
M2AM: Fluids and Dynamics
Problem Sheet 1

1. Find, and sketch, the trajectory of the fluid particle initially located (at t = 0) at position
(0,1) in each of the following two-dimensional Eulerian flow fields:

(a) u(x,y,t) = (x, -y);

(b) u(x,y,t) = (y, 0);

(c) u(x,y,t) = (x,y).

2. In a 1-D continuum, a Lagrangian description of the flow is given by

xL(ζ, t) =
ζ

1 + ζt

for ζ > 0 (the parameter ζ “labels” the fluid particles). Find the Lagrangian velocity
uL(ζ, t) and acceleration aL(ζ, t). Show that the Eulerian description of the same veloc-
ity is given by

u(x, t) = −x2.

Hence verify that
Du
Dt

= aL,

that is, verify that the material derivative of the Eulerian velocity is the same as the accel-
eration of the fluid particles.

Conversely, assuming the Eulerian flow field is given by u(x, t) =−x2, rederive the above
expression for the position, at time t, of the particle that is initially at x = ζ .

3. The Eulerian velocity for an unsteady 1-D fluid flow is given by

u(x, t) =
2tx

1 + t2 + 1 + t2.

By integration, find the Lagrangian description of the fluid flow. Suppose that, at t = 0,
all fluid particles in the interval [0,1] are contaminated with dye. Over what range will
these contaminated particles lie when t = 2?

4. Let C be a constant vector. Show that

∇.(pC) = C.∇p

where p is any scalar field. Hence, use the divergence theorem to prove the relationZ
S

pn dS =
Z

V
∇p dV

where S is an arbitrary closed surface (with unit outward normal n) enclosing a volume
V. This relation was used in lectures in the derivation of the Euler equation.
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5. This question shows a different derivation of the Euler equation for a 1-D flow to the
one presented in the lectures. Consider a one-dimensional flow and a fixed slice of fluid
between x = a and x = b (where b > a). The fluid velocity is u(x, t) and its density is ρ(x, t).
Show that the net gain in momentum flux of the slice is(

ρ(a, t)u(a, t)2− ρ(b, t)u(b, t)2
)

A.

Assuming that the only forces acting on the slice are pressure forces at the ends, deduce
that

d
dt

Z b

a
ρudx =

(
ρ(a, t)u(a, t)2− ρ(b, t)u(b, t)2

)
+

(
p(a, t)− p(b, t)

)
where p = p(x, t) is the fluid pressure. Hence show that

∂

∂t
(ρu) +

∂

∂x
(ρu2) = −∂p

∂x
.

Finally, use the continuity equation to show that the above equation simplifies to

ρ

(
∂u
∂t

+ u
∂u
∂x

)
= −∂p

∂x
.

This is the same as the equation derived in lectures using a different approach.

6. The equations for the motion of a 1-D fluid through a region with constant cross-
sectional area A are

∂ρ

∂t
+

∂(ρu)
∂x

= 0,

ρ

(
∂u
∂t

+ u
∂u
∂x

)
= −∂p

∂x
.

Now suppose that mass is being created within the fluid such that, in the absence of fluid
motion, the change in mass of a slice δx is

δm = r(x, t)Aδxδt

in a time interval δt. Explain how the above equations can be modified to account for this
mass creation.

7. In this problem we demonstrate that the pressure at a point in the fluid does not depend
on the orientation of the fluid particle. Consider the small “lipstick”-shaped cylinder of
fluid shown in the figure. The typical dimension of the fluid cylinder is L � 1 and it is
centred at some position x. Two “ends” of the particle are shown with their respective
unit normal vectors n1 and n2. Let dS1 and dS2 be the (respective) surface areas of these
two ends. The angle ABC is θ and is assumed to be arbitrary. For now, assume that
the pressure in the fluid is p(x,n, t), i.e., it is a function of position and time as well as a
function of the normal vector n. The aim is to show that it does not, in fact, depend on n.

(a) Find a relationship between dS1 and dS2.

(b) Find an expression for the force F1 (assumed to be in the n1 direction) on the left
hand end of the cylinder in terms of the fluid pressure.

(c) Similarly, find an expression for the force F2 on the right hand end.
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(d) Hence show that the net force on the cylinder in the direction n1 is(
p(x,n2, t)− p(x,n1, t)

)
dS1.

(e) Now use Newton’s Second Law to argue that the force in part (d) must be propor-
tional to L3.

(f) Finally, making use of the fact that dS1 scales like L2, argue that

p(x,n2, t)− p(x,n1, t) ∝ L

and, hence, as L→ 0, that
p(x,n2, t) = p(x,n1, t).

In this way, we have shown that the fluid pressure does not depend on the normal vector
n.
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