M2AM: Fluids and Dynamics

Problem Sheet 4 - SOLUTIONS

1. The ODE for $s(t)$ comes from the shock condition as derived in lectures. The ODE can be written

$$
\frac{d s}{d t}-\frac{u_{0} s}{2\left(1+u_{0} t\right)}=k+\frac{u_{0}(1-k t)}{2\left(1+u_{0} t\right)} .
$$

This is a first-order linear ODE and the integrating factor is easily found to be $\left(1+u_{0} t\right)^{-1 / 2}$. Then,

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{s(t)}{\left(1+u_{0} t\right)^{1 / 2}}\right) & =\frac{k}{\left(1+u_{0} t\right)^{1 / 2}}+\frac{\left.u_{0}-k\left(u_{0} t+1\right)+k\right)}{2\left(1+u_{0} t\right)^{3 / 2}} \\
& =\frac{k}{2\left(1+u_{0} t\right)^{1 / 2}}+\frac{\left(u_{0}+k\right)}{2\left(1+u_{0} t\right)^{3 / 2}}
\end{aligned}
$$

Integration yields

$$
\frac{s(t)}{\left(1+u_{0} t\right)^{1 / 2}}=\frac{k}{u_{0}}\left(1+u_{0} t\right)^{1 / 2}-\frac{1}{u_{0}} \frac{\left(u_{0}+k\right)}{\left(1+u_{0} t\right)^{1 / 2}}+C
$$

where C is a constant. Hence

$$
s(t)=k t-1+C\left(1+u_{0} t\right)^{1 / 2} .
$$

When we use the initial condition that $s=1+k / u_{0}$ when $t=1 / u_{0}$ we get $C=\sqrt{2}$.
2. The characteristics for the equation are

$$
\frac{d x}{d t}=\rho
$$

and, making use of the fact that ρ is constant on these, we get the set of straight lines

$$
x=\left\{\begin{array}{ll}
\zeta & \zeta<0 \\
\zeta t+\zeta & 0 \leq \zeta \leq 1 / 2 \\
(1-\zeta) t+\zeta & 1 / 2 \leq \zeta \leq 1 \\
\zeta & \zeta>1
\end{array}\right\}
$$

One method of finding the shock formation time is to compute $\left.(\partial x / \partial \zeta)\right|_{t}$ and examine where it vanishes. We find

$$
\left.(\partial x / \partial \zeta)\right|_{t}=\left\{\begin{array}{ll}
1 & \zeta<0 \\
t+1 & 0 \leq \zeta \leq 1 / 2 \\
-t+1 & 1 / 2 \leq \zeta \leq 1 \\
1 & \zeta>1
\end{array}\right\}
$$

Hence, this equals zero when $t=t_{s}=1$. This is the shock formation time.
An implicit form of the solution is easily found to be (e.g. using the method of characteristics)

$$
\rho=f(x-\rho t)
$$

where f is an arbitrary function. This function is determined by initial conditions. At $t=0$,

$$
\rho(x, 0)=f(x)=\left\{\begin{array}{ll}
0 & x<0 \\
x & 0 \leq x \leq 1 / 2 \\
(1-x) & 1 / 2 \leq x \leq 1 \\
0 & x>1
\end{array}\right\}
$$

Hence, on rearrangement (as in Q1), we get the explicit solution

$$
\rho(x, t)=\left\{\begin{array}{ll}
0 & x<0 \\
x /(1+t) & 0 \leq x \leq(t+1) / 2 \\
(1-x) /(1-t) & (t+1) / 2 \leq x \leq 1 \\
0 & x>1
\end{array}\right\}
$$

Now, rewriting the equation in conservative form

$$
\frac{\partial \rho}{\partial t}+\frac{\partial Q}{\partial x}=0
$$

with $Q=\rho^{2} / 2$, the shock condition gives

$$
\frac{d s}{d t}=\frac{[Q]_{-}^{+}}{[\rho]_{-}^{+}}
$$

where $s(t)$ denotes the shock position. Using the explicit solution just found, this gives

$$
\frac{d s}{d t}=\frac{s}{2(1+t)}
$$

which is a separable ODE easily solved to give

$$
s(t)=\sqrt{\frac{1+t}{2}}
$$

where we have used the initial conditions $s(1)=1$.
3. (a) It is clear that $\rho=\rho_{0}=$ constant is a solution of the governing equation. Since

$$
\frac{\partial}{\partial t}\left(\frac{x}{t}\right)=-\frac{x}{t^{2}}, \quad \frac{\partial}{\partial x}\left(\frac{x}{t}\right)=\frac{1}{t}
$$

it is easily verified that $\rho=(x / t)$ is also a solution. This is just a triangular shaped wave with a jump discontinuity at the point $x=s(t)$ (which, for now, is arbitrary). See Figure below.
(b) The shock condition is that the shock speed $d s / d t$ is given by

$$
\frac{d s}{d t}=\frac{[Q]_{-}^{+}}{[\rho]_{-}^{+}}
$$

where $Q(\rho)=\rho^{2} / 2$. For the solution in part (a), this gives

$$
\frac{d s}{d t}=\frac{\rho_{0}^{2} / 2-(s / t)^{2} / 2}{\rho_{0}-(s / t)}=\frac{1}{2}\left(\rho_{0}+\frac{s}{t}\right),
$$

which is the required equation.
(c) This ODE can be rewritten as

$$
\frac{d s}{d t}-\frac{s}{2 t}=\frac{\rho_{0}}{2}
$$

It is a first-order linear ODE and the integrating factor is $1 / t^{1 / 2}$ so

$$
\frac{d}{d t}\left(\frac{s}{t^{1 / 2}}\right)=\frac{\rho_{0}}{2 t^{1 / 2}},
$$

hence integration produces

$$
\left(\frac{s}{t^{1 / 2}}\right)=\rho_{0} t^{1 / 2}+C .
$$

Alternatively,

$$
s=\rho_{0} t+C t^{1 / 2}
$$

The value of C must come by enforcing that the total area under the graph is the same as for the initial condition. The total area of the triangle (above the level ρ_{0}) is clearly $(1 / 2)\left[C t^{1 / 2}\right]\left[C t^{-1 / 2}\right]=C^{2} / 2$ and, since this must equal A (the total area of the initial condition above the level ρ_{0}), we must have $C=\sqrt{2 A}$, hence the result.

4. Consider the perturbation

$$
u=\tilde{u}, \quad \rho=\rho_{0}+\tilde{\rho}
$$

where $|\tilde{u}| \ll 1$ and $|\tilde{\rho}| \ll \rho_{0}$. Then, substitution into the conservation of mass equation gives, on linearization,

$$
\frac{\partial \tilde{\rho}}{\partial t}+\rho_{0} \frac{\partial \tilde{u}}{\partial x}=0 .
$$

Differentiation with respect to t gives

$$
\frac{\partial^{2} \tilde{\rho}}{\partial t^{2}}+\rho_{0} \frac{\partial^{2} \tilde{u}}{\partial t \partial x}=0
$$

We need to find an expression for $\frac{\partial^{2} \tilde{u}}{\partial t \partial x}$. This comes from the Euler equation. Substitution of the forms for u and ρ into the Euler equation gives

$$
\left(\rho_{0}+\tilde{\rho}\right)\left(\frac{\partial \tilde{u}}{\partial t}+\tilde{u} \frac{\partial \tilde{u}}{\partial x}\right)=-k^{2} \rho_{0}^{\gamma-1}\left(1+\tilde{\rho} / \rho_{0}\right)^{\gamma-1} \frac{\partial \tilde{\rho}}{\partial x} .
$$

But, on use of a Taylor series (binomial theorem),

$$
\left(1+\tilde{\rho} / \rho_{0}\right)^{\gamma-1}=1+(\gamma-1) \frac{\tilde{\rho}}{\rho_{0}}+\ldots
$$

hence, the linearized Euler equation is

$$
\rho_{0} \frac{\partial \tilde{u}}{\partial t}=-k^{2} \rho_{0}^{\gamma-1} \frac{\partial \tilde{\rho}}{\partial x} .
$$

Differentiation of this with respect to x gives

$$
\rho_{0} \frac{\partial^{2} \tilde{u}}{\partial x \partial t}=-k^{2} \rho_{0}^{\gamma-1} \frac{\partial^{2} \tilde{\rho}}{\partial x^{2}} .
$$

This is another expression for $\frac{\partial^{2} \tilde{u}}{\partial t \partial x}$ which, when substituted into the earlier equation derived above, yields the required wave equation for $\tilde{\rho}$. The general solution is

$$
\tilde{\rho}(x, t)=f\left(x-a_{0} t\right)+g\left(x+a_{0} t\right)
$$

where $a_{0}^{2}=k^{2} \rho_{0}^{\gamma-1}$ is the speed of wave propagation.
5. From the third of the Rankine-Hugoniot equations: $p_{1}-p_{2}=\rho_{2} u_{2}^{2}-\rho_{1} u_{1}^{2}=\rho_{1} u_{1}\left(u_{2}-u_{1}\right)$, since $\rho_{1} u_{1}=\rho_{2} u_{2}$. Dividing this by p_{1} :

$$
1-\left(p_{2} / p_{1}\right)=\left(\rho_{1} u_{1} / p_{1}\right)\left(u_{2}-u_{1}\right)=\left(\gamma / a_{1}^{2}\right)\left(u_{1} u_{2}-u_{1}^{2}\right),
$$

using the definition $a_{1}^{2}=\gamma p_{1} / \rho_{1}$. In the lectures we established that

$$
u_{1} u_{2}=2 \frac{(\gamma-1)}{(\gamma+1)}\left(\frac{1}{2} u_{1}^{2}+\frac{a_{1}^{2}}{\gamma-1}\right) .
$$

Using this expression to substitute for $u_{1} u_{2}$ we obtain

$$
\begin{aligned}
1-\left(p_{2} / p_{1}\right) & =\left(\gamma / a_{1}^{2}\right)\left(2 \frac{(\gamma-1)}{(\gamma+1)}\left(\frac{1}{2} u_{1}^{2}+\frac{a_{1}^{2}}{\gamma-1}\right)-u_{1}^{2}\right) \\
& =\frac{2 \gamma}{\gamma+1}\left(1-M_{1}^{2}\right) .
\end{aligned}
$$

Hence the result for the pressure ratio.
To find the Mach number relation we start with the second of the Rankine-Hugoniot equations in the form $a_{2}^{2}=a_{1}^{2}+\frac{1}{2}(\gamma-1)\left(u_{1}^{2}-u_{2}^{2}\right)$. Divide by u_{2}^{2} :

$$
\frac{1}{M_{2}^{2}}=\frac{a_{1}^{2}}{u_{2}^{2}}+\frac{1}{2}(\gamma-1)\left(\left(\frac{u_{1}}{u_{2}}\right)^{2}-1\right)
$$

The first term on the RHS can be written as $\left(1 / M_{1}^{2}\right)\left(u_{1} / u_{2}\right)^{2}$ and hence

$$
\frac{1}{M_{2}^{2}}=\left(\frac{u_{1}}{u_{2}}\right)^{2}\left(\frac{1}{M_{1}^{2}}+\frac{1}{2}(\gamma-1)\right)-\frac{1}{2}(\gamma-1)
$$

From the lecture notes we know u_{2} / u_{1} in terms of M_{1}. Substitute this in to get:

$$
\frac{1}{M_{2}^{2}}=\frac{1}{4}\left(\frac{\gamma+1}{\gamma-1}\right)^{2}\left(\frac{2 M_{1}^{2}(\gamma-1)}{M_{1}^{2}(\gamma-1)+2}\right)^{2}\left(\frac{1}{M_{1}^{2}}+\frac{1}{2}(\gamma-1)\right)-\frac{1}{2}(\gamma-1)
$$

which simplifies to the desired result.
Hypersonic flow implies that $M_{1} \gg 1$. Take limit as $M_{1} \rightarrow \infty$ to obtain asymptotic results.
6. Examining the piston problem from the notes we see that $s=u-2 a /(\gamma-1)$ is constant throughout the flow region. Hence $u_{1}-2 a_{1} /(\gamma-1)=-2 a_{0} /(\gamma-1)$. Hence we get the result upon rearrangement. Now add $-V$ to the moving shock problem to bring the shock to rest. From Bernoulli we know that $\frac{1}{2} u^{2}+a^{2} /(\gamma-1)$ is conserved. Hence

$$
\frac{1}{2}\left(u_{1}-V\right)^{2}+\frac{a_{1}^{2}}{\gamma-1}=\frac{1}{2}(-V)^{2}+\frac{a_{0}^{2}}{\gamma-1} .
$$

Upon cancellation, this gives the expression in the question. Substituting for a_{1} we get

$$
\frac{1}{2} u_{1}^{2}-u_{1} V+\frac{\left(a_{0}+\frac{1}{2}(\gamma-1) u_{1}\right)^{2}}{\gamma-1}=\frac{a_{0}^{2}}{\gamma-1} .
$$

Cancelling and simplifying gives $V=\frac{1}{4}(\gamma+1) u_{1}+a_{0}$, as required.

