M2AM: Fluids and Dynamics
Problem Sheet 2

1. The kinematic wave equation governing the field u(x, t) is
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where k is a constant. The general solution is given implicitly by the formula
u=f(x—(k+ut)

where f is an arbitrary function (this solution was derived in lectures using the method of
characteristics). Verify directly that u(x,t) as defined by this implicit formula is a solution
of the kinematic wave equation.

2. Solve the following partial differential equations by the method of characteristics:
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3. The equations governing the 1-D motion of an ideal gas, in which the pressure-density
relation is given by p = k?p, were found to be
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Consider now an isentropic gas which has a pressure-density relation of the more general
form
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where x = logp.
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Introduce the quantity
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and show that the equations governing the 1-D motion of an isentropic gas are
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4. By using the equations governing a 1-D isentropic gas derived in Q3, show that for the
restricted class of solutions in which
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then the equation for u(x, t) reduces to
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This is the generalization of the kinematic wave equation for an isentropic gas.



