M2AM: Fluids and Dynamics Problem Sheet 1

1. Find, and sketch, the trajectory of the fluid particle initially located (at t = 0) at position (0, 1) in each of the following two-dimensional Eulerian flow fields:

- (a) u(x,y,t) = (x, -y);
- (b) $\mathbf{u}(x,y,t) = (y, 0);$
- (c) u(x,y,t) = (x,y).

2. In a 1-D continuum, a Lagrangian description of the flow is given by

$$x^L(\zeta,t) = \frac{\zeta}{1+\zeta t}$$

for $\zeta > 0$ (the parameter ζ "labels" the fluid particles). Find the Lagrangian velocity $u^{L}(\zeta, t)$ and acceleration $a^{L}(\zeta, t)$. Show that the Eulerian description of the same velocity is given by

 $u(x,t) = -x^2.$

Hence verify that

$$\frac{Du}{Dt} = a^L,$$

that is, verify that the material derivative of the Eulerian velocity is the same as the acceleration of the fluid particles.

Conversely, assuming the Eulerian flow field is given by $u(x, t) = -x^2$, rederive the above expression for the position, at time *t*, of the particle that is initially at $x = \zeta$.

3. The Eulerian velocity for an unsteady 1-D fluid flow is given by

$$u(x,t) = \frac{2tx}{1+t^2} + 1 + t^2.$$

By integration, find the Lagrangian description of the fluid flow. Suppose that, at t = 0, all fluid particles in the interval [0,1] are contaminated with dye. Over what range will these contaminated particles lie when t = 2?

4. Let \underline{C} be a constant vector. Show that

$$\nabla .(p\underline{C}) = \underline{C}.\nabla p$$

where *p* is any scalar field. Hence, use the divergence theorem to prove the relation

$$\int_{S} p\underline{n} \, dS = \int_{V} \nabla p \, dV$$

where *S* is an arbitrary closed surface (with unit outward normal \underline{n}) enclosing a volume *V*. This relation was used in lectures in the derivation of the Euler equation.

5. This question shows a different derivation of the Euler equation for a 1-D flow to the one presented in the lectures. Consider a one-dimensional flow and a fixed slice of fluid between x = a and x = b (where b > a). The fluid velocity is u(x, t) and its density is $\rho(x, t)$. Show that the net gain in momentum flux of the slice is

$$\left(\rho(a,t)u(a,t)^2 - \rho(b,t)u(b,t)^2\right)A.$$

Assuming that the only forces acting on the slice are pressure forces at the ends, deduce that

$$\frac{d}{dt}\int_a^b \rho u dx = \left(\rho(a,t)u(a,t)^2 - \rho(b,t)u(b,t)^2\right) + \left(p(a,t) - p(b,t)\right)$$

where p = p(x, t) is the fluid pressure. Hence show that

$$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho u^2) = -\frac{\partial p}{\partial x}$$

Finally, use the continuity equation to show that the above equation simplifies to

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x}\right) = -\frac{\partial p}{\partial x}.$$

This is the same as the equation derived in lectures using a different approach.

6. The equations for the motion of a 1-D fluid through a region with constant cross-sectional area *A* are

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0,$$
$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}\right) = -\frac{\partial p}{\partial x}$$

Now suppose that mass is being created within the fluid such that, in the absence of fluid motion, the change in mass of a slice δx is

$$\delta m = r(x, t) A \delta x \delta t$$

in a time interval δt . Explain how the above equations can be modified to account for this mass creation.

7. In this problem we demonstrate that the pressure at a point in the fluid does not depend on the orientation of the fluid particle. Consider the small "lipstick"-shaped cylinder of fluid shown in the figure. The typical dimension of the fluid cylinder is $L \ll 1$ and it is centred at some position **x**. Two "ends" of the particle are shown with their respective unit normal vectors $\mathbf{n_1}$ and $\mathbf{n_2}$. Let dS_1 and dS_2 be the (respective) surface areas of these two ends. The angle *ABC* is θ and is assumed to be arbitrary. For now, assume that the pressure in the fluid is $p(\mathbf{x}, \mathbf{n}, t)$, i.e., it is a function of position and time as well as a function of the normal vector **n**. The aim is to show that it does not, in fact, depend on **n**.

- (a) Find a relationship between dS_1 and dS_2 .
- (b) Find an expression for the force F_1 (assumed to be in the n_1 direction) on the left hand end of the cylinder in terms of the fluid pressure.
- (c) Similarly, find an expression for the force F_2 on the right hand end.

(d) Hence show that the net force on the cylinder in the direction $\mathbf{n_1}$ is

$$(p(\mathbf{x},\mathbf{n_2},t)-p(\mathbf{x},\mathbf{n_1},t)) dS_1.$$

- (e) Now use Newton's Second Law to argue that the force in part (d) must be proportional to L^3 .
- (f) Finally, making use of the fact that dS_1 scales like L^2 , argue that

$$p(\mathbf{x},\mathbf{n_2},t) - p(\mathbf{x},\mathbf{n_1},t) \propto L$$

and, hence, as $L \rightarrow 0$, that

$$p(\mathbf{x},\mathbf{n_2},t)=p(\mathbf{x},\mathbf{n_1},t).$$

In this way, we have shown that the fluid pressure does not depend on the normal vector **n**.