
M2AM: Fluids and Dynamics

Problem Sheet 4

1. The solution to the kinematic wave equation with the “tent example” initial condition

u(x, 0) =


0 x < −1,
u0(1 + x) −1 ≤ x ≤ 0,
u0(1− x) 0 ≤ x ≤ 1,
0 x > 1,


where u0 > 0 is a constant was given in lectures. For t < 1/u0 it can be written as

u(x, t) =
{
u0(1− x+ kt)/(1− u0t) for (u0 + k)t < x < 1 + kt,
u0(1 + x− kt)/(1 + u0t) for − 1 + kt < x < (u0 + k)t.

}
At time t = 1/u0 a shock forms. Let the subsequent position of the shock be x = s(t).
Show that the ordinary differential equation for s(t) is

ds(t)
dt

= k +
u0

2

(
1 + s− kt

1 + u0t

)
.

Solve this equation and show that the shock position for times t > 1/u0 is

s(t) = kt− 1 +
√

2(1 + uot)1/2.

[Compare this with your solution for S(t) in Q3 of Problem Sheet 3].

2. Solve the equation
∂ρ

∂t
+ ρ

∂ρ

∂x
= 0

for t > 0 in the domain −∞ < x <∞ given the initial conditions

ρ(x, 0) =


0 x ≤ 0,
x 0 ≤ x ≤ 1/2,
1− x 1/2 ≤ x ≤ 1,
0 x ≥ 1.


Find the critical time ts of shock formation and the point xs at which the wave breaks. Fit
a shock to this solution and find the shock velocity.

3. [Large-t asymptotics] Consider solving the same equation as in Q2 but now with general
initial condition

ρ(x, 0) =


ρ0 x ≤ a
g(x) a ≤ x ≤ L
ρ0 x ≥ L


where g(x) is some continuous function with g(a) = g(L) = ρ0 having the general form
illustrated in the figure. The area of the shaded region in the figure is known to be A. We
expect a shock to form at some critical time ts. This question examines what the solution
looks like for large times t� ts (i.e., the large-t asymptotic solution).
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(a) Show that a simple solution to the governing equation is given by ρ(x, t) = ρ̂(x, t)
where

ρ̂(x, t) =


ρ0 x ≤ ρ0t
x/t ρ0t ≤ x ≤ s(t)
ρ0 x ≥ s(t)


and where s(t) is some arbitrary function. Draw a sketch of this solution as a function
of x at a fixed value of t.

(b) It is proposed that, at large times t � ts, the solution to the original initial value
problem looks like the solution ρ̂(x, t) with s(t) now determined by the usual shock
condition. Show that the ordinary differential equation for s(t) is

ds

dt
=

1
2

(
ρ0 +

s

t

)
.

(c) Find the general solution of this equation for s(t). Hence, by applying the “equal
area rule”, show that

s(t) = ρ0t+
√

2At.

Draw a labelled sketch of this solution as a function of x at some large time t.
[Note that this large-t solution does not depend on any details of the original initial
condition except for A (and ρ0)].

4. A simple solution to the equations governing an isentropic gas with γ > 1 is

u = 0, ρ = ρ0

where ρ0 is a constant. The associated pressure is p = p0 = k2ργ0/γ. Consider a small
(linear) perturbation to the velocity and density fields of this basic state, i.e.,

u = ũ, ρ = ρ0 + ρ̃

where |ũ| � 1 and ρ̃� ρ0. Show, from the equations governing the motion of an isentropic
gas, that the linearized equation for ρ̃ is

∂2ρ̃

∂t2
= a2

0

∂2ρ̃

∂x2

where a2
0 = k2ργ−1

0 = γp0/ρ0. Hence deduce that density fluctuations propagate as waves
with speed ±a0.
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5. Use the Rankine-Hugoniot equations to show that the pressures and Mach numbers
upstream and downstream of a stationary shock are related by

p2

p1
= 1 +

2γ
γ + 1

(M2
1 − 1),

1
M2

1

=
1
2

(
(γ + 1)2M2

1

(γ − 1)M2
1 + 2

− (γ − 1)
)
.

[Here the subscript “1” refers to an upstream quantity while “2” refers to a downstream
quantity]. Hence show that for hypersonic flow (corresponding to M1 →∞) we have

p2

p1
∼ 2γ
γ + 1

M2
1 , M2

2 →
1
2
(
1− γ−1

)
.

6. A steady shock moves with speed V into stationary air. The fluid velocity and sound
speed upstream of the shock wave are u1 and a1 while the sound speed in the stationary
air is a0. Show that

a1 = a0 +
γ − 1

2
u1.

[Hint: regard the shock front in the same way as in the moving piston problem from lectures
and think about the quantity which remains constant in that problem].

Using the fact that the moving shock problem just described is equivalent to a stationary
shock with upstream fluid velocity u1 − V and downstream velocity −V , use Bernoulli’s
equation to deduce that

u2
1

2
− u1V +

a2
1

γ − 1
=

a2
0

γ − 1
.

Hence show that the shock moves at speed

V =
(γ + 1)u1

4
+ a0.
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