M2AM: Fluids and Dynamics

Problem Sheet 3

1. Consider the kinematic wave equation for $u(x, t)$ given as

$$
\frac{\partial u}{\partial t}+(u+k) \frac{\partial u}{\partial x}=0
$$

It is required to solve this equation, for $t>0$ in $-\infty<x<\infty$, given the initial condition that

$$
u(x, 0)=\left\{\begin{array}{ll}
1 & x<-1 \\
(1-x) / 2 & |x| \leq 1 \\
0 & x>1
\end{array}\right\}
$$

(a) Plot the characteristics for this equation in the upper-half (x, t)-plane.
(b) Show that a shock forms at some critical time t_{s} and find the value of t_{s}.
(c) An implicit form of the general solution to the kinematic wave equation is known to be

$$
u=f(x-(u+k) t)
$$

where f is an arbitrary function. Use this fact to deduce an explicit analytical expression for the solution $u(x, t)$ and hence verify your answer to part (b).
2. Consider the same kinematic wave equation (as in Q1) but now with initial condition given by

$$
u(x, 0)=1-\tanh x
$$

Show that a shock forms in this case at a critical time t_{s} and find t_{s}.
3. The solution to the kinematic wave equation (as in Q1) with the "tent example" initial condition

$$
u(x, 0)=\left\{\begin{array}{ll}
0 & x<-1 \\
u_{0}(1+x) & -1 \leq x \leq 0 \\
u_{0}(1-x) & 0 \leq x \leq 1 \\
0 & x>1
\end{array}\right\}
$$

where $u_{0}>0$ is a constant was given in lectures. For $t<1 / u_{0}$ it can be written as

$$
u(x, t)=\left\{\begin{array}{ll}
u_{0}(1-x+k t) /\left(1-u_{0} t\right), & \text { for } \quad\left(u_{0}+k\right) t<x<1+k t \\
u_{0}(1+x-k t) /\left(1+u_{0} t\right), & \text { for }-1+k t<x<\left(u_{0}+k\right) t
\end{array}\right\}
$$

At time $t=1 / u_{0}$ a shock forms. Thereafter, the solution for $u(x, t)$ becomes triple-valued for values of x in the interval $1+k t<x<\left(u_{0}+k\right) t$ and, for $t>1 / u_{0}$, we now have

$$
u(x, t)=\left\{\begin{array}{ll}
u_{0}(1-x+k t) /\left(1-u_{0} t\right), & \text { for } 1+k t<x<\left(u_{0}+k\right) t \\
u_{0}(1+x-k t) /\left(1+u_{0} t\right), & \text { for }-1+k t<x<\left(u_{0}+k\right) t
\end{array}\right\}
$$

This mathematical solution for $t>1 / u_{0}$ is illustrated in the figure. Suppose that a point $S(t)$ in the interval

$$
1+k t<S(t)<\left(u_{0}+k\right) t
$$

is now chosen in such a way that the areas of the two shaded regions (labelled A and B) shown in the figure are exactly equal. Find an expression for $S(t)$.

