/(γ − 1). Hence we get the
result upon rearrangement. Now add −V to the moving shock problem to bring the shock
to rest. From Bernoulli we know that 1

2u
2 + a2/(γ − 1) is conserved. Hence

1
2

(u1 − V )2 +
a2

1

γ − 1
=

1
2

(−V )2 +
a2

0

γ − 1
.

Upon cancellation, this gives the expression in the question. Substituting for a1 we get

1
2
u2

1 − u1V +
(a0 + 1

2(γ − 1)u1)2

γ − 1
=

a2
0

γ − 1
.

Cancelling and simplifying gives V = 1
4(γ + 1)u1 + a0, as required.
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