
M2AM: Fluids and Dynamics
Problem Sheet 1 - SOLUTIONS

1. In each case, writing u = (u, v), we must solve the ODE’s

dx
dt

= u;
dy
dt

= v

with initial conditions x(0) = 0, y(0) = 1. For (a), we get x(t) = 0, y(t) = e−t so fluid particle
moves towards the origin along the y-axis and asymptotically approaches the origin. For
(b), we get x(t) = t, y(t) = 1 so the fluid particle travels along y = 1 parallel to the x-axis
and goes off to infinity. For (c), we get x(t) = 0, y(t) = et so fluid particle moves away from
the origin along the y-axis and asymptotically approaches infinity.

2. We have
xL(ζ, t) =

ζ

1 + ζt

which, incidentally, satisfies the condition xL(ζ,0) = ζ . Then

uL(ζ, t) =
∂xL(ζ, t)

∂t
= − ζ2

(1 + ζt)2 = −[xL(ζ, t)]2

Since the velocity of every fluid particle is −[xL(ζ, t)]2 then the Eulerian velocity field is
just

u(x, t) = −x2.

The material derivative is

Du
Dt

=
∂u
∂t

+ u
∂u
∂x

= 0− x2(−2x) = 2x3

which is easily seen to be equal to

∂2xL(ζ, t)
∂t2 = 2

(
ζ

1 + ζt

)3

.

Conversely, if the Eulerian flow field is given as u(x, t) =−x2 then the equation governing
the motion of fluid particles is

dxL

dt
= −[xL]2

which is a separable ODE so the solution follows from

Z xL dx
x2 = −

Z t
dt′

that is,

− 1
xL = −t− c

where c is some constant. Imposing the initial condition xL(ζ,0) = ζ , we get the required
xL(ζ, t).
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3. The equation for the evolution of a fluid particle is

∂xL

∂t
= u(xL, t) =

2t
1 + t2 xL + 1 + t2.

This is a linear, first-order ODE and is solved by integrating factor method. The integrat-
ing factor is (1 + t2)−1. The solution is

xL = (c + t)(1 + t2)

where c is some constant. Imposing the initial condition xL(ζ,0) = ζ , we get the solution

xL(ζ, t) = (ζ + t)(1 + t2).

We are now given that contaminated particles have 0 ≤ ζ ≤ 1. At t = 2, we have

xL(ζ,2) = 5(ζ + 2).

Thus, contaminated particles lie in the range 10 ≤ xL ≤ 15.

4. First note that

∇.(pC) =
3

∑
j=1

∂[pCi]
∂xi

=
3

∑
j=1

Ci
∂p
∂xi

= C.∇p

where, in the second equality, we have used the fact that C is constant. Now, applying the
divergence theorem (as given in lectures) to the vector pC yieldsZ

V
∇.(pC) dV =

Z
S

pC.n dS

or Z
V

C.∇p dV =
Z

S
pC.n dS

where we have used the first result just obtained in the LHS. But this equation can be
written as

C.
Z

V
∇p dV = C.

Z
S

pn dS

or

C.

[Z
V
∇p dV−

Z
S

pn dS
]

= 0

for arbitrary constant vectors C. Thus the resultZ
V
∇p dV =

Z
S

pn dS

follows.

5. The momentum flux into the volume through left hand end is [ρ(a, t)Au(a, t)]u(a, t); the
in-flux of momentum through the right hand end it is −[ρ(b, t)Au(b, t)]u(b, t). Thus, the
net gain in momentum is (

ρ(a, t)u(a, t)2 − ρ(b, t)u(b, t)2
)

A

as required. The pressure force on the left hand end of the fluid volume is −p(a, t)An =
p(a, t)Aex since n = −ex where ex denotes the unit vector in the x-direction. The pressure
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force on the right hand end of the fluid volume is −p(b, t)An = −p(b, t)Aex since n = ex
on this face. The net force on the fluid volume in the ex direction is therefore(

p(a, t)− p(b, t)
)

A.

By Newton’s second law, the rate of change of momentum equals the net gain due to the
momentum flux plus the applied forces, that is,

d
dt

Z b

a
ρuAdx =

(
ρ(a, t)u(a, t)2 − ρ(b, t)u(b, t)2

)
A +

(
p(a, t)− p(b, t)

)
A.

Since A is constant, this cancels through the equation and we can write the last expression
as Z b

a

(
∂(ρu)

∂t
+

∂(ρu2)
∂x

+
∂p
∂x

)
= 0.

Since the choice of interval [a, b] is arbitrary, we conclude that the integrand is identically
zero, as required. Expanding derivatives, we get

u
∂ρ

∂t
+ ρ

∂u
∂t

+ ρu
∂u
∂x

+ u
∂(ρu)
∂x

= −∂p
∂x

.

But the equation of continuity takes the form

∂ρ

∂t
+ u

∂(ρu)
∂x

= 0

which can be used to simplify the above expression to

ρ
∂u
∂t

+ ρu
∂u
∂x

= −∂p
∂x

.

This is the 1-D form of the Euler equation derived (using alternative arguments) in lec-
tures.

6. The rate of change of mass of an arbitrary section between x = a and x = b equals the
mass flux entering at x = a minus the mass flux leaving at x = b plus the rate of change
of any “extra” mass generated inside (in lectures it was assumed there were no such extra
mass sources). Mathematically, this means that

d
dt

Z b

a
ρdx = [ρu]b

a +
Z b

a
r(x, t)dx.

By the usual arguments we get
∂ρ

∂t
+

∂(ρu)
∂x

= r.

The right hand side is non-zero due to the mass creation and is our new form of the conti-
nuity equation.

Now, in a similar spirit to Q5, by Newton’s second law, the rate of change of momentum
of the chosen section of fluid is equal to the net gain in momentum flux through the ends
plus the pressure forces acting across the end-sections. Mathematically,

d
dt

Z b

a
ρu dx =

[
ρu2

]b

a
+ [−p]b

a.

Following the working of Q5, we deduce

∂(ρu)
∂t

+
∂(ρu2)

∂x
= −∂p

∂x
.
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which, if we simplify using our new form of the continuity equation, reduces to

ρ

(
∂u
∂t

+ u
∂u
∂x

)
= −∂p

∂x
− ru

which is the new, modified form of the Euler equation.

7. (a) It is clear, from the figure, that

−n1.n2 = cos θ

while it is clear that d1 = cos θdS2 so that the required relationship is

−n1.n2dS2 = dS1.

(b) The force on the left hand end of the cylinder is

−n1 p(x, n1, t)dS1

Here we are assuming the cylinder is so small that we can safely neglect any variation of
the pressure over the face.

(c) Similarly, the force on the right hand end of the cylinder is

−n2 p(x, n2, t)dS2

(d) The net force on the cylinder in the n1-direction is therefore(
−n1 p(x, n1, t)dS1 − n2 p(x, n2, t)dS2

)
.n1 = −p(x, n1, t)dS1 − n2[p(x, n2, t)dS2].n1

=
[
p(x, n2, t)− p(x, n1, t)

]
dS1

where we have used the result from part (a).

(e) Any net force must be due to acceleration via “F=ma”. Such a force is proportional to
the volume, i.e., it scales like L3. However, dS1 scales like L2. We can therefore deduce
that

p(x, n1, t)− p(x, n2, t) ∝ L

and hence that, as L → 0,
p(x, n1, t) = p(x, n2, t)

as required.
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