M2AM: Fluids and Dynamics

Problem Sheet 2 - SOLUTIONS

1. We have

$$
u=f(x-(k+u) t)
$$

where f is an arbitrary function of a single variable. Differentiating partially with respect to t gives

$$
\frac{\partial u}{\partial t}=f^{\prime}(x-(k+u) t)\left(-t \frac{\partial u}{\partial t}-(u+k)\right)
$$

which implies, on rearrangement, that

$$
\frac{\partial u}{\partial t}=-\frac{(u+k) f^{\prime}(x-(k+u) t)}{1+t f^{\prime}(x-(k+u) t)} .
$$

Similarly, partial differentiation with respect to x yields

$$
\frac{\partial u}{\partial x}=\frac{f^{\prime}(x-(k+u) t)}{1+t f^{\prime}(x-(k+u) t)} .
$$

It is therefore clear that

$$
\frac{\partial u}{\partial t}+(u+k) \frac{\partial u}{\partial x}=0 .
$$

2. In part (a), u is constant along characteristic curves given by $d x / d t=t / \cos (x)$. Integrating we obtain $\sin (x)-t^{2} / 2=$ constant. Thus $u=f\left(\sin (x)-t^{2} / 2\right)$ is the general solution where f is an arbitrary function. Given $u=t^{4}$ when $x=0$ implies $t^{4}=f\left(-t^{2} / 2\right)$. Solution is therefore $u(x, t)=4\left(\sin (x)-t^{2} / 2\right)^{2}$.
(b) u is constant along the characteristics $d x / d t=t^{2} / x$. Integrating: $x^{2} / 2-t^{3} / 3=$ const \Rightarrow $u=f\left(x^{2} / 2-t^{3} / 3\right)$. Given $u=x^{2}$ when $t=0 \Rightarrow x^{2}=f\left(x^{2} / 2\right)$. Let $s=x^{2} / 2 \Rightarrow 2 s=f(s)$. Thus $u=2\left(x^{2} / 2-t^{3} / 3\right)=x^{2}-2 t^{3} / 3$.
(c) Characteristics: $d x / d t=x e^{t} \Rightarrow \ln x-e^{t}=$ const $\Rightarrow u=f\left(\ln x-e^{t}\right)$. Apply $u=t$ when $x=1 \Rightarrow t=f\left(-e^{t}\right)$. Let $s=-e^{t}$, then $t=\ln (-s)=f(s) \Rightarrow u=\ln \left(e^{t}-\ln x\right)$.
3. For an isentropic gas with $\gamma>1$, we have

$$
p=\frac{k^{2}}{\gamma} \rho^{\gamma}
$$

so that the evolution equations become

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+\rho \frac{\partial u}{\partial x}+u \frac{\partial \rho}{\partial x}=0, \\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+k^{2} \rho^{\gamma-2} \frac{\partial \rho}{\partial x}=0 .
\end{array}
$$

Defining $a^{2}=\gamma p / \rho$ means that

$$
a^{2}=k^{2} \rho^{\gamma-1},
$$

and hence that

$$
2 a \frac{\partial a}{\partial t}=k^{2}(\gamma-1) \rho^{\gamma-2} \frac{\partial \rho}{\partial t}, \quad 2 a \frac{\partial a}{\partial x}=k^{2}(\gamma-1) \rho^{\gamma-2} \frac{\partial \rho}{\partial x}
$$

Substitution of these into the first of the evolution equations yields (after some simple algebra)

$$
\frac{2}{\gamma-1}\left(\frac{\partial a}{\partial t}+u \frac{\partial a}{\partial x}\right)+a \frac{\partial u}{\partial x}=0
$$

Substitution into the second of the evolution equations leads to

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{2}{\gamma-1} a \frac{\partial a}{\partial x}=0 .
$$

Addition and subtraction of the last two equations gives, respectively,

$$
\left(\frac{\partial}{\partial t}+(u+a) \frac{\partial}{\partial x}\right)\left(u+\frac{2 a}{\gamma-1}\right)=0
$$

and

$$
\left(\frac{\partial}{\partial t}+(u-a) \frac{\partial}{\partial x}\right)\left(u-\frac{2 a}{\gamma-1}\right)=0 .
$$

4. Suppose that

$$
u-\frac{2 a}{\gamma-1}=u_{0}-\frac{2 a_{0}}{\gamma-1}
$$

then

$$
\frac{2 a}{\gamma-1}=u-u_{0}+\frac{2 a_{0}}{\gamma-1} .
$$

Hence we get that

$$
\left(\frac{\partial}{\partial t}+(u+a) \frac{\partial}{\partial x}\right) u=0 .
$$

But this can be rewritten

$$
\left(\frac{\partial}{\partial t}+\left(u+\left(\frac{\gamma-1}{2}\right)\left(u-u_{0}+\frac{2 a_{0}}{\gamma-1}\right)\right) \frac{\partial}{\partial x}\right) u=0 .
$$

This clearly simplifies to the required equation.

