M2AM: Fluids and Dynamics

Problem Sheet 2

1. The kinematic wave equation governing the field $u(x, t)$ is

$$
\frac{\partial u}{\partial t}+(u+k) \frac{\partial u}{\partial x}=0
$$

where k is a constant. The general solution is given implicitly by the formula

$$
u=f(x-(k+u) t)
$$

where f is an arbitrary function (this solution was derived in lectures using the method of characteristics). Verify directly that $u(x, t)$ as defined by this implicit formula is a solution of the kinematic wave equation.
2. Solve the following partial differential equations by the method of characteristics:
(a)

$$
\cos x \frac{\partial u}{\partial t}+t \frac{\partial u}{\partial x}=0, u=t^{4} \text { when } x=0 .
$$

(b)

$$
x \frac{\partial u}{\partial t}+t^{2} \frac{\partial u}{\partial x}=0, \quad u=x^{2} \text { when } t=0 .
$$

(c)

$$
\frac{1}{x} \frac{\partial u}{\partial t}+e^{t} \frac{\partial u}{\partial x}=0, \quad u=t \text { when } x=1
$$

3. The equations governing the 1-D motion of an ideal gas, in which the pressure-density relation is given by $p=k^{2} \rho$, were found to be

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}+(u+k) \frac{\partial}{\partial x}\right)\left(\frac{u}{k}+\chi\right)=0 \\
& \left(\frac{\partial}{\partial t}+(u-k) \frac{\partial}{\partial x}\right)\left(\frac{u}{k}-\chi\right)=0 .
\end{aligned}
$$

where $\chi \equiv \log \rho$.
Consider now an isentropic gas which has a pressure-density relation of the more general form

$$
p=\frac{k^{2}}{\gamma} \rho^{\gamma} .
$$

Introduce the quantity

$$
a^{2}=\frac{\gamma p}{\rho}
$$

and show that the equations governing the 1-D motion of an isentropic gas are

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}+(u+a) \frac{\partial}{\partial x}\right)\left(u+\frac{2 a}{\gamma-1}\right)=0 \\
& \left(\frac{\partial}{\partial t}+(u-a) \frac{\partial}{\partial x}\right)\left(u-\frac{2 a}{\gamma-1}\right)=0
\end{aligned}
$$

4. By using the equations governing a 1-D isentropic gas derived in Q3, show that for the restricted class of solutions in which

$$
u-\frac{2 a}{\gamma-1}=u_{0}-\frac{2 a_{0}}{\gamma-1}=\mathrm{constant}
$$

then the equation for $u(x, t)$ reduces to

$$
\frac{\partial u}{\partial t}+\left(\frac{\gamma+1}{2} u-\frac{\gamma-1}{2} u_{0}+a_{0}\right) \frac{\partial u}{\partial x}=0 .
$$

This is the generalization of the kinematic wave equation for an isentropic gas.

