M2AM: Fluids and Dynamics

Problem Sheet 4

1. The solution to the kinematic wave equation with the "tent example" initial condition

$$
u(x, 0)=\left\{\begin{array}{ll}
0 & x<-1, \\
u_{0}(1+x) & -1 \leq x \leq 0 \\
u_{0}(1-x) & 0 \leq x \leq 1, \\
0 & x>1,
\end{array}\right\}
$$

where $u_{0}>0$ is a constant was given in lectures. For $t<1 / u_{0}$ it can be written as

$$
u(x, t)=\left\{\begin{array}{ll}
u_{0}(1-x+k t) /\left(1-u_{0} t\right) & \text { for } \quad\left(u_{0}+k\right) t<x<1+k t, \\
u_{0}(1+x-k t) /\left(1+u_{0} t\right) & \text { for }-1+k t<x<\left(u_{0}+k\right) t .
\end{array}\right\}
$$

At time $t=1 / u_{0}$ a shock forms. Let the subsequent position of the shock be $x=s(t)$. Show that the ordinary differential equation for $s(t)$ is

$$
\frac{d s(t)}{d t}=k+\frac{u_{0}}{2}\left(\frac{1+s-k t}{1+u_{0} t}\right) .
$$

Solve this equation and show that the shock position for times $t>1 / u_{0}$ is

$$
s(t)=k t-1+\sqrt{2}\left(1+u_{o} t\right)^{1 / 2} .
$$

[Compare this with your solution for $S(t)$ in Q3 of Problem Sheet 3].
2. Solve the equation

$$
\frac{\partial \rho}{\partial t}+\rho \frac{\partial \rho}{\partial x}=0
$$

for $t>0$ in the domain $-\infty<x<\infty$ given the initial conditions

$$
\rho(x, 0)=\left\{\begin{array}{ll}
0 & x \leq 0 \\
x & 0 \leq x \leq 1 / 2 \\
1-x & 1 / 2 \leq x \leq 1 \\
0 & x \geq 1
\end{array}\right\}
$$

Find the critical time t_{s} of shock formation and the point x_{s} at which the wave breaks. Fit a shock to this solution and find the shock velocity.
3. [Large- t asymptotics] Consider solving the same equation as in Q 2 but now with general initial condition

$$
\rho(x, 0)=\left\{\begin{array}{ll}
\rho_{0} & x \leq a \\
g(x) & a \leq x \leq L \\
\rho_{0} & x \geq L
\end{array}\right\}
$$

where $g(x)$ is some continuous function with $g(a)=g(L)=\rho_{0}$ having the general form illustrated in the figure. The area of the shaded region in the figure is known to be A. We expect a shock to form at some critical time t_{s}. This question examines what the solution looks like for large times $t \gg t_{s}$ (i.e., the large- t asymptotic solution).

(a) Show that a simple solution to the governing equation is given by $\rho(x, t)=\hat{\rho}(x, t)$ where

$$
\hat{\rho}(x, t)=\left\{\begin{array}{ll}
\rho_{0} & x \leq \rho_{0} t \\
x / t & \rho_{0} t \leq x \leq s(t) \\
\rho_{0} & x \geq s(t)
\end{array}\right\}
$$

and where $s(t)$ is some arbitrary function. Draw a sketch of this solution as a function of x at a fixed value of t.
(b) It is proposed that, at large times $t \gg t_{s}$, the solution to the original initial value problem looks like the solution $\hat{\rho}(x, t)$ with $s(t)$ now determined by the usual shock condition. Show that the ordinary differential equation for $s(t)$ is

$$
\frac{d s}{d t}=\frac{1}{2}\left(\rho_{0}+\frac{s}{t}\right) .
$$

(c) Find the general solution of this equation for $s(t)$. Hence, by applying the "equal area rule", show that

$$
s(t)=\rho_{0} t+\sqrt{2 A t} .
$$

Draw a labelled sketch of this solution as a function of x at some large time t. [Note that this large- t solution does not depend on any details of the original initial condition except for A (and ρ_{0})].
4. A simple solution to the equations governing an isentropic gas with $\gamma>1$ is

$$
u=0, \quad \rho=\rho_{0}
$$

where ρ_{0} is a constant. The associated pressure is $p=p_{0}=k^{2} \rho_{0}^{\gamma} / \gamma$. Consider a small (linear) perturbation to the velocity and density fields of this basic state, i.e.,

$$
u=\tilde{u}, \quad \rho=\rho_{0}+\tilde{\rho}
$$

where $|\tilde{u}| \ll 1$ and $\tilde{\rho} \ll \rho_{0}$. Show, from the equations governing the motion of an isentropic gas, that the linearized equation for $\tilde{\rho}$ is

$$
\frac{\partial^{2} \tilde{\rho}}{\partial t^{2}}=a_{0}^{2} \frac{\partial^{2} \tilde{\rho}}{\partial x^{2}}
$$

where $a_{0}^{2}=k^{2} \rho_{0}^{\gamma-1}=\gamma p_{0} / \rho_{0}$. Hence deduce that density fluctuations propagate as waves with speed $\pm a_{0}$.
5. Use the Rankine-Hugoniot equations to show that the pressures and Mach numbers upstream and downstream of a stationary shock are related by

$$
\frac{p_{2}}{p_{1}}=1+\frac{2 \gamma}{\gamma+1}\left(M_{1}^{2}-1\right), \quad \frac{1}{M_{1}^{2}}=\frac{1}{2}\left(\frac{(\gamma+1)^{2} M_{1}^{2}}{(\gamma-1) M_{1}^{2}+2}-(\gamma-1)\right) .
$$

[Here the subscript " 1 " refers to an upstream quantity while " 2 " refers to a downstream quantity]. Hence show that for hypersonic flow (corresponding to $M_{1} \rightarrow \infty$) we have

$$
\frac{p_{2}}{p_{1}} \sim \frac{2 \gamma}{\gamma+1} M_{1}^{2}, \quad M_{2}^{2} \rightarrow \frac{1}{2}\left(1-\gamma^{-1}\right) .
$$

6. A steady shock moves with speed V into stationary air. The fluid velocity and sound speed upstream of the shock wave are u_{1} and a_{1} while the sound speed in the stationary air is a_{0}. Show that

$$
a_{1}=a_{0}+\frac{\gamma-1}{2} u_{1}
$$

[Hint: regard the shock front in the same way as in the moving piston problem from lectures and think about the quantity which remains constant in that problem].
Using the fact that the moving shock problem just described is equivalent to a stationary shock with upstream fluid velocity $u_{1}-V$ and downstream velocity $-V$, use Bernoulli's equation to deduce that

$$
\frac{u_{1}^{2}}{2}-u_{1} V+\frac{a_{1}^{2}}{\gamma-1}=\frac{a_{0}^{2}}{\gamma-1} .
$$

Hence show that the shock moves at speed

$$
V=\frac{(\gamma+1) u_{1}}{4}+a_{0}
$$

