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This paper demonstrates that there is a contour dynamics formulation for the
evolution of uniform vortex patches in any finitely connected planar domain bounded
by impenetrable walls. A general numerical scheme is presented based on this
formulation. The algorithm makes use of conformal mappings and follows the
evolution of a conformal pre-image of a given vortex patch in a canonical multiply
connected circular pre-image region. The evolution of vortex patches can be computed
given just the conformal map from this pre-image region to the physical fluid region.
The efficacy of the scheme is demonstrated by illustrative examples.

1. Introduction
A common model for the dynamics of vorticity in planar flows is the point-vortex

model (Newton 2001; Saffman 1992). These models, in which a vorticity distribution
is modelled by a collection of δ-functions, are useful for reducing the dimensionality of
the governing Euler equations to a set of nonlinear ordinary differential equations and
can provide accurate predictions for the gross behaviour of the centres of vorticity.
By their very nature they fail, however, to resolve any detailed geometrical structure
of the vortex regions, or to capture any finite-area dynamical effects such as vortex
merger or vortex breakup.

A better model of vorticity that has proved, over the last few decades, to be
of enduring value is the vortex-patch model (Saffman 1992). A vortex patch is a
finite-area region of uniform vorticity. These models are capable of capturing the
finite-area effects that are precluded by the point-vortex model and, importantly,
do not involve a total sacrifice of the reduction in dimensionality of the original
problem. This is because the evolution of a uniform vortex region only requires the
tracking of its boundary since an initially uniform vortex region remains uniform
as it evolves. Based on this crucial observation, Zabusky, Hughes & Roberts (1979)
introduced the numerical scheme now commonly known as contour dynamics. It has
since been enhanced, notably by Dritschel (1988a), to incorporate a contour surgery
procedure whereby long-time integrations can be performed that deal effectively with
the formation of thin extended vortical filaments. A review of contour dynamics
methods has been presented by Pullin (1992).

Compared with studies of the dynamics of vorticity in unbounded regions, the
literature on vortex motion in regions bounded by impenetrable walls is limited.
This problem is, however, of classical interest and has commanded the attention
of (among others) Kirchhoff (see Lamb 1932) and Routh (1881). There is now a
systematic theory for computing the evolution of a collection of point vortices in
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a simply connected region. This theory rests on it being a Hamiltonian dynamical
system, the governing Hamiltonian being referred to as the Kirchhoff–Routh path
function (Saffman 1992). Lin (1941a, b) later showed that this Hamiltonian structure
survives when the fluid domain is multiply connected and deduced the existence
of a generalized Kirchhoff–Routh path function. Lin’s theory is, however, non-
constructive. In a constructive theory which marries Lin’s results with elements
of classical function theory, Crowdy & Marshall (2005a) have devised a general
method for computing the motion of point vortices in complex multiply connected
geometries.

One study which adapts a contour dynamics algorithm for computations of patch
motion involving impenetrable walls has been performed by Pullin (1981). Motivated
by applications to geophysical fluid dynamics, Johnson & McDonald (2005a, c)
have contributed a series of works in which the motion of both point vortices and
vortex patches in regions bounded by impenetrable walls is studied. For example, in
Johnson & McDonald (2005a, c), the problem of vortex motion near a wall containing
gaps is considered. In their numerical simulations of vortex patch motion near gaps
in walls, Johnson & McDonald make use of the following idea. If an infinite straight
wall has no gap, the motion of a vortex patch above this wall can be computed using a
regular free-space contour dynamics algorithm by replacing the wall with a ‘reflected
patch’ (i.e. the vortex patch reflected in the infinite straight wall) and then computing
the two-patch evolution of this reflectionally symmetric configuration. When gaps
are present, these authors continue to use a free-space contour dynamics calculation
together with an ‘image’ vortex patch, but they add what amounts to a ‘background
flow contribution’ which corrects for the gaps in the wall. This ingenious approach
provides a method for computing the vortex-patch evolution, but it is specific to the
particular geometry under investigation there.

Jomaa & Macaskill (2005) have considered similar problems to those addressed in
this paper, but from a different perspective. They do not use a pure contour dynamics
approach, but employ a hybrid method involving an underlying grid to gain efficiency
over contour dynamics methods for complex flows. Other related work, based on
similar ideas, is due to Macaskill, Padden & Dritschel (2003) who focus on flows in
a cylinder.

Similar efforts to devise formulations of contour dynamics involving boundaries
have been made by those interested in the motion of non-neutral plasmas in
Malmberg–Penning traps. The equations of motion for such plasmas are isomorphic
to the Euler equations for an ideal incompressible fluid. Backhaus, Fajans & Wurtele
(1988) and Coppa, Peano & Peinetti (2002) have considered a formulation of
contour dynamics in a circular cylinder. Their approach, which relies on ideas from
the method of images (which they call an ‘image-charge’ method), has many features
in common with those devised by Johnson & McDonald (2005b, c). Again, however,
these methods are limited in that they are relevant only to vortex motion involving
circular boundaries.

This paper presents a flexible contour dynamics method for computing the motion
of vortex patches in complex multiply connected geometries. The key idea is to
consider a conformal map to the physical region of interest from a conformally
equivalent circular pre-image region. Given this conformal map, the evolution of the
pre-image of a given vortex patch is calculated. This calculation is facilitated by
knowledge of the explicit functional form of the relevant Green’s function in this
pre-image region (see Crowdy & Marshall 2005a). Moreover, while the instantaneous
boundary-value problem for finding the velocity field generated by a finite-area vortex
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Figure 1. The idea of the algorithm: a conformal map z(ζ ) transplants a circular pre-image
domain Dζ to the physical fluid region Dz containing a vortex patch Pz. The pre-image of Pz

in Dζ is Pζ .

patch is not conformally invariant, it turns out that, by appropriate manipulations of
the governing equations, a contour dynamics formulation can still be found.

The advantage of this algorithm is that it can be applied, in principle, to any
multiply connected fluid region for which a conformal mapping from a circular pre-
image region can be found, either analytically or numerically. It can be combined
with existing numerical conformal mapping codes to compute the motion of vortex
patches in more or less arbitrary flow domains.

2. Mathematical formulation
Let Dz be an arbitrary multiply connected region of fluid with finite connectivity.

For the moment, it will be assumed that Dz is a bounded domain. Let M � 0
be an integer and let {Dj |j = 1, . . . , M} denote M ‘islands’ inside Dz and let the
boundary of Dj be ∂Dj . The outer boundary enclosing the islands will be ∂D0. All
the boundaries of the fluid region are taken to be impenetrable barriers to the flow.
It is known, from an extension of the Riemann mapping theorem (Goluzin 1969),
that Dz is conformally equivalent to some circular pre-image region Dζ consisting of
the unit ζ -disk with M smaller circular disks excised. Let C0 denote the unit circle
in a parametric ζ -plane and let {Cj |j = 1, . . . , M} be the circular boundaries of the
enclosed disks. Let qj ∈ � and δj ∈ �, respectively, denote the radius and centre of
the circle Cj . The domain Dz itself will dictate what these parameters are (they are
the conformal moduli (Nehari 1982) of the domain Dz). Let z(ζ ) be the conformal
mapping from Dζ to Dz. We assume that z(ζ ) is a known function, given either as an
analytical formula or computable by some numerical conformal mapping algorithm.
Everything deduced below also holds when the mapping z(ζ ) has a simple pole in Dζ

so that the image is an unbounded fluid domain. Suppose that the fluid inside Dz

is irrotational except for a time-evolving uniform vortex patch Pz. Let the boundary
of the vortex patch be ∂Pz. Let Pζ be the pre-image region in Dζ corresponding to
the patch Pz in Dz. The image of the boundary ∂Pζ of Pζ under the mapping z(ζ )
is precisely the boundary ∂Pz of Pz. Figure 1 shows the notation. It is important
to emphasize that we will not solve for the actual motion of a vortex patch in the
pre-image domain Dζ . Our aim is to demonstrate the general result that there always
exists a contour dynamics formulation for this problem. That is, the computation of
the velocities of the patch boundary in the physical domain Dz can always be reduced
to the evaluation of a contour integral. Our approach is constructive.

Let G(z, zα) be the Green’s function in Dz, the Laplacian of which has a δ-function
singularity at some point zα inside Dz so that

∇2G(z, zα) = −δ(z − zα), (2.1)
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with G taking a constant value on all the boundaries of Dz. In particular, on the
outer boundary ∂D0, it can be assumed, without loss of generality, that

G = 0 on ∂D0. (2.2)

G(z, zα) will also satisfy the conditions that the circulations around all the enclosed
islands are zero, i.e. ∮

∂Dj

∂G

∂n
ds = 0, j = 1, . . . , M. (2.3)

In fact, G is the special Green’s function considered by Lin (1941a) in his studies
of point-vortex motion in multiply connected domains; the same function was later
dubbed the ‘hydrodynamic Green’s function’ by Flucher & Gustafsson (1997) (see
also Flucher 1999).

Let ψ be the streamfunction associated with the flow in Dz generated by the patch
Pz. It satisfies the same boundary conditions, and zero circulation conditions, as the
Green’s function just introduced. Finally, let the uniform vorticity inside Pz be ω0 so
that

∇2ψ =

{
−ω0, z ∈ Pz,

0, z /∈ Pz.
(2.4)

By Green’s identity and the divergence theorem,∫ ∫
Dz

(ψ∇2G − G∇2ψ)dAz =

∫ ∫
Dz

∇ · (ψ∇G − G∇ψ) dAz

=

∮
∂Dz

(
ψ

∂G

∂n
− G

∂ψ

∂n

)
ds, (2.5)

where dAz denotes the area element in Dz. The line integrals on the right-hand side
can all be shown to vanish owing to the boundary conditions that both ψ and G are
constant on ∂Dz (and vanish on ∂D0) together with the conditions of zero circulation
around all the interior islands. It follows that

ψ(z, z̄) =

∫ ∫
Pz

ω0 G(z, zα) dAzα
, (2.6)

where we have used (2.4), and where the integration is an area integral with respect
to the zα variable.

The boundary-value problem satisfied by the Green’s function G is a conformally
invariant one. It therefore follows that

G(z, zα) = G0(ζ, α), (2.7)

where zα = z(α) and where G0(ζ, α) is the Green’s function whose explicit form was
found by Crowdy & Marshall (2005a). It is

G0(ζ, α) = − 1

2π
log

∣∣∣∣ ω(ζ, α)

αω(ζ, α−1)

∣∣∣∣ , (2.8)

where ω(ζ, α) is the so-called Schottky–Klein prime function (see Crowdy & Marshall
2005a) associated with the domain Dζ . Equation (2.8) can also be written

G0(ζ, α) = − 1

4π
log

(
ω(ζ, α)ω(ζ , α)

|α|2ω(ζ, α−1)ω(ζ , α−1)

)
. (2.9)
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The particular functional form of G0(ζ, α), as given in (2.8) or (2.9), will be crucial in
what follows.

On using (2.7) and (2.9) in (2.6), we obtain

ψ(z, z̄) =

∫ ∫
Pz

ω0 G(z, zα) dAzα

= −ω0

4π

∫ ∫
Pζ

log

(
ω(ζ, α)ω(ζ , α)

|α|2ω(ζ, α−1)ω(ζ , α−1)

)
dz(α)

dα

(
dz(α)

dα

)
dAα, (2.10)

where dAα denotes the area element with respect to the variable α and we have
introduced the usual Jacobian scaling dAzα

= |dz/dα|2dAα .
Now, the complex velocity u − iv in the z-plane (which will be required in order to

update the patch boundary) is given by

u − iv = 2i
∂ψ

∂z

∣∣∣∣
z

= 2i
∂Ψ

∂ζ

∣∣∣∣
ζ

1

zζ (ζ )
, (2.11)

where

Ψ (ζ, ζ̄ ) ≡ ψ(z(ζ ), z(ζ )), (2.12)

and where zζ (ζ ) denotes the derivative with respect to ζ . However, on differentiating
(2.10) with respect to ζ , we obtain

∂Ψ

∂ζ

∣∣∣∣
ζ̄

= −ω0

4π

∫ ∫
Pζ

(
ωζ (ζ, α)

ω(ζ, α)
− ωζ (ζ, ᾱ−1)

ω(ζ, ᾱ−1)

)
dz(α)

dα

(
dz(α)

dα

)
dAα, (2.13)

where ωζ (ζ, α) denotes the derivative of ω(ζ, α) with respect to its first argument ζ .
This can be written as

∂Ψ

∂ζ

∣∣∣∣
ζ̄

= − ω0

4π

∫ ∫
Pζ

(
ωζ (ζ, α)

ω(ζ, α)

dz(α)

dα

(
dz(α)

dα

))
dα ∧ dα

2i

+
ω0

4π

∫ ∫
Pζ

(
ωζ (ζ, ᾱ−1)

ω(ζ, ᾱ−1)

dz(α)

dα

(
dz(α)

dα

))
dα ∧ dα

2i
, (2.14)

where we have introduced the notation (see Ablowitz & Fokas 1995)

dAα =
dα ∧ dα

2i
. (2.15)

This can further be rewritten in the more suggestive form

∂Ψ

∂ζ

∣∣∣∣
ζ̄

= − ω0

8πi

∫ ∫
Pζ

∂

∂ᾱ

(
ωζ (ζ, α)

ω(ζ, α)
z(α)

dz(α)

dα

)
dα ∧ dα

+
ω0

8πi

∫ ∫
Pζ

∂

∂α

(
ωζ (ζ, ᾱ−1)

ω(ζ, ᾱ−1)
z(α)

(
dz(α)

dα

))
dα ∧ dα. (2.16)

The complex version of Green’s theorem takes two different forms and both of these
will now be useful. First, given any function Φ regular everywhere in some region D,∫ ∫

D

∂Φ

∂z̄
dz ∧ dz =

∮
∂D

Φ dz, (2.17)
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where ∂D is the boundary of D. Another form is

−
∫ ∫

D

∂Φ

∂z
dz ∧ dz =

∮
∂D

Φdz. (2.18)

If ζ is inside Dζ , but outside the vortex patch Pζ , then all the integrands in (2.16) are
regular functions for α (and ᾱ) inside Pζ . It follows, since both (2.17) and (2.18) can
then be used in (2.16), that

∂Ψ

∂ζ

∣∣∣∣
ζ̄

= − ω0

8πi

∮
∂Pζ

(
ωζ (ζ, α)

ω(ζ, α)
z(α)

dz(α)

dα

)
dα

− ω0

8πi

∮
∂Pζ

(
ωζ (ζ, ᾱ−1)

ω(ζ, ᾱ−1)
z(α)

(
dz(α)

dα

))
dα. (2.19)

The integrands in these line integrals are all known functions. Equation (2.19) is
important: it shows that the calculation of the velocity field outside the patch has
been reduced to the evaluation of a line integral. In particular, as ζ tends to a point
on ∂Pζ (so that z tends to a point on the physical patch boundary ∂Pz), by taking
principal part integrals in (2.19) and using (2.11), we can readily compute the velocity
of the patch boundary ∂Pz in the physical plane. This is all that is required to update
the patch shape. Once the updated patch Pz is found, the updated pre-image patch Pζ

can also be found. What we have demonstrated is that there is a contour dynamics
formulation for the evolution of a vortex patch in any finitely connected domain
bounded by impenetrable walls.

A feature of vortex dynamics in multiply connected domains (which is not a concern
in the simply connected case) is the condition that the round-island circulations must
be constant in time. This dynamical constraint is a requirement imposed by Kelvin’s
circulation theorem (see Saffman 1992). It is significant that the formulae derived
above automatically enforce the constancy of the round-island circulations. It is
therefore not necessary to impose explicitly any additional conditions to enforce these
integral constraints.

In summary, up to conformal mapping (i.e. knowledge of z(ζ )), the above
formulation is completely general and shows that vortex-patch motion in any
multiply connected region admits a contour dynamics formulation.

3. Numerical implementation
The vortex patch Pz induces a velocity field

u − iv = 2i
∂ψ

∂z

∣∣∣∣
z

=
2i

zζ (ζ )

∂Ψ

∂ζ

∣∣∣∣
ζ

, (3.1)

where ∂Ψ/∂ζ is given by (2.19). Equation (3.1) is valid for any point ζ ∈ Dζ outside
the vortex patch Pζ and hence gives the velocity induced by the patch outside the
patch.

The Schottky–Klein prime function described in Crowdy & Marshall (2005a) can
be defined by an infinite product

ω(ζ, γ ) = (ζ − γ )ω̂(ζ, γ ), (3.2)
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where

ω̂(ζ, γ ) =
∏

θi∈Θ ′′

(θi(ζ ) − γ )(θi(γ ) − ζ )

(θi(ζ ) − ζ )(θi(γ ) − γ )
(3.3)

and

θi(ζ ) = δi +
q2

i ζ

1 − δiζ
. (3.4)

Recall that qi ∈ � and δi ∈ � are, respectively, the radius and centre of the circle Cj .
Θ ′′ is an appropriate subset of the Schottky group (see Crowdy & Marshall (2005a)
for details). First note that

ωζ (ζ, α)

ω(ζ, α)
=

1

ζ − α
+

ω̂ζ (ζ, α)

ω̂(ζ, α)
, (3.5)

where the second term on the right-hand side, which is the modification to the free-
space contribution deriving from the presence of the walls, is regular everywhere in
Dζ . Therefore, for any point ζ ∈ Dζ \Pζ , we see that

∂Ψ

∂ζ

∣∣∣∣
ζ

= Ir (ζ ) + Is(ζ ), (3.6)

where

Ir (ζ ) = − ω0

8πi

[∮
∂Pζ

z(α)zζ (α)

(ζ − α−1)
dα +

∮
∂Pζ

(
ω̂ζ (ζ, α)

ω̂(ζ, α)
zζ (α)z(α)

)
dα

+

∮
∂Pζ

(
ω̂ζ (ζ, α−1)

ω̂(ζ, α−1)
z(α)zζ (α)

)
dα

]
(3.7)

and

Is(ζ ) =
ω0

8πi

∮
∂Pζ

zζ (α)z(α)

α − ζ
dα. (3.8)

The above decomposition shows that the vortex patch evolves with a velocity field
which has two contributions: Ir (ζ ) is the velocity induced by the image vorticity
distribution while Is(ζ ) is the self-induced velocity contribution. Ir (ζ ) is regular
everywhere in Dζ , but the integrand of Is(ζ ) becomes singular as ζ approaches a
point on the patch boundary ∂Pζ . We examine how to evaluate these integrals in § 3.2.

In a numerical implementation of contour dynamics, three main issues arise (see
Pullin (1992) for a general discussion): (a) accurate representation of the patch
boundary ∂Pζ at each time step; (b) accurate computation of the contour integrals
appearing in (3.6); (c) advection of the contour. In the following subsections, we
discuss each of these points separately.

3.1. Contour representation

Each contour ∂Pz and ∂Pζ will be represented by a distribution of nodes with
interpolating functions used to approximate the contour between nodes. We will use
a node-adjustment algorithm to maintain acceptable accuracy as the lengths of the
vortex boundaries become extended, or highly curved, during a simulation. At this
point, we have a choice as to the domain in which we perform the advection of
the vortex patch contour and the adjustment of the node distribution to maintain
accuracy: we can either update the pre-image contour ∂Pζ or the physical contour
∂Pz. We have investigated both choices numerically and have found that updating



242 D. Crowdy and A. Surana

the position of the physical contour ∂Pz is more accurate. To do so, however, still
requires knowledge of the pre-image patch Pζ since it is in the ζ -plane that the
patch boundary velocities are computed. One reason we suspect it is preferable to
update Pz (rather than Pζ ) is that conformal mappings are angle-preserving maps,
but they do not preserve lengths or areas. During a typical simulation, the area and
perimeter of Pζ can both vary greatly (although its area is always bounded above
since Pζ is confined to the unit disk). In the physical domain, however, the patch
area is conserved (even though the perimeter can still vary dramatically owing to
filamentation effects).

A second advantage of advecting the contour ∂Pz, and dynamically adjusting the
nodes thereon, is that this feature already exists in contour dynamics codes and has
been well studied. The new ingredient of our approach is the use of a pre-image
conformal mapping plane to compute the boundary velocities of the vortex patch
when geometrically complex boundaries are involved.

Following Dritschel (1988a), to represent the contour ∂Pz we employ a locally
determined cubic polynomial as the interpolation function. With this scheme, the
contour between two nodes j and j + 1 on ∂Pz, for example, is given by

β̃j (s) = zj + s(zj+1 − zj ) + iη̃j (s)(zj+1 − zj ), (3.9)

where

η̃j (s) = α̃j s + β̃j s
2 + γ̃j s

3, (3.10)

for 0 � s � 1. The coefficients in η̃(s) are

α̃j = − 1
3
ejκj − 1

6
ejκj+1, β̃j = 1

2
ejκj , γ̃j = 1

6
ej (κj+1 − κj ), (3.11)

where, ej = |zj+1 − zj | and κj is the curvature at node j computed by passing a
circle through the nodes labelled j − 1, j and j + 1. The redistribution of nodes
is controlled by a node density function ρ whose contour integral with respect to
arclength gives the total number of nodes on a given contour. Our node adjustment
is controlled by the same parameters δ, µ, L and a introduced by Dritschel (1988a)
and discussed in detail there. δ is a problem-dependent distance which serves as a
small-scale cutoff for resolving the contour. µ controls the overall density of nodes. L

is taken to be a typical length scale of large-scale vorticity distribution in the problem
and a ∈ (0, 1) controls how quickly the node density rises with the curvature. In all
the cases considered in this paper, the initial vortex patch is taken to be circular with
radius R with ω0 = 2π. We have then chosen the parameter values L = R, δ = 10−4,
a =2/3 and µ ∼ π/10 − π/30.

Once a suitable distribution of nodes on ∂Pz has been found, these nodes are
transplanted, via the known conformal mapping, to ∂Pζ and a (different) set of
interpolants is then found there. For example, we use

βj (s) = ζj + s(ζj+1 − ζj ) + iηj (s)(ζj+1 − ζj ), (3.12)

with the same prescription for finding ηj (s) as described above for η̃j (s). It was
generally found that a well-resolved contour ∂Pz leads, after conformal mapping of
nodes, to a well-resolved contour ∂Pζ .

3.2. Computation of contour integrals

The success of current contour dynamics algorithms rests, in part, on the fact that
the singular contribution to the relevant integrals can be performed analytically,
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leaving only a regular integral to be computed numerically. At first sight, the above
formulation involving (essentially arbitrary) conformal mapping functions in the
integrands seems to jeopardize the prospect of evaluating the singular integrals in
a numerically stable fashion. However, we will now show how to overcome this
difficulty.

With the representation of the contour given in the previous section, (3.7) becomes

Ir (ζ ) = − ω0

8πi

N∑
j=1

∫ 1

0

z(βj (s))zζ (βj (s))

(ζ − βj (s)
−1

)
β

′
j (s) ds

− ω0

8πi

N∑
j=1

∫ 1

0

(
ω̂ζ (ζ, βj (s))

ω̂(ζ, βj (s))
zζ (βj (s))z(βj (s))

)
β ′

j (s) ds

− ω0

8πi

N∑
j=1

∫ 1

0

(
ω̂ζ (ζ, β

−1

j (s))

ω̂(ζ, β
−1

j (s))
z(βj (s))zζ (βj (s))

)
β

′
j (s) ds, (3.13)

where N denotes the number of nodal points on the curve and where primes denote
differentiation with respect to s. Since, at a nodal point ζ = ζk , the integrals appearing
in Ir remain regular, Ir (ζk) can be computed using standard numerical integrators.

The computation of Is , however, requires greater care. The first step is to
desingularize this integral. It is a consequence of Cauchy’s theorem that, for ζ

outside the patch,

ω0

8πi

∮
∂Pζ

dα

α − ζ
= 0. (3.14)

Adding a multiple of this to Is does not change the latter so we can write

Is(ζ ) =
ω0

8πi

∮
∂Pζ

(
z(α)zζ (α) − z(ζ )zζ (ζ )

α − ζ

)
dα, (3.15)

which can now be expressed as

Is(ζ ) =
ω0

8πi

N∑
j=1

∫ 1

0

(
zζ (βj (s))z(βj (s)) − z(ζ )zζ (ζ )

βj (s) − ζ

)
β ′

j (s) ds. (3.16)

To compute Is(ζk) at a nodal point ζk we split the above sum as

Is(ζk) =
ω0

8πi

N∑
j=1

j �=k−1,k

∫ 1

0

(
zζ (βj (s))z(βj (s)) − z(ζk)zζ (ζk)

βj (s) − ζk

)
β ′

j (s) ds

+
ω0

8πi

∑
j=k−1,k

∫ 1

0

(
zζ (βj (s))z(βj (s)) − z(ζk)zζ (ζk)

βj (s) − ζk

)
β ′

j (s) ds. (3.17)

The first sum in (3.17) is the non-local contribution to the velocity field at ζk . Since
each term in the sum is regular, the non-local contribution can be computed in
the same way as Ir (ζk). The second sum corresponds to the local contribution to the
velocity at node ζk and can be approximated analytically as follows. Since the segment
βj (s) for j = k − 1, k of the contour lies in the vicinity of ζk , Taylor expansion of the
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numerator in the integrand about ζk yields, up to first order, for j = k − 1, k,

ω0

8πi

∫ 1

0

1

βj (s) − ζk

(
(βj (s) − ζk)z(ζ k)zζζ (ζk) + (βj (s) − ζ k))|zζ (ζk)|2 + · · ·

)
β ′

j (s) ds

=
ω0

8πi

[
z(ζ k)zζζ (ζk)

∫ 1

0

β ′
j (s) ds + |zζ (ζk)|2

∫ 1

0

βj (s) − ζ k

βj (s) − ζk

β ′
j (s) ds + · · ·

]
. (3.18)

Using the cubic representation (3.9) for βj (s) in (3.18), the contribution corresponding
to j = k in the second sum of (3.17) becomes

ω0

8πi
z(ζ k)zζζ (ζk)(ζk+1 − ζk)

∫ 1

0

(1 + iη′
k(s)) ds

+
ω0

8πi
|zζ (ζk)|2(ζ k+1 − ζ k)

∫ 1

0

(s − iηk(s))

(s + iηk(s))
(1 + iη′

k(s)) ds + · · · (3.19)

Since ηk(1) = αk + βk + γk =0, we have∫ 1

0

(1 + iη′
k(s)) ds = 1,

∫ 1

0

(s − iηk(s))

(s + iηk(s))
(1 + iη′

k(s)) ds = 1 − Ik, (3.20)

with

Ik = 2

∫ 1

0

log(1 + i[αk + βks + γks
2]) ds, (3.21)

and the integral can be approximated by

ω0

8πi
[z(ζ k)zζζ (ζk)(ζk+1 − ζk) + |zζ (ζk)|2(ζ k+1 − ζ k)(1 − Ik)]. (3.22)

Following similar steps for j = k − 1, we obtain the contribution

ω0

8πi
[z(ζ k)zζζ (ζk)(ζk − ζk−1) + |zζ (ζk)|2(ζ k − ζ k−1)(1 − Ik−1)], (3.23)

where

Ik−1 = 2

∫ 1

0

log(1 − iαk−1s + iγk−1s
2) ds. (3.24)

The integrals Ik−1 and Ik can be computed analytically (e.g. by a change of variable
and use of reduction formulae), but we omit the details.

3.3. Advection of the contour

The patch boundary ∂Pz position is updated by advecting each node {zk|k = 1, . . . , N}.
By (3.1), the evolution of zk satisfies the complex ordinary differential equation

dzk

dt
=

2i

zζ (ζk)

∂Ψ

∂ζ

∣∣∣∣
ζ

(ζk, ζk). (3.25)

Once the position zk(t) has been updated, the corresponding pre-image point ζk(t)
satisfying zk(t) = z(ζk(t)) can be found.

In the calculations to follow, we use an explicit fourth-order Runge–Kutta scheme
for the integration of the governing ordinary differential equations. The time step �t

used in this scheme has to be chosen appropriately, especially if, during the evolution,
the patch Pζ becomes close to the boundaries of the circles {Cj |j = 0, 1, . . . , M} in
Dζ . The time step �t used in the Runge–Kutta scheme varies in the range 0.01–0.05.
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Figure 2. Evolution of two initially circular patches, of area π, with centres separated by
distance 3, computed by a free-space contour dynamics code.

Numerical integration is carried out using Simpson’s rule. Any derivatives (of analytic
functions) are computed using two-sided finite differencing whenever they cannot be
obtained analytically.

Despite many points of similarity, it is important to note that our algorithm differs
from that described by Dritschel (1988a). First, we do not here perform any contour
surgery (see Dritschel 1988a for details). Secondly, the numerical evaluation of the
integrals just presented does not share the same high degree of accuracy as that
devised by Dritschel (1988a). For these two reasons, we do not expect our current
numerical implementation of the algorithm to be able to perform integrations over
very long times. However, it can still be used to ascertain the viability of our new
approach.

4. Numerical examples
4.1. Motion of a patch near a wall

Our first calculation provides a validation of the new method. We consider the motion
of a single vortex patch near an infinite straight wall. In this case, the same dynamical
evolution of the patch can be obtained by removing the wall and considering the
motion of two vortex patches in an unbounded fluid region, the second patch being
the reflection in the (now absent) wall of the first patch and having vorticity of
opposite sign. This allows us to directly compare a calculation performed using
the new algorithm with a two-vortex calculation performed using existing free-space
contour dynamics codes. Here, we employ the contour surgery code due to Dritschel
(1988a). Figure 2 shows the calculation up to t = 8 (where we have rescaled time
with respect to 2π) of an initially circular vortex patch at a height 1.5 above the
wall. For comparison, figure 3 shows the same calculation performed using the new
method. It gives excellent agreement with the calculation in figure 2. Figure 4 shows a
second calculation, performed using Dritschel’s contour surgery code, for an initially
circular vortex patch with centre at a height 1.05 above the wall. Now, the onset
of filamentation effects is apparent. Figure 5 shows the same calculation performed
using the new method and corroborates the fact that it is capable of capturing
such filamentation effects. With careful study, minor differences in the lengths of the
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Figure 3. Evolution of a single circular patch, of area π, at height 1.5 above an infinite
straight wall. This calculation uses the new method.
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Figure 4. Evolution of two initially circular patches, of area π, with centres separated by
distance 2.1, as computed by a (free-space) contour dynamics code.
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Figure 5. Evolution of a single circular patch, of area π, at height 1.05 above an infinite
straight wall. This calculation uses the new method.

more extended filaments can be observed. However, the velocity integrals in the new
formulation are not calculated to the same high degree of accuracy as in Dritschel’s
code, so such differences must be expected using our current implementation.

4.2. Motion of a patch near a gap in a wall

Further validation of our scheme is afforded by the problem of vortex-patch motion
near a gap in a wall. There has been much recent interest in such problems. Johnson &
McDonald (2005b) consider the case of a single gap and have computed the evolution
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Figure 6. Evolution of an initially circular vortex patch of radius 0.8, vorticity 2π, initially
(a) at (−4, 0.95) and (b) at (−4, 1.05). The corresponding evolution in the unit ζ -disk is shown
in (a)(ii) and (b)(ii). These figures compare well to figures 7 and 8 of Johnson & McDonald
(2005b).

of a point vortex (analytically) and of a vortex patch (numerically). Later, they
extended the investigation to the case of multiple gaps and gave explicit details of
the two-gap case (see Johnson & McDonald 2005c). An analytical treatment of the
motion of point vortices in the general multiple-gap case has been given by Crowdy &
Marshall (2006). They combine the generalized Kirchhoff–Routh theory described in
Crowdy & Marshall (2005a) with analytical forms for the conformal mappings taking
multiply connected circular pre-image domains Dζ to fluid regions involving barriers
with multiple gaps. The required conformal map in the single-gap case is

z(ζ ) =
Lζ

(1 + ζ 2)
. (4.1)

This takes the interior of the unit ζ -disk to the exterior of an infinite straight wall,
along the real axis, with a symmetric gap of width L centred at the origin. Figure 6
shows the simulation results. In figure 6(a)(i) the initial centroid location and patch
radius are the same as considered figure 7 of Johnson & McDonald (2005b). The
initial location (−4, 0.95) puts the patch below the critical separatrix trajectory for
a point vortex to pass through the gap and, indeed, the vortex patch also passes
through the gap. The evolution of this patch in the pre-image ζ -plane is also featured
in figure 6. This highlights the point made earlier on how much the area and perimeter
of the pre-image patch can vary during a typical simulation. Figure 6(b) is a second
simulation where the initial starting location of the patch is further from the wall (at
a distance of 1.05) than the critical-point vortex trajectory and the vortex patch leaps
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Figure 7. Motion of an initially circular vortex patch, of vorticity 2π with initial radius 0.5,
over topography. The conformal mapping here is provided by the SC Toolbox of Driscoll.
Times shown are t = 0.05, 10, 17.5, 23.

across the gap, just as a point vortex would. This figure compares well with figure 8
of Johnson & McDonald (2005b) and displays only minor differences in the lengths
of the filaments (which we again attribute to a cumulative effect associated with
differences in the accuracy of the velocity integral evaluations in the two simulations).
The corresponding evolution in the pre-image ζ -plane for this case is also shown.

4.3. Motion of a patch near topography

Equation (4.1) is a special case of a Schwarz–Christoffel map (see Ablowitz & Fokas
1995). A strength of our method is its immediate applicability, with only minor
modifications, to any region for which a conformal map from a circular pre-image
region is available. To show this, we have combined our generalized contour dynamics
algorithm with a Matlab code called the SC toolbox,† which computes the parameters
in a general Schwarz–Christoffel mapping from a unit ζ -disk to any target simply
connected polygonal region as described in Driscoll & Trefethen (2002). In figure 7,
the evolution of a vortex patch travelling past an infinite straight wall with two
polygonal protrusions is shown. By the final frame, a small filamentary thread of
vorticity is seen to develop, as might be expected given the high shear rates it
experiences owing to its proximity to the wall (cf. figure 5). In figure 7, we have also
superposed the trajectory of a point vortex of the same circulation (drawn dashed) to
highlight the fact that the vortex-patch trajectory follows it very closely despite the
large shape deformations of the patch induced by the presence of the wall.

4.4. Electron vortices in plasma traps

Mitchell, Wang & Rossi (2006) have studied the evolution of elliptical electron vortices
in Malmberg–Penning traps. Such traps are hollow conducting cylinders in which a
uniform magnetic field acts on clouds of electrons. Under the relevant approximations,
the motion of such electron clouds in these traps is governed by an equation that is
isomorphic to the two-dimensional Euler equations, the electron density playing the
analogous role to vorticity. Mitchell et al. (2006) have studied how the stability of

† T. Driscoll, SC Toolbox, www.math.udel.edu/driscoll/SC.
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Figure 8. Evolution of an elliptical vortex patch, of vorticity 2π, with a = 0.9 and a/b =9.
The trap is a circle with unit radius. Times shown are (a) t = 0.05, (b) 2.0, (c) 4.0, (d) 6.0.

elliptical electron vortices is affected both by the presence of the walls of the trap and
a ‘smoothed out’ vorticity profile at the vortex boundary (i.e. they do not model the
vortices as vortex patches with sharp edges).

Our method can perform numerical simulations of electron clouds, modelled as
patches with sharp edges, in traps of various cross-sections. Backhaus et al. (1988) and
Coppa et al. (2002) have also been concerned with a formulation of contour dynamics
in a trap of circular cross-section. Figure 8 shows the evolution of an elliptical
vortex patch with aspect ratio a/b = 9 computed using the new technique (note that
the conformal map here is just the identity map). The patch develops instability
and ultimately saturates into a configuration of two circular orbiting vortices. This
computation is in qualitative agreement with the experimental observations of Mitchell
et al. (2006).

To further illustrate the flexibility of our method, we present some results for the
case of a square trap. Again, we make use of the SC Toolbox to provide the required
conformal map from the unit ζ -disk to the square trap even though this map can
actually be found analytically in terms of elliptic functions (see Ablowitz & Fokas
1995).

Figures 9–11 show simulations of an initial elliptical vortex patch evolving in a
square trap with sides of unit length. The semi-axes of the initial elliptical patch are
denoted a and b. Its vorticity is taken to be 2π. The major semi-axis value of a = 0.4
is taken in all cases and the aspect ratio b/a gradually increased. Some interesting
effects are observed. All initial elliptical vortices are linearly unstable, if they existed
in free space, according to the stability calculations of Love (1983). Note that we
do not seed our calculations with any initial perturbation of a chosen type, as in the
circular trap simulations given in Mitchell et al. (2006); rather, it is a combination of
the interaction of the vortex with the walls and the accumulation of small numerical
inaccuracies which provide the seed for unstable modes to grow.

Figure 9 presents the case a/b = 5 and shows that the ellipse is unstable to the
formation of two near-symmetric filamentary threads of vorticity emanating from the
ends of the major axis of the ellipse. Since our numerical scheme does not incorporate
any contour surgery effects, we are forced to terminate the simulation at t = 8.3. On
the other hand, when a/b = 7 as in figure 11, the patch is unstable to the formation of
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Figure 9. Evolution of an elliptical vortex patch, of vorticity 2π, with a = 0.4 and a/b = 5.
The trap is square with sides of unit length. Times shown are (a) t = 0.05, (b) 2.5, (c) 5.0,
(d) 8.3.
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Figure 10. Evolution of an elliptical vortex patch, of vorticity 2π, with a = 0.4 and a/b = 6.
The trap is square with sides of unit length. Times shown are (a) t = 0.05, (b) 8.3, (c) 12.5,
(d) 14.0.

two well-defined and near-symmetrical vortex patches joined by a single filamentary
thread. The final state appears to be a stable configuration of two co-rotating vortices.
Figure 10 shows an intermediate case when a/b = 6. Figure 10(b) (which is reminiscent
of figure 11c) suggests that the fate of the vortex will be to disintegrate into two
co-rotating vortices as in figure 11; instead, however, the vortex develops into an
asymmetric state consisting of a single coherent vortex ejecting a single filamentary
thread.

4.5. Multiply connected domains

In all the examples given so far, the domains have been simply connected and
the Schottky–Klein prime function was merely ω(ζ, γ ) = (ζ − γ ). It is important to
demonstrate that our method applies to any finitely connected domain. The only
modification is that the Schottky–Klein prime function must change to incorporate
the topological differences associated with higher connected domains.
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Figure 11. Evolution of an elliptical vortex patch, of vorticity 2π, with a = 0.4 and a/b = 7.
The trap is square with sides of unit length. Times shown are (a) t =0.05, (b) 2.5, (c) 5,
(d) 8.25.
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Figure 12. Evolution of a vortex patch in a doubly connected domain. The trajectory of a
point vortex of equal circulation, calculated using the theory in Crowdy & Marshall (2005a),
is superposed for comparison.

The evaluation of the Schottky–Klein prime functions involves the truncation of
the infinite product (3.3). In practice, the products can be truncated in a natural way
by including all mappings up to a certain level (Crowdy & Marshall 2005a). The
computations which follow employ a level-three truncation (that is, all Möbius maps
up to level 3 are included in the product – see Crowdy & Marshall (2005a) for further
discussion). Experience shows that this can generally be expected to give 5–6 digits
of accuracy in the evaluation of the prime function.

In Crowdy & Marshall (2005a), the authors present a general Kirchhoff–Routh
theory applicable to the motion of point vortices in arbitrary multiply connected
circular domains. The method here can be used to study the motion of vortex patches
in the same class of domains. Figure 12 shows a typical calculation of a single
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Figure 13. Evolution of a vortex patch in a triply connected domain. The trajectory of a
point vortex of equal circulation, calculated using the theory in Crowdy & Marshall (2005a),
is superposed for comparison.

vortex patch in a doubly connected domain consisting of a circular chamber with
a single circular obstacle. For comparison, we have also superposed the trajectory
for a point vortex, computed using the theory in Crowdy & Marshall (2005a), of
equivalent circulation placed at the centroid of the initial patch. It is clear that the
point-vortex and vortex-patch trajectories are very close. Finally, figure 13 shows a
similar calculation when there are now two circular obstacles in the chamber so that
the domain is triply connected. It should be clear that calculations in domains of any
finite connectivity are similarly possible with no additional difficulty. For geometrically
interesting domains, conformal mappings from multiply connected circular pre-image
regions are required. For example, Crowdy & Marshall (2006) have given explicit
formulae (actually, in terms of the Schottky–Klein prime function) for such conformal
mappings to multiply connected slit domains and these can be used in combination
with the present algorithm to study the dynamics of vortex patches through gaps
in walls, a topic considered by Johnson & McDonald (2005c) with geophysical
applications in mind.

5. Discussion
This paper has shown that the problem of vortex-patch evolution in any multiply

connected domain has a contour dynamics formulation. By considering the evolution
of a vortex patch in a circular multiply connected pre-image domain and by making
use of conformal mappings from such canonical domains, a flexible numerical
algorithm has been devised. Now, changes in geometry and topology of the domain
simply involve changing the conformal mapping function and/or the Schottky–Klein
prime function appearing in the general formulation.

The numerical implementation we have devised so far is not optimal; it is a basic
code written simply to examine the viability of the proposed numerical scheme. Based
on these preliminary calculations, we believe it is worth developing an enhanced
algorithm. For example, the current algorithm does not perform any numerical
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contour surgery (Dritschel 1988a). It should also be possible to evaluate the contour
integrals (in the pre-image plane) giving the patch boundary velocity to a higher
degree of accuracy. Further, to evaluate the Schottky–Klein prime function, we have
here made use of an infinite product (3.3). For certain domains Dζ , this infinite
product is not convergent (or, even if convergent, it can converge very slowly).
Nevertheless, the prime function is still a well-defined function in any circular domain
Dζ . Indeed, Crowdy & Marshall (2007) have devised an efficient numerical method
for its evaluation. Since the latter algorithm works for broad classes of domains Dζ ,
it is sensible to incorporate its use to evaluate the prime function for the purposes
discussed in this paper.

A possible generalization of this work is to vortex-patch motion on the surface
of a sphere with impenetrable boundaries. The problem of point-vortex motion on
the surface of a sphere has been considered by Kidambi & Newton (2000) using
a method of images approach and reappraised by Crowdy (2006) who shows how
to apply conformal mapping theory to this problem. A contour surgery procedure
on a spherical shell has been given by Dritschel (1988b). By combining all these
ideas, the extension of the present algorithm to yield a flexible method of computing
vortex-patch motion on a spherical shell with boundaries is feasible.
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Prize in Mathematics, the Engineering and Physical Sciences Research Council of the
UK for an Advanced Research Fellowship and the European Science Foundation
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