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Abstract. Exact solutions for the viscous sintering of multiply-connected fluid domains are found. The approach
is based on a recent observation by the author connecting viscous sintering and quadrature identities. The solutions
are exact in that the evolution can be described in terms of a finite set of time-dependent parameters; it is shown
that the evolution of certain initial fluid domains under the equations of Stokes flow driven by surface tension
can be calculated by following the evolution of the coefficients of an algebraic curve. These coefficients satisfy a
finite system of first-order nonlinear ordinary differential equations. Practical methods for solving this system are
described. By way of example, explicit calculations of the sintering of unit cells deriving from square packings
involving both unimodal and bimodal distributions of particles are given.
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1. Introduction

Sintering is a process by which a granular compact of particles (e.g. metal or glass) is raised
to a sufficiently high temperature that the individual particles become mobile and release
surface energy in such a way as to produce inter-particulate bonds [1]. At the start of a sinter
process, any two particles which are initially touching develop a thin neck which, as time
evolves, grows in size to form a more developed bond. As the necks grow in size, the sinter
body densifies and any enclosed pores between particles eventually close up. The macroscopic
material properties of the compact at the end of the sinter process depend heavily on the
degree of densification. In industrial application, it is crucial to be able to obtain accurate and
reliable estimates of the time taken for pores to close (or reduce to a sufficiently small size)
within any given initial sinter body in order that industrial sinter times are optimized without
compromising the macroscopic properties of the final densified material.

In order to model the sintering process theoretically so that quantitative predictions can
be made, it is usual to divide the process into three stages; the initial, intermediate and final
stage. Models have been devised to study each stage of the process. In such models, the state
of the sinter kinetics is typically described by isolating a geometrical unit cell and studying
a ‘unit problem’. An important initial stage model is the two-sphere model due to Frenkel
[2]. Frenkel made some major simplifications regarding the flow field in order to deduce
an equation governing the neck-growth rate between two initially-touching spheres as they
coalesce. This is done using an energy principle which equates the viscous-flow dissipation
with the rate at which surface energy is released. Scherer [1] introduced an intermediate stage
model (the ‘cylinder model’) in which the densifying material is modelled by an idealized
cubic array of intersecting cylinders getting gradually shorter and thicker. Mackenzie and
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Figure 1. Sinter compact with regular square packing of equal particles. Natural choice of square unit cell is
shown to the right. Unit cell has just one enclosed pore.

Shuttleworth [3] presented a final stage model comprising spherical pores in a fluid/solid
matrix.

In the case of planar sintering the analogue of Frenkel’s two-sphere unit problem is the
coalescence of two equal cylindrical particles. Remarkably, Hopper [4],[5] analysed this unit
problem and showed that it admits exact solutions in the sense that the free-boundary problem
can be reduced to tracking the evolution of just two real parameters in a conformal map.
In a natural generalization of Hopper’s result, Richardson [6] found an exact solution for the
coalescence of two unequal cylinders. Many related results have followed and Howison [7] has
compiled a comprehensive list of references concerned with this problem. In respect of exact
solutions for multiply-connected fluid domains, Crowdy and Tanveer [8], Richardson [9] and
Crowdy [10] have independently found and studied (using different, but related, approaches)
exact conformal-mapping solutions in the case of doubly-connected fluid domains but, beyond
that, no exact solutions for fluid regions of higher connectivity appear to exist in the literature.
This paper presents a general method for identifying and constructing exact solutions for fluid
domains of arbitrary finite connectivity.

To motivate our interest in multiply-connected fluid domains, consider the unit problem
shown in Figure 1 comprising four equal cylinders forming a square unit cell for the extended
packing also depicted. During the early stages of sintering, this configuration will form a
doubly-connected fluid region with a single enclosed pore which eventually closes up. Van
der Vorst [11] has shown numerically that Hopper’s solution for the coalescence of just two
equal isolated particles provides an excellent description for the early stage neck-growth in this
more complicated doubly-connected unit problem. (This fact has also been corroborated by
Crowdy [10] by studying exact conformal-map solutions.) An advantage of Hopper’s solution
is its mathematical simplicity; a drawback is that the fluid region is simply-connected with no
shrinking pores so that while the initial stage neck-growth is captured, it is difficult to infer
accurate estimates of pore-shrinkage times. Van der Vorst [11] estimated the shrinkage time
numerically. Since then, exact conformal-mapping solutions for this unit problem have been
developed [8] [9] [10] which provide an alternative method of calculating the pore-shrinkage
times.
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Figure 2. Sinter compact with regular square packing as in Figure 1 but with small interstitial particles invading
the pores. Natural choice of square unit cell is shown to the right. Unit cell has four enclosed pores.

Now consider the packing of Figure 2 which might arise physically when smaller inter-
stitial particles are introduced in the unimodal compact of Figure 1. A natural choice of
unit problem (or unit cell) in this case is also shown in Figure 2 and consists of a small
particle filling the hole formed by an annular configuration of four larger ones. This unit
problem is interesting for two reasons. First, it possesses two distinct types of neck region,
viz. four necks between particles of equal size, and four necks between unequal particles.
Second, under the sinter dynamics the fluid domain will become quintuply-connected (at
least, until the pores shrink away). No exact conformal-mapping solutions to this problem
have yet been constructed. Suppose that one attempts to estimate densification rates based on
the neck-growth rates of exact simply-connected unit problems; should one use Hopper’s exact
solution for the coalescence of equal particles, or Richardson’s result for unequal particles?
A combination of the two seems more appropriate, but how to combine them? Furthermore,
even if these two unit problems could be appropriately combined, how to infer estimates of
pore-shrinkage times? What is ideally needed is a full resolution of the sinter dynamics of
the unit problem in Figure 2 which shares the benefits of exactness of Hopper’s solution.
Failing that, a full numerical simulation will have to be used. Of course, the unit problem in
Figure 2 cannot be expected to resolve pore-shrinkage rates with complete accuracy because
it is studied in isolation and not as part of the full doubly-infinite lattice. Nevertheless, it is
reasonable to suggest that, in contrast to the simply-connected unit problems just mentioned,
the unit problem in Figure 2 will provide a good first approximant to the pore-shrinkage times,
especially if the pore sizes are small compared to the area of fluid in the unit cell (so that the
effect of neighbouring units is not large). On this point, it is worth remarking that the idea of
modelling pore shrinkage by isolating a single unit cell and approximating the mean effect
of all other pores in a compact by a uniform-pressure ambient region has been used before
in phenomenological models of sintering [3]. Van der Vorst [13] considered the effect of the
doubly-infinite lattice using numerical boundary-element methods.

The principal new result of this paper is to show that the coalescence of the unit problem in
Figure 2 in fact admits an exact solution, in exactly the same spirit as Hopper’s classic result,
and that its evolution can be reduced to tracking just five real parameters. A second new feature



228 D. Crowdy

is our approach. Almost invariably, studies in the literature (see [7]) involving exact solutions
to planar sintering problems rely on conformal-mapping theory. The use of conformal maps
to parametrize the fluid boundaries is a matter of choice; it will be seen here that there is an
alternative, equally effective, way to follow the free boundaries. By exploiting ideas connect-
ing viscous sintering with quadrature identities recently expounded by the present author [12],
sintering is described here by following the evolution of an algebraic curve.

2. The viscous-sintering model

Consider the quasi-steady evolution of an M-connected plane blob of very viscous (Stokes)
fluid evolving purely under the effects of surface tension. If a stream function ψ(x, y) is
introduced, so that the fluid velocity field u is given by

u = (ψy,−ψx), (1)

then, it is well-known [14] that

∇4ψ = 0 in D(t). (2)

On the blob boundary the stress condition is

−pnj + 2ejknk = κnj , (3)

where κ is the surface curvature, p the fluid pressure and ejk the usual rate-of-strain tensor; n
is the normal to the surface. The kinematic condition is that

u.n = Vn, (4)

at each point on the interface, where Vn is the normal velocity of the interface. In what follows,
the same non-dimensionalization of physical variables as used in [14] is employed.

The general solution of (2) at each instant can be written as

ψ = Im[z̄f (z, t)+ g(z, t)], (5)

where the Goursat functions f (z, t) and g(z, t) are analytic everywhere in the fluid region
D(t) and z = x + iy is the usual complex variable; f (z, t) must also be single-valued if
there are no net forces on the fluid blob; g(z, t) need not be single-valued and, in the present
application, one expects the presence of logarithmic singularities of g(z, t) corresponding to
sources or sinks in the enclosed pores: See Richardson [15], [9] for a further discussion of
these points. The following relations can easily be established:

p = Re[4f ′(z, t)],
u+ iv = −f (z, t)+ zf̄ ′(z̄, t)+ ḡ′(z̄, t),

e11 + ie12 = zf̄ ′′(z̄, t)+ ḡ′′(z̄, t).

(6)

where primes denote differentiation with respect to the first argument of the function. Conju-
gate functions such as f̄ and ḡ are defined via f̄ (z) = f (z̄). Let theM-connected fluid domain
have boundary ∂D(t) consisting of an outermost boundary ∂D0(t)withM−1 enclosed bound-
aries ∂Di(t), i = 1, . . . ,M − 1. Defining s to be the arclength traversed in an anticlockwise
direction on ∂D0(t) and in a clockwise direction around ∂Di(t), i = 1, . . . ,M − 1, it can be
shown [14] that the stress boundary conditions on ∂D(t) can be written in the form
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f (z, t)+ zf̄ ′(z̄, t)+ ḡ′(z̄, t) = i
zs

2
+ Ci(t), on ∂Di(t), i = 0, 1, . . . ,M − 1, (7)

where Ci(t) are constants of integration. At each instant, the domain and conditions (7) de-
termine f (z, t), g(z, t) and the constants Ci(t). It can be assumed, without loss of generality,
that C0(t) = 0. The kinematic condition on ∂D(t) can be written as

Im[(zt − (u+ iv))z̄s] = 0, (8)

and, in this quasi-steady model, is the equation governing the subsequent evolution of the
boundary.

3. Quadrature domains

The simplest example of a quadrature domain [16] is a circular disk. For a disk D of radius r
centred at the origin, the mean value formula states that∫ ∫

D

h(z) dx dy = πr2h(0), (9)

where h(z) is an arbitrary function analytic in the disk and integrable over it (in the sense of
area measure).

More generally, a domainD is called a quadrature domain [16] if the following quadrature
identity holds for all integrable analytic h(z) in D:

∫ ∫
D

h(z) dx dy =
m∑
k=1

nk−1∑
j=0

ckjh
(j)(zk), (10)

for some set of coefficients {ckj } and same point set {zk}. Here h(j)(z) denotes the j th deriva-
tive of h(z). The complex numbers {ckj } and {zk} are called the quadrature data of D.

4. Algebraic curves

It is known [16] that, if D is a quadrature domain satisfying some identity (10) then its
boundary ∂D is an algebraic curve given, to within a finite set of special points V0, by

∂D = {z ∈ C|P (z, z̄) = O}∖V0, (11)

where

P (z,w) =
n∑

k,j=0

akj z
kwj, (12)

where n = ∑m
k=1 nk is referred to as the order of the quadrature identity, and where the

coefficients {akj } satisfy the hermitian property

ājk = akj . (13)

The matrix of coefficients {akj } will henceforth be referred to as the ((n + 1)-by-(n + 1))
matrix A. The set V0 is a set of isolated points in D at which
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P = ∂P

∂z
= 0. (14)

An alternative way of writing (12) is in the form

P (z,w) =
n∑
j=0

wjPj (z), (15)

where Pj(z) is a polynomial (in z) of degree at most n. There is a normalization degree of
freedom in the specification of P (z,w) which is set by insisting that ann = 1.

It is natural to expect there must be some connection between the quadrature data {ckj , zk}
and the set of coefficients {akj } defining the associated algebraic curve. Indeed, there is a
partial connection embodied in the following theorem of Gustafsson [17]:

THEOREM 4.1.

For a quadrature domain satisfying the quadrature identity (10) of order n, the identity

1

π

m∑
k=1

nk−1∑
j=0

j !ckj
(z− zk)j+1

≡ ann−1 − Pn−1(z)

Pn(z)
, (16)

where

Pn−1(z) = an,n−1z
n + an−1,n−1z

n−1 + · · · + a0,n−1, (17)

Pn(z) = zn + an−1,nz
n−1 + · · · + a0,n, (18)

sets up a one-to-one correspondence between the set of coefficients {ckj , zk} and the last two
columns (and rows) of the coefficient matrix A.

5. Viscous sintering and quadrature domains

Crowdy [12] has shown that, in the case of a simply-connected fluid region, the dynamics of
viscous sintering is such as to preserve quadrature identities. Thus, if an initial blob of fluid
is a quadrature domain with a given associated quadrature identity, the fluid blob remains
a quadrature domain under evolution (at least, for sufficiently short times), its associated
quadrature identity evolving in time according to the dynamics of the viscous-sintering prob-
lem. The analysis in [12] establishes this fact using the (complexified) equations of motion
of Section 2 and without the introduction of conformal maps at any stage. The analysis of
Crowdy [12] forms the basis for the mathematical approach to viscous sintering developed
here and underlies the proof of the following theorem.

THEOREM 5.1.

Provide an initial M-connected fluid domain (with analytic boundary) is such that
(i) it is a quadrature domain,
(ii) it is such that the constants of integration Ci(t), i = 0, . . . ,M − 1 can consistently be

assumed equal to zero throughout the evolution, and assuming the evolution is locally
analytic in time then, at least for short enough times, its evolution under the dynamics of
viscous sintering is such that it remains a quadrature domain of the same order.
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Proof: By inspection of the theorems established in Crowdy [12] for the case of a simply-
connected fluid region in which ∂D(t) consists of just one component, it is clear that if h(z, t)
(in the notation of [12]) is assumed to be a single-valued analytic integrable function in the
(now) multiply-connected domain D(t), the only way in which the proofs would differ is if
any of the constants Ci(t) arising in the integrated stress conditions on any of the component
curves ∂Di(t) of ∂D(t) is non-zero or if either f (z, t) or g′(z, t) is not single-valued in D(t).
Therefore, under assumption (ii) that Ci(t) = 0, i = 0, . . . ,M − 1, all the theorems in [12]
establishing the preservation of quadrature domains still hold for multiply-connected fluid
regions, and constitute a proof of Theorem 5.1. The qualification ‘for short enough times’ is
inherited from the proofs of [12] which assume that the dynamics is locally analytic in time
for some 0 ≤ t < T where T is non-zero.

An alternative proof of Theorem 5.1 can be constructed based on a formulation of the
viscous-sintering problem in terms of Cauchy transforms of the domain as formulated (in the
case of simply-connected domains) by Crowdy [18].

It remains to determine in which circumstances all constants Ci(t) can consistently be
assumed equal to zero under evolution. This result is due to Richardson [9] who discusses
doubly-connected fluid domains. The constants Ci(t) are determined instantaneously by the
domain itself. In a doubly-connected fluid domain there would be two such constants, C0(t)

and C1(t). By transformations of the integrated stress conditions on each boundary, Richard-
son [9] finds that, if the domain is invariant to rotations about the origin by an angle which
is not an integral multiple of 2π , then C0(t) = C1(t) = 0. This argument also applies to
rotationally-symmetric domains of higher connectivity. Consider a transformation (z, f, g,
{Ci}) �→ (Z,F ,G, {Ci}) (where i = 0, 1, . . . ,M − 1) corresponding to a rotation of the
flow domain about the origin through an angle θ (which is not an integral multiple of 2π ).
Inspection of the formula in (6) for the velocity field implies that we must have

Z = zeiθ , F (Z) = f (z)eiθ , G′(Z) = g′(z)e−iθ . (19)

By using (19) in the stress condition we have that the constants Ci transform as

Ci = Cieiθ . (20)

However, if the domain is invariant under a rotation through θ then, in order that the stress
boundary conditions be similarly invariant, we must have Ci = 0. We therefore restrict atten-
tion to initial multiply-connected quadrature domains with such a rotational symmetry about
the origin so that condition (ii) in the statement of Theorem 5.1 holds. Such initial domains
will then evolve in time as quadrature domains.

6. Hopper’s example: two coalescing particles

Hopper’s exact solution for the coalesence of two equal particles can be understood from
exactly this perspective. Hopper himself [4], [5] did not use such a perspective but instead
derived his result based on analysis performed in a parametric ζ -plane. Hopper describes the
free-boundary evolution using a conformal map z(ζ, t) from a unit ζ -circle to the fluid domain
D(t). The map has the form

z(ζ, t) = R(t)ζ

ζ 2 − a2(t)
, (21)
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where R(t) and a(t) are two real time-evolving parameters for which Hopper gives the appro-
priate evolution equations.

There is an alternative way to describe this evolution. Let D(t) be Hopper’s fluid region at
time t . By Green’s theorem,∫ ∫

D(t)

h(z) dx dy = 1

2i

∮
∂D(t)

h(z)z̄ dz, (22)

where h(z) is some integrable analytic function overD(t). Using the conformal map (21) and
the residue theorem,∫ ∫

D(t)

h(z) dx dy = 1

2i

∮
|ζ |=1

h(z)z̄zζ dζ = πr2(t)h(za(t))+ πr2(t)h(−za(t)), (23)

where

za(t) = z(a−1, t), r2(t) = −R(t)zζ (a
−1, t)

2a2(t)
. (24)

we find that (23) is a quadrature identity. Hopper’s fluid regions D(t) are therefore quadrature
domains. Equation (24) provides relations between the conformal-map parameters {R(t), a(t)}
and the quadrature data {r(t), za(t)}. By the results of Section 4, the fluid boundary ∂D(t)
must therefore be given (to within some finite set V0(t) which must now be assumed to evolve
in time) by some algebraic curve P (z, z̄; t) = 0. In what follows, for brevity, parameters such
as za(t) which are functions of time will simply be written za.

The algebraic curve corresponding to Hopper’s initial condition of two equal touching
circular disks is trivial to find. If the centres of the disks are at ±za and their point of contact
is the origin, then

P(z, z̄) = (|z− za|2 − z2
a)(|z+ za|2 − z2

a) = z2z̄2 − z2
az

2 − z2
az̄

2 − 2z2
azz̄ = 0. (25)

By Theorem 5.1 (or the results of [12]) it is known that the domain continues to satisfy
a quadrature identity of the form (23) under evolution. The boundary therefore remains an
algebraic curve. The order of the quadrature identity is 2; the algebraic curve matrix A(t) is
therefore 3-by-3. Theorem 4.1 and (23) can be used to deduce the last two rows (and columns)
of A(t):

A(t) =




e 0 −z2
a

0 −2r2 0

−z2
a 0 1


 , (26)

so that the algebraic curve is

z2z̄2 − z2
az̄

2 − z2
az̄

2 − 2r2zz̄+ e = 0. (27)

Once the matrix A(t) is found, the non-isolated solutions of (27) provide a closed-form
algebraic representation of the fluid boundary that is easily plotted using standard graphics
packages. It rivals (21) as a means of describing the boundary evolution in terms of a finite set
of parameters.

If (23) and (26) are compared it is clear that some of the coefficients of A(t) depend explic-
itly on the quadrature data. It is therefore necessary to find ordinary differential equations for
the quadrature data. Such equations were derived in Crowdy [12]. Example 1 of [12] considers
an (order 3) quadrature identity of a form analogous to (23). By adapting this example, we
deduce that
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ṙ(t) = 0, ża(t) = −2f (za, t), (28)

where f (z, t) is the Goursat function introduced in Section 2. Thus, r(t) is a conserved quan-
tity. To determine f (za, t), we propose use of the Sherman-Lauricella integral equation. This
is described in the next section.

It only remains to find e which is apparently not determined in any explicit way by the
quadrature data. Crowdy [19] has recently considered the general problem of reconstructing a
quadrature domain from its quadrature identity using algebraic curves. One way to determine
e is to consider the equation

F (e) = 0. (29)

where

F (e) ≡ 1

2i

∮
∂D(t)

z̄dz − 2πr2. (30)

This is simply the area relation for the quadrature domain and is obtained by taking h(z) = 1
in the quadrature identity and using Green’s theorem to convert the area integral to a line
integral. Note that F depends on e because the line integral is taken around the algebraic
curve ∂D whose definition contains e. Equation (29) can be solved for e at each instant by
using a form of Newton’s method which iterates on the algebraic curve. Note that it requires
O(N) operations to evaluate F (e) in a numerical quadrature. In this case, the solution is
e(t) = 0.

Finally we remark that, in this particular case, it is not strictly necessary to solve (29) for
e. It turns out that there is a simpler way to determine that e(t) = 0 based on some additional
analytical structure of quadrature domains, i.e. consideration of the special point set V0. Such
considerations are useful whenever the domains of interest have sufficient symmetry. We refer
the reader to Crowdy [19] for more details and additional examples.

6.1. SHERMAN–LAURICELLA INTEGRAL EQUATION

In Hopper’s evolution equations, the evolution of a(t) depends on a non-local quantity which
requires a (numerical) integration around the entire fluid boundary for its determination.
This requires O(N) operations where N is the number of points in the discretization of the
boundary ∂D. The analogous non-local quantity in the algebraic curve formulation above is
f (za(t), t). To determine it, we write f (z, t) as a Cauchy integral

f (z, t) = 1

2π i

∮
∂D(t)

ω(η, t)

η − z dη, (31)

(with a similar expression for g′(z, t) - see [20] [21] for details). The Sherman-Lauricella
equation for the density ω(z, t) is

ω(z, t)+ 1

2π i

∮
∂D(t)

ω(η, t)d log

(
η − z
η̄ − z̄

)
− 1

2π i

∮
∂D(t)

ω(η, t)d

(
η − z
η̄ − z̄

)
= −i

zs

2
. (32)

This integral equation has a number of advantageous features. First, the kernels d log((η−z)/
(η̄−z̄)) and d((η−z)/(η̄−z̄)) are continuous along each component of the curve ∂D(t) so that
(32) is a second-kind integral equation with smooth kernel; second, the Sherman–Lauricella
equation (S–L equation) extends readily [21] to the case of multiply-connected fluid domains
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which are of interest here; third, very recent research has shown that Fast Multipole Methods
[21] can be applied to solve the S–L equation (in large-scale multiply-connected domains)
in O(N) operations which is significant in that it renders the algebraic curve approach in the
present application numerically competitive with the conformal-mapping approach.

Greengard et al. [21] present a numerical method for the solution of the S–L equation in
a multiply-connected domain. Their formulation relies on finding Ni points, equally-spaced
with respect to some parametrization, on each component curve ∂Di . For an M-connected
domain, there will be a total of N ≡ ∑M−1

i=0 Ni points on ∂D(t). The aim is to determine
the value of the density function ωk, k = 1, . . . , N at this set of points. The S–L equation
is then discretized using the trapezoidal rule which gives superalgebraic convergence for
smooth data on smooth boundaries. In the present application, a formula for the algebraic
curve is known at each instant which can readily be used to find a resampling of the boundary
points equally-spaced with respect to the arclength parameter s introduced earlier. Greengard
et al. [21] use Fast Multipole Methods (FMM) to invert the resulting matrix equation for
the vector ωi in O(N) operations; here, for the purposes of a basic implementation of our
method, we use direct inversion (Gaussian elimination). Once the data-set {ωk} is known,
f (za, t) is determined by a single O(N) numerical quadrature using (31). Thus, in an optimal
implementation, determination of f (za, t) is an O(N) procedure.

Our choice of parametrizing in arclength effectively places a practical restriction on the
domains which we can treat here to those which have sufficiently smooth boundaries. Initial
conditions possessing isolated points with very high curvature must be avoided because, for
accurate solution of the S–L equation, a large value of N would be required to adequately
resolve the neighbourhood of such points. It must be emphasized that this is purely a restriction
imposed by our current implementation, and not an inherent restriction on the method. More
sophisticated choices of parametrization will be implemented in future manifestations of the
code and will enable effective calculation of the evolution of initial configurations close to an
array of touching circular discs. Here, initial conditions are chosen in which the high curvature
regions typical of such configurations of touching disks have been smoothed out slightly.
Physically, this corresponds to avoiding the very early stages of sintering which is consistent
with the fact that we only expect the isolated unit cell to model accurately pore shrinkage in
the doubly-infinite lattice when the pore sizes are sufficiently small (compared to the area of
the unit cell) and the effect of neighbouring cells not significant.

Figure 3 shows snapshots of Hopper’s solution calculated using (27) and (28) with f (za, t)
computed using the S–L equation. A valuable check on the numerical solution of the S.L. equa-
tion is provided by comparison with the conformal-map solution.

7. A doubly-connected fluid domain

Now consider the unit problem consisting of four equal touching particles shown in Figure 1.
The sintering of this domain was computed numerically by Van der Vorst [11] and later an-
alytically by Richardson [9] and Crowdy [10] (who each used rather different formulations
involving conformal maps). We now present the new algebraic-curve approach.

The mean-value theorem and additivity over the domain of disconnected disks implies that
the associated quadrature identity is∫∫

D(0)
h(z) dx dy = πr2

1h(z1)+ πr2
2h(z2)+ πr2

3h(z3)+ πr2
4h(z4), (33)
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Figure 3. Hopper’s solution calculated using algebraic curve approach. Figure shows superposed time sequence
of algebraic curves z2z̄2 − z2az

2 − z2a z̄
2 − 2r2zz̄ = 0 with parameters za, (t) and r(t) satisfying the o.d.e.’s

ża = −2f (za, t) and ṙ = 0 with initial conditions r(0) = √
0·5 and za(0) = 0·6.f (za, t) is computed using the

solution of Sherman-Lauricella integral equation; times shown t = 0·0, 0·1, 0·2, 0·3, 0·4, 1·0.

where

r1(0) = r2(0) = r3(0) = r4(0) = 1;
z1(0) = √

2; z2(0) = i√2; z3(0) = i√2; z4(0) = −i
√

2.
(34)

and h(z) is an arbitrary single-valued analytic function integrable over the domain. The asso-
ciated algebraic curve is also easily found to be

P (z, z̄) = (|z− z1|2 − 1)(|z− z2|2 − 1)(|z − z3|2 − 1)(|z − z4|2 − 1)

= z4z̄4 − z4
1z

4 − z4
1z̄

4 − 4r2z3z̄3 + ez2z̄2 + f zz̄+ k
= 0,

(35)

where

r = 1; e = 2; f = −4; k = 1. (36)

From Crowdy [12], the evolution equations for the quadrature data in (33) is given by

ṙj = 0, j = 1, 2, 3, 4,

żj = −2f (zj , t), j = 1, 2, 3, 4.
(37)

There are four constants of the motion, and four time-evolving parameters. It is convenient to
note that the physical problem preserves the four-fold rotational symmetry and dictates that

z2(t) = iz1(t); z3(t) = −z1(t); z4(t) = −iz1(t); (38)

therefore, it is enough to solve
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ż1 = −2f (z1, t). (39)

and take r1(t) = r2(t) = r3(t) = r4(t) = r.
Having thus updated the quadrature data at each instant, we can use Theorem 4.1 to update

the last two columns (and rows) of the matrix A(t). Using Theorem 4.1 and the four-fold
rotational symmetry of the domain, we deduce that

A(t) =




k 0 0 0 −z4
1

0 f 0 0 0

0 0 e 0 0

0 0 0 −4r2 0

−z4
1 0 0 0 1




(40)

where r is a constant of the motion and z1(t) satisfies (39). The zeros in (40) are forced by
the rotational symmetry. The original free-boundary problem is reduced to determining the
evolution of the algebraic curve matrix A(t). It just remains to determine e(t), f (t) and k(t).

The multiply-connected quadrature domains associated with a given (fixed) quadrature
identity are not unique. In the present example it is expected that there will exist a one-
parameter family of quadrature domains all satisfying (33) but each having enclosed pores
of different area (see Gustafsson [17] for a more technical abstract discussion of this point).
The evolution of the areas of the pores is given by the following theorem:

THEOREM 7.1 (Evolution of pore areas)

Let Ai(t) denote the area, at time t, of the i-th enclosed pore of a sinter body satisfying the
initial conditions of Theorem 5.1. Then, under the viscous-sintering dynamics,

Ȧi(t) = 1

2i

∮
∂Di (t)

2g′(z, t) dz. (41)

where g′(z, t) is the Goursat function of Section 2.

Proof: If it is observed that

Ai(t) = 1

2i

∮
∂Di (t)

z̄ dz, (42)

the result follows by taking the time-derivative of the right-hand side of (42) and making use
of the boundary conditions in the same spirit as the proof of Theorem 3.1 of Crowdy [12]. We
omit the details.

Recall that g′(z, t) is determined from the solution of the S–L equation. It can be shown
that, like ż1, Ȧi(t) is determined by a single O(Ni) quadrature involving the S–L solution
{ωk}. If the evolution of the pore area A1(t) provides an implicit evolution equation for e(t),
then two additional nonlinear equations for f (t) and k(t) (the analogues of (29)) are

Fj (f, k) = 0, j = 1, 2, (43)

where
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Fj (f, k) ≡ 1

2i

∮
∂D(t)

ejzz̄dz − πr2(2 cosh jz1 + 2 cos jz1), j = 1, 2, (44)

which result from taking the (arbitrary) linearly independent choices h(z) = ez and h(z) = e2z

in (33) and using Green’s theorem. As in Hopper’s example, it turns out that Equations (43)
can be replaced by a more convenient set by exploiting the special points V0. The reader is
referred to Crowdy [19] for more details.

To update the matrix A(t), 100 points are used in the discretization of both outer and inner
contours in the first quadrant (it is enough, by symmetry, to consider the contours in this
quadrant) and a simple forward Euler scheme (with time-step 0·01) is used to integrate the
ordinary differential equations. A relatively smooth initial domain is chosen to ensure accu-
racy in solving the S–L equation and to avoid any stiffness problems associated with localized
points of high curvature. In solving the S–L equation, the generalized representations for
f (z, t) and g′(z, t) presented by Greengard, Kropinski and Mayo [21] for multiply-connected
domains are used. In particular, because f (z, t) is known to be single-valued, we continue to
use the representation, (31) while simple pole singularities in each of the holes must be added
to the representation of g′(z, t) to account for the sources/sinks expected to be found therein.

It is again possible to check the evolution in this case by comparison with a conformal-
mapping approach. Figure 4 shows both the evolution plotted using the loxodromic-function
conformal map from a concentric annulus constructed in Crowdy [10] based on the theory of
Crowdy and Tanveer [8], (although, if preferred, one could equivalently use an elliptic function
conformal map from a rectangle as constructed by Richardson [9]) as well as the same solution
calculated using the algebraic curve method. The curves show excellent agreement to within
the numerical errors of the separate calculations. In both calculations, the enclosed pore is
observed to shrink to a point just after t = 0·5 (the last contour shown in Figure 4).

8. A quintuply-connected fluid domain

Surprisingly little additional effort is required to compute the evolution of the quintuply-
connected domain relevant to the unit problem in Figure 2 discussed earlier. This calculation
is new. The domain again has a four-fold rotational symmetry about the origin but now the
additional central particle adds a single term to the quadrature identity of Section 7:∫∫

D(0)
h(z)dxdy = πr2

1h(z1)+ πr2
2h(z2)+ πr2

3h(z3)+ πr2
4h(z4)+ πp2h(z0), (45)

where

z0(0) = 0, z1(0) = √
2, z2(0) = i

√
2, z3(0) = −√

2, z4(0) = −i
√

2, (46)

and

r1(0) = r2(0) = r3(0) = r4(0) = 1; p(0) = √
2 − 1. (47)

The quadrature identity now has order 5. By Theorem 5.1 the domainD(t) continues to satisfy
(45) under evolution with quadrature data satisfying the o.d.e.’s

ṗ = 0; ż0(t) = −2f (z0, t);
ṙj = 0; żj (t) = −2f (zj , t), k = 1, . . . , 4.

(48)
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Figure 4. Evolution of the unit problem derived from the lattice in Figure 1. Calculation is performed up to point
where enclosed pore is about to vanish. Upper diagram shows evolution computed using conformal map of [8]
[10]; lower diagram shows the same calculation performed using algebraic curve parametrization. Times shown
in both figures are t = 0·0, 0·1, 0·2, 0·3, 0·4, 0·5.

The rotational symmetry forces f (0, t) = 0 so that z0(t) = 0 and it is again enough to
integrate the single ordinary differential equation

ż1 = −2f (z1, t). (49)

Using Theorem 4.1 and the symmetry of the domain, we deduce that the associated ma-
trix A(t) is given by
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Figure 5. Pore shrinkage in a quintuply connected sinter body with four enclosed pores. The unit prob-
lem derives from the lattice in Figure 2. Calculation is performed by tracking the evolution of the
five real parameters z1(t), e(t), f (t), k(t) and l(t) in the algebraic curve matrix A(t). Times shown are
t = 0·0, 0·05, 0·1, 0·15, 0·4, 0·65 and 0·775. By t = 0·15 pores have almost disappeared, but the same algebraic
curve is still valid even after pores have vanished.

A(t) =




l 0 0 0 z4
1p

2 0

0 k 0 0 0 −z4
1

0 0 f 0 0 0

0 0 0 e 0 0

z4
1p

2 0 0 0 −(4r2 + p2) 0

0 −z4
1 0 0 0 1



. (50)

The zeros in (50) are again forced by the rotational symmetry. The initial disconnected domain
of touching circles corresponds to the parameter set

r(0) = 1; p(0) = √
2 − 1; e(0) = 10 − 8

√
2;

f (0) = 2 − 4
√

2; k(0) = 13 − 8
√

2; l(0) = −3 + 2
√

2.
(51)

The free-boundary problem has thus been reduced to finding the evolution of the matrix A(t).
This is done using precisely the same technology developed in previous examples.

Figure 5 shows an example in which the four enclosed pores shrink until they vanish - by
t = 0·15 all the pores have almost disappeared; however the calculation has been continued
up to t = 0·775. This highlights one of the benefits of our method. Once the pores have
become negligibly small, the algebraic curve description of the fluid boundary is still valid;
the vanishing of the pores simply corresponds to the algebraic curve P (x+ iy, x − iy; t) = 0
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having fewer solutions for real x and y than it did before the pores vanished. A conformal-map
approach would become singular at such a pore-shrink-age event; it would be necessary to
switch to a different functional form of conformal map from a different canonical parametric
region. The approach above avoids these topological complications.

It is of interest to observe from the shapes of the enclosed pores in Figure 5 that, during the
early part of the calculation, the neck radii between equal-sized particles grows quickly, while
the necks between unequal particles only grow significantly once the ‘equal neck’ regions have
become sufficiently large. While Van der Vorst [11] pointed out the usefulness of considering
simple unit problems in the study of sintering, this observation highlights the limitations
in satisfactorily employing simple unit problems (such as Hopper’s coalescence result for
equal particles [4] or Richardson’s [6] result for unequal particles) to deduce quantitative
information on densification in any but the most simple sinter compacts. Figure 5 suggests
that the sintering of the four surrounding equal particles is exerting stresses that impedes the
coalescence of the different-sized particles. Scherer [22] has similarly discussed the effects
that a bimodal distribution of particles can have on the global densification by giving rise to
differentials in sintering stresses throughout the sinter body. We intend to examine such issues,
based on the exact solution methods presented here, in more detail in future work. It is also
necessary to investigate in future work the effect of considering this quintuply-connected unit
problem isolated from the rest of the doubly-infinite lattice (cf. [13]).

9. Discussion

The initial domains relevant to planar viscous sintering are usually configurations of touching
circular disks modelling a configuration of touching particles [4–6],[9–11]. Such domains are
quadrature domains with boundaries that are algebraic curves which, moreover, can often be
written down immediately from simple geometrical considerations. With enough symmetry in
the configuration, it has been shown here that the evolution preserves the form of this algebraic
curve and it is natural to compute the subsequent sintering dynamics of such configurations by
tracking the evolution of this curve. This paper has proposed, and implemented, this strategy.

An alternative method is to construct the uniformization maps of these algebraic curves;
this is essentially equivalent to the traditional conformal-mapping approach to the problem and
results of this kind have currently only been computed for the simply and doubly-connected
sintering problems. In principle, uniformization maps can be constructed for quadrature-
domain fluid regions of any finite connectivity. While a conformal map has the advantage
of being an explicit representation of the fluid boundary, there is much analytical overhead
required to construct, say, the uniformization of the algebraic curve (50) which, in the case
where it describes a quintuply-connected fluid region, is associated with a compact genus-
4 Riemann surface (the conformal map could be constructed as an automorphic function
on the universal cover of this Riemann surface). Even with this done, the evolution of the
conformal-mapping parameters will require the solution, at each instant, of a finite set of
nonlinear equations, some of which depend non-locally on the domain. But nothing more
than this is required to determine the evolution of the finite set of algebraic-curve parameters.
In addition, it has been seen that the algebraic curve approach has the advantage of coping
automatically with reduction in connectivity (physically, pore shrinkage - a ubiquitous event
in the current application). The conceptual simplicity of the algebraic-curve approach only
adds further to its practical appeal.
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It is worth emphasizing the advantages of our approach over a purely numerical scheme
based on boundary-integral methods [23], [24], [11], where N points on the boundary would
be time-advanced individually. Indeed, in solving the S-L equation, we have essentially used
ideas normally employed in the context of boundary-integral calculations. The important point
is that we have identified, and are exploiting, a finite representation of the fluid boundary
valid at all times in the evolution. The solution at any stage of sintering requires only the
determination of a (usually small) finite set of parameters and the state of the fluid boundary
can be reported in finite (usually C∞) form. Moreover, knowledge of a closed-form algebraic
formula for the curve is crucial in facilitating quick-and-easy solution of the S-L equation
and provides closed form formulae for the tangent and curvature at any point on the curve
and at all times during the calculation. The finite representation of the boundary also reduces
memory requirements.

Crowdy [19] has made use of analytical properties of the special points of quadrature
domains to simplify the numerical construction of the domains when there exists sufficient
symmetry in the problem; but the viscous-sintering problem only admits exact quadrature-
domain solutions when the domains do have such symmetry! Moreover, as has been seen here,
many interesting sintering scenarios fall within this class. The exploitation of special points
in the construction of symmetric quadrature domains is therefore valuable in this physical
application. There remain further questions as to whether advances in the understanding of
the linear analysis of quadrature domains [25] can further simplify computations of viscous
sintering.

Recent calculations [10] of doubly-connected fluid domains that use exact solutions based
on conformal maps reveal that the planar sintering problem, while physically simplistic, shares
many qualitative features with the fully three-dimensional problem. Furthermore, Nie and
Tanveer [26] have studied the axisymmetric sintering problem numerically and found that it
shares many behavioural features with the planar problem. This evidence, coupled with its
various mathematical properties, render the planar sintering problem a useful and analytically
tractable theoretical paradigm. In an optimal implementation, our approach provides a fast,
flexible and versatile method to compute the evolution of a wide range of planar unit problems,
the behavioural characteristics of which can be studied in detail and any qualitative results po-
tentially extrapolated to the (much less tractable) three-dimensional problem. We believe the
approach represents a practical middle ground between the concise, predominantly analytical,
solutions of Hopper [4] on the one hand, and purely numerical calculations e.g. Kuiken [23,
24], Van der Vorst [13], [11], [27], Primo et al. [28]) on the other.
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