M2AM: Fluids and Dynamics
Problem Sheet 4

1. The solution to the kinematic wave equation with the “tent example” initial condition

0 T < —1,
u(l+z) —-1<z<0,
u(l—z) 0<x <1,
0 x>1,

where ug > 0 is a constant was given in lectures. For ¢ < 1/ug it can be written as

(2,1) = up(l — x4+ kt) /(1 — upt) for (uo+ k)t <z <1+ kt,
O = wo(1+ 2 — kt) /(1 + uot) for — 14kt <z < (ug+ k)t.

At time ¢ = 1/up a shock forms. Let the subsequent position of the shock be = = s(t).
Show that the ordinary differential equation for s(t) is

ds(t):k+@ 1+s—kt .
dt 2\ 1+upt

Solve this equation and show that the shock position for times ¢ > 1/uy is

s(t) = kt — 14+ V2(1 4 uot)'/2.
[Compare this with your solution for S(¢) in Q3 of Problem Sheet 3].

2. Solve the equation

o, o0,
ot Pox
for t > 0 in the domain —oo < x < 0o given the initial conditions
0 xz <0,
T 0<x<1/2,
PE0) =91 ) 1ja<a<n,
0 x> 1.

Find the critical time ¢, of shock formation and the point x5 at which the wave breaks. Fit
a shock to this solution and find the shock velocity.

3. [Large-t asymptotics| Consider solving the same equation as in Q2 but now with general
initial condition

PO r<a
p(z,0)=1q g(z) a<z<L
po x=>1L

where g(x) is some continuous function with g(a) = g(L) = po having the general form
illustrated in the figure. The area of the shaded region in the figure is known to be A. We
expect a shock to form at some critical time t;. This question examines what the solution
looks like for large times t > t, (i.e., the large-t asymptotic solution).



(a) Show that a simple solution to the governing equation is given by p(x,t) = p(z,1t)

where
po = < pot
pla,t) =< x/t pot <z < s(t)
po = s(t)

and where s(t) is some arbitrary function. Draw a sketch of this solution as a function
of x at a fixed value of t.

(b) Tt is proposed that, at large times ¢ > t,, the solution to the original initial value
problem looks like the solution p(z,t) with s(¢) now determined by the usual shock
condition. Show that the ordinary differential equation for s(t) is

@_1( +9)
a2\ Ty

(c¢) Find the general solution of this equation for s(¢). Hence, by applying the “equal
area rule”, show that

s(t) = pot + V2At.

Draw a labelled sketch of this solution as a function of z at some large time t.
[Note that this large-t solution does not depend on any details of the original initial
condition except for A (and pg)].

4. A simple solution to the equations governing an isentropic gas with v > 1 is

u=0, p=po

where pg is a constant. The associated pressure is p = pg = kag /7. Consider a small
(linear) perturbation to the velocity and density fields of this basic state, i.e.,

u=1u, p=po+p

where |u| < 1 and p < pg. Show, from the equations governing the motion of an isentropic
gas, that the linearized equation for p is

Pi_ 0
a2~ g2

where a? = kag_l = vpo/po. Hence deduce that density fluctuations propagate as waves
with speed +ag.



5. Use the Rankine-Hugoniot equations to show that the pressures and Mach numbers
upstream and downstream of a stationary shock are related by

D2 27y 1 1 v+ 1)2M?
= =14 (M7 - 1), 2:<(21—(7—1) :
41 v+ 1 M7 2\ (y—1)M;+2

[Here the subscript “1” refers to an upstream quantity while “2” refers to a downstream
quantity]. Hence show that for hypersonic flow (corresponding to M7 — oo) we have

D2 2y 1 _
=~ MP, M5 — - (1971
pr v+1 2

6. A steady shock moves with speed V into stationary air. The fluid velocity and sound
speed upstream of the shock wave are u; and a; while the sound speed in the stationary

air is ag. Show that
-1

ay = ag + Ui.

[Hint: regard the shock front in the same way as in the moving piston problem from lectures
and think about the quantity which remains constant in that problem)].

Using the fact that the moving shock problem just described is equivalent to a stationary
shock with upstream fluid velocity u; — V' and downstream velocity —V', use Bernoulli’s
equation to deduce that

2 2 2
e V. S
2 vy—1 ~—-1

Hence show that the shock moves at speed

(v + Duy

V= 1

+ ag.



