M2AM: Fluids and Dynamics

Problem Sheet 3

1. Consider the kinematic wave equation for u(x,t) given as

$$\frac{\partial u}{\partial t} + (u+k)\frac{\partial u}{\partial x} = 0.$$

It is required to solve this equation, for t > 0 in $-\infty < x < \infty$, given the initial condition that

$$u(x,0) = \left\{ \begin{array}{cc} 1 & x < -1, \\ (1-x)/2 & |x| \le 1, \\ 0 & x > 1. \end{array} \right\}$$

- (a) Plot the characteristics for this equation in the upper-half (x, t)-plane.
- (b) Show that a shock forms at some critical time t_s and find the value of t_s .
- (c) An implicit form of the general solution to the kinematic wave equation is known to be

$$u = f(x - (u+k)t)$$

where f is an arbitrary function. Use this fact to deduce an explicit analytical expression for the solution u(x,t) and hence verify your answer to part (b).

2. Consider the same kinematic wave equation (as in Q1) but now with initial condition given by

$$u(x,0) = 1 - \tanh x.$$

Show that a shock forms in this case at a critical time t_s and find t_s .

3. The solution to the kinematic wave equation (as in Q1) with the "tent example" initial condition

$$u(x,0) = \begin{cases} 0 & x < -1, \\ u_0(1+x) & -1 \le x \le 0, \\ u_0(1-x) & 0 \le x \le 1, \\ 0 & x > 1. \end{cases}$$

where $u_0 > 0$ is a constant was given in lectures. For $t < 1/u_0$ it can be written as

$$u(x,t) = \left\{ \begin{array}{ll} u_0(1-x+kt)/(1-u_0t), & \text{for } (u_0+k)t < x < 1+kt \\ u_0(1+x-kt)/(1+u_0t), & \text{for } -1+kt < x < (u_0+k)t \end{array} \right\}$$

At time $t = 1/u_0$ a shock forms. Thereafter, the solution for u(x,t) becomes triple-valued for values of x in the interval $1 + kt < x < (u_0 + k)t$ and, for $t > 1/u_0$, we now have

$$u(x,t) = \left\{ \begin{array}{ll} u_0(1-x+kt)/(1-u_0t), & \text{for } 1+kt < x < (u_0+k)t \\ u_0(1+x-kt)/(1+u_0t), & \text{for } -1+kt < x < (u_0+k)t \end{array} \right\}$$

This mathematical solution for $t > 1/u_0$ is illustrated in the figure. Suppose that a point S(t) in the interval

$$1 + kt < S(t) < (u_0 + k)t$$

is now chosen in such a way that the areas of the two shaded regions (labelled A and B) shown in the figure are exactly *equal*. Find an expression for S(t).

