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A conformal mapping approach to the problem of the motion of a single point vortex in a simply
connected region bounded by impenetrable walls on the surface of a sphere is presented. Several
illustrative examples are given, including those considered by previous authors using arguments
based on the method of images. A new example of the motion of a vortex around a straight barrier
along a great circle on the spherical surface is studied in detail. Finally, a theoretical connection with
a boundary value problem for a generalized Liouville-type quasilinear partial differential equation
is also made. © 2006 American Institute of Physics. [DOI: 10.1063/1.2183627]

I. INTRODUCTION

The study of point vortex motion is an important para-
digm in theoretical vortex dynamics. By concentrating vor-
ticity in a distribution of “points” with no spatial extent and
analyzing their interaction, important deductions on the dy-
namical behavior of the system can be made with, arguably,
a minimum of mathematical complexity. The recent mono-
graph by Newton' provides a valuable overview of the
N-vortex problem with emphasis on the case of the point
vortex model.

In comparison with the extensive literature on point vor-
tex motion in unbounded domains (see Ref. 2 for a compre-
hensive review), the study of point vortex motion in the pres-
ence of walls is modest. Newton' and Saffman’ include
discussions of vortex motion in the presence of walls. Clas-
sic approaches include the celebrated ‘“method of
images”—a rather special technique limited to cases where
the domain of interest has certain geometrical symmetries so
that an appropriate distribution of image vorticity can be
ascertained, essentially by inspection. This image vorticity is
placed in nonphysical regions of the plane in order to satisfy
the boundary conditions that the walls act as impenetrable
barriers for the flow. The most important mathematical tool,
in the case of planar flow regions, is the Hamiltonian ap-
proach associated with the names of Kirchhoff and Routh
(see, e.g., Lamb* for a summary of this work). They estab-
lished the result that the problem of N-vortex motion in any
bounded simply connected domain is a Hamiltonian dynami-
cal system. Moreover, it turns out that the Hamiltonian has
simple transformation properties when a given flow domain
of interest is mapped conformally to another. Much later,
Lin>° established that the same Hamiltonian structure sur-
vives in the case of a multiply connected planar region, an
important observation that has recently been brought to
implementational fruition by Crowdy and Marshall.”® The
latter authors have produced explicit formulas, up to
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conformal mapping, for the Hamiltonians in multiply con-
nected fluid regions of arbitrary finite connectivity. In com-
bination, all these results provide a versatile array of math-
ematical techniques for studying the motion of N point
vortices in bounded regions of the plane.

What about the motion of point vortices, in bounded
domains with impenetrable barriers, on the surface of a
sphere? Such paradigms are clearly relevant to planetary-
scale oceanographic flows in which oceanic eddies interact
with topography such as ridges and land masses or evolve in
closed basins. With such motivation in mind, Kidambi and
Newton’ have recently considered precisely this general
problem (this article also contains a detailed list of references
to the literature concerning point vortex motion on a sphere
without boundaries). The method in Ref. 9 relies on the use
of the classical method of images and, as in the planar case,
requires the flow domain to have certain symmetry proper-
ties. As just mentioned in the planar case, techniques of con-
formal mapping can be profitably employed in cases where
the method of images fails. Indeed, at the end of their article,
Kidambi and Newton’ point out the desirability of extending
the conformal mapping approach to the case of a spherical
shell. This article presents such a generalization. For simplic-
ity, we restrict attention to the case of single-vortex motion
in a simply connected region on the spherical shell.

Our modified formulation means that the simply con-
nected domains under consideration are no longer restricted
to have special symmetries. By way of illustration, we re-
trieve (and, in fact, slightly generalize) all the examples in-
volving simply connected fluid regions tackled in Ref. 9 us-
ing the method of images approach. In addition, we present a
new example consisting of the generalization to the surface
of a sphere of the recent investigation by Johnson and
McDonald'® of the motion of a vortex near a gap in a straight
wall. On both the plane and a spherical shell, the solution of
this problem is not amenable to the standard method of
images.

© 2006 American Institute of Physics
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Il. POINT VORTEX MOTION ON A SPHERE

Consider the motion of a single point vortex in some
bounded simply connected region Ds on the surface of the
sphere X. Without loss of generality, let the sphere have unit
radius. Let (60,¢) denote the usual polar and meridional
angles in spherical polar coordinates.

It is be assumed that the fluid motion in Ds is irrota-
tional except for the vorticity associated with the single point
vortex of strength «. At first sight, this assumption may seem
unusual in respect of point vortex motion on the surface of a
sphere since it is normally assumed that any point vortex on
a sphere is embedded in a sea of uniform vorticity covering
the whole spherical surface. But this is because it is also
normally assumed that the vortical motion is taking place on
the entire spherical surface; the sea of uniform vorticity is
added to ensure that the Gauss constraint (which says that
the global integral of the vorticity over the spherical surface
is zero) is always satisfied whenever a new delta-function
distribution of vorticity is added (or subtracted) at any point
on the surface. If the motion is confined to a bounded sub-
region of the spherical surface of a sphere, however, it is no
longer necessary to embed a point vortex in uniform vorticity
(unless this happens to be relevant to the flow problem being
considered).

The flow is incompressible so there exists a stream func-
tion (6, ). The instantaneous boundary value problem sat-
isfied by (0, ¢) is that it satisfies the partial differential
equation

Vig=0 (1)

everywhere in Dy except for a 5-function singularity at some
point corresponding to the point vortex. V% denotes the
Laplace-Beltrami operator on the sphere given explicitly, in
terms of 6 and ¢, as

1 af. d 1 &
—|sinb— |+ 55— (2)
sin 696 d0)  sin” 6 d¢

Vi=

It also satisfies the boundary condition that it is constant
(without loss of generality, in the simply connected case,
taken equal to zero) on the boundary of Dy, that is,

=0 on dDs, 3)

where dDy denotes the boundary of Dy. This ensures dDs is
a streamline. Now introduce the stereographic projection of
Dy onto a region D in a complex z plane of projection so that

z=cot(6/2)e'?. (4)

A schematic of this stereographic projection is given in Fig.
1 (see Crowdy and Cloke'" for more details). Note that as Ds
is always a bounded region, D can be unbounded if Dy in-
cludes the north pole. Let z, be the projection of the point
vortex. The stream function ¢/ 6, ¢) can now be rewritten as
a function of the new independent variables (z,7). Let this
function be zﬂ(Z) (2,7:24>24)- It can be shown'! that, in terms
of these variables, (1) assumes the form
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FIG. 1. Schematic of the stereographic projection of a region Dy on a
spherical surface to a region D in a complex z plane through the equator.

lﬁ(z

(1+ zZ)z =0. (5)
The key advantage of assuming that the point vortex is em-
bedded in an otherwise irrotational flow now comes into
play. It means that, when considered in the z plane of pro-
jection, the boundary value problem satisfied by the stream
function is conformally invariant under conformal transfor-
mations of the region D of the z plane. That is, if the stream
function can be found in some region of the z plane that is
conformally equivalent to D, then the solution in D has ef-
fectively also been found. This conformal invariance prop-
erty of the boundary value problem (1) and (3) is easily
verified once (5) is used.

To exploit this, the conformal mapping to D from some
simple region in a parametric { plane is introduced. Since the
details are different, two separate cases will be considered:
conformal mappings to the upper-half { plane and to the unit
{ disk.

A. The upper-half plane

First, introduce a one-to-one conformal mapping ¢
={(z) from the simply connected region D to the upper-half
plane in a parametric { plane. Let {=« correspond to the
point vortex of strength « at z=z, so that a={(z,). It is easy
to write the required stream function in terms of {(z), indeed,

{-«a Z(Z) Uz,)
{-a g’(z) )|

PNz, 7:20070) = — K log

(6)

This function has a logarithmic singularity at {=a corre-
sponding to the point vortex at z=z,. It is also equal to zero
on the real { axis, as is easily checked. Locally, near z=z,,

PN2,Z520:20) = — K 10g|(z = 2,){ (2,)| + K log|a - &
+ Oz =207 Za)

{'(z4)
(a—a)
+O(2 =207~ Za)- (7)

k log

=— klog|(z—z,)| -
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It should also be noted that ¢/? given in (6) satisfies the
reciprocity condition

P2 720070 = U(207032:2)- (8)

Now, the stream function ¢, for an isolated point vortex of
strength « at the projected point z, on a sphere without
boundaries is""!

(z-2)(Z-7,) ) ©)

K
(22522 =— < 10 ( -
Yp g (1+22(1 +z,7,)

2

where the normalization of this stream function has been
chosen so that, again, it satisfies a reciprocity condition of
the form

Pou(2. 75200 20) = Ypv(2002a32:2) - (10)

Locally, near z=z,, this has the form
- K —\2
pr(Z’Z;sza) =—-K 10g|Z - Za| + 5 10g(1 + Zaza)

+O(Z_sz_z_va)~ (11)

To determine the motion of the point vortex, it is required to

ascertain the function, which we shall call fp, satisfying the
condition that

P2 T320070) = Y2200 Z0) + 2T 200 7). (12)

Then, given 1;0, the evolution equation for z,, is

A

I J
= Luagze 2 (13)
2 9Zal (2,7,

dt

where we have used the relation (see, e.g., Crowdy and
Cloke'")

U—iV=- é(l + 202000z, (14)

where (U,V) are the Cartesian components of the velocity
field in the plane of projection. In the case of unbounded
motion on the sphere (i.e., when no boundaries are present),
the local condition (13) is the one ensuring that the point
vortex is in force-free motion (i.e., that there are no external
forces on the vortex) so, since it is a local condition, it must
also be the correct one to impose when boundaries are
present somewhere on the spherical shell. It is a simple mat-
ter to show that, provided 1;0 satisfies a reciprocity condition
of the form

2,752 70) = W20 Z0325) (15)

then the contours

A2 Ts Za T) = COMSE (16)

are the solutions of (13). But, by (8) and (10) and the defi-

nition (12) of 1,7;, it follows that the latter function satisfies
(15). Direct calculation, on use of (6), (9), and (12), yields
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(1 +2,20){"(z4)

a—a

(1 +2020){"(z4)

g(za/) - g(za)

where ' (z) =d{(z)/dz. In fact, it can be shown that the func-
tion on the left-hand side of (16) plays the role of the vortex
Hamiltonian for this problem.

It follows that the trajectories for single-vortex motion in
the bounded region of the stereographic z plane which maps
conformally to the upper-half { plane via the conformal map-
ping {(z) are given by the set of curves

(1 +2470) ¢ (20)
é’(za) - g(za)

'»[’(ZmZDAZa,Za) =—K log

; (17)

= const. (18)

B. The unit ¢ disk

The case where the conformal mapping is from D to the
unit ¢ disk is only slightly different. The required stream
function in terms of {(z) is

1 {0-a)
a(z)-at)

This function has a singularity at {=« corresponding to the
point vortex at z=z, and satisfies the condition that it van-
ishes on |{|=1, as is easily verified.

To determine the motion of the point vortex, we must

YN 2,7520:20) = — K log : (19)

ascertain the function fﬂ defined by the condition

PN2,732070) = Y275 200 Z0) + 2 T5200 Z0) - (20)

Direct calculation, on use of (19), (9), and (20), yields

S o kK (1+zaz_a)2§'(za)§’(za))
df(za’zowza’za) - ]Og( (C(ZQ)@— 1)2 ’ (21)

2
where ' (z)=d{(z)/dz. Tt follows that the trajectories of the
point vortex in this case are given by
(142,208 (2,)
{z)z0) — 1

= const. (22)

lll. EXAMPLES

As a check on our approach, in this section we first
retrieve the three examples considered in Kidambi and
Newton.” Then we present the new example of point vortex
motion around a barrier, along a great circle, on the spherical
surface.

A. A spherical cap

In example 1 of Ref. 9 the motion of a vortex in a spheri-
cal cap is considered. Suppose the cap corresponds, in the z
plane of projection, to the circular disk |z|<r,. The corre-
sponding conformal mapping to the upper-half ¢ plane is
then
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fTo—2%
Uz)= l( ) . (23)
ro+z

Let r=|z,|. On substitution into (18), and on use of the facts
that

—_— 2i(rs—1?) 2ir
(o) )= (@)= 3,
(r0+Za)(r0+Za) (Za+r0)2
(24)
the trajectories are found to be given by

(1+r%)?

—— 5 =const, 25

(r(z) -r?)? 25)

which is equivalent to the set of circles r=const.
Alternatively, the conformal mapping from the unit ¢
disk to the same domain is

Q) =rof (26)

so that {(z)=z/ry. On use of this in (22), the same condition
(25) is obtained.

B. A longitudinal wedge

In example 2 of Ref. 9 point vortex motion in a longitu-
dinal wedge is considered. There, the motion is assumed to
take place in a sector of the spherical surface bounded by the
longitudes 0 and 7/m, where m is a positive integer. The
projection onto the stereographic plane then consists of the
infinite planar wedge between two infinite rays emanating
from the origin. The conformal mapping from the z projec-
tion of such a wedge to the upper-half { plane is

{)=2". (27)
Let r=|z,|. Substitution into (18), and use of the fact that
£(z0) = LG = (e = premind)(pnemind — preind)
=2r2"(1 - cos(2md))
=477 sin’(md), (28)
yields the trajectories

1 +7%)?
rz(sT(r:L@ = const, (29)
which agree with those obtained by Kidambi and Newton.’
In fact, we have already generalized the case considered by
Kidambi and Newton® as the analysis here does not require
the wedge angle to be 7/m for some positive integer m.
Here, the wedge angle can be arbitrary and m can be an
arbitrary positive real number. The trajectories are still de-
scribed by (29).

C. A half-longitudinal wedge

In example 3 of Ref. 9, point vortex motion in a half-
longitudinal wedge is considered. There, the motion now
takes place in a half-sector (or spherical triangle) bounded by
the longitudes 0 and 7/m (where, again, m is restricted to be
a positive integer) and the equator. The conformal mapping
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from the z projection of such a wedge to the upper-half ¢
plane is

m\ 2
1+z ) (30)

§(z)=(1_zm

Let r=|z,|. On substitution into (18) and on use of the facts
that

Amz™ (7" + 1)

! 7)=— )
{'(2) e
31)
— AP -D@E -2
2)-{2)= .
g( ) g (Zm_ l)Z(Z—m_ 1)2
shows the trajectories to be given by
]+22 4m+]_22m 2
U+r) r cos(2md)) = const. (32)

(" = 1)** sin®(m )

This agrees with the result of Kidambi and Newton.’ Again,
(32) generalizes example 3 of Ref. 9 in that the derivation
here does not require m to be an integer.

D. Motion through a gap in a wall

Now that the theory has been divorced from a reliance
on the method of images, a wider range of examples can be
analyzed. A new example is now presented that extends, to
the surface of a sphere, the recent study of Johnson and
McDonald" on the motion of a single point vortex, in the
plane, approaching a single gap in an infinite straight wall.
They find that if the vortex starts off far from the gap at a
distance less than half the gap width from the wall then it
will penetrate the gap and travel back, along the other side of
the wall, in the direction it came. Otherwise, the vortex does
not penetrate the gap.

Suppose there exists an impenetrable wall around the
great circle corresponding to ¢=0, 7 except for a single gap,
symmetrical about the south pole, spanning the latitudes [
— 6y, 7] where 6, is some angle between 0 and 7 (of course,
if the gap is too large this problem is more properly thought
of as point vortex motion around a straight wall, perhaps
modelling a long extended island on the spherical surface).
In the z plane of projection the wall corresponds to the seg-
ments of the real axis

(=o0,= L] U [L,), (33)
where
L=cot(6,/2). (34)

It is necessary to find a conformal map from the region ex-
terior to this wall to the upper-half ¢ plane.

In this problem, it is more convenient to find the confor-
mal map from the unit ¢ disk to the region exterior to the
wall (33). To do so, consider the sequence of maps given by

1 L
§I(§)=5(§+ oh, z(§1)=€—1. (35)

The first of these is a degenerate Joukowski map and takes
the interior of the unit { disk to the entire {; plane exterior to
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FIG. 2. Vortex trajectories around a wall when 6,=m/2, L=1. The wall
spans half a great circle.

a slit, of length 2, between [—1,1]. The second map takes the
latter region to the region exterior to the slit region given in
(33). The second map is needed in order to have the gap
centered on the south pole at {=0 and the barrier centered at
the north pole. A composition of the maps yields

2L
Z+1

2({) = (36)

It is convenient to parametrize the trajectories using the pre-
image variable « in favor of z,. Substitution of (36) into (22)
yields, after some algebra, the trajectories to be given by
(1+ )1 +a?) +4L%aa
(1-a)(aa-1)

= const. (37)

Figures 2-5 show the vortex trajectories for four walls of
different lengths corresponding to L=1,1/ \/5 =0.7071,
0.6682, and 0.4142. For clarity, two different views of the
same sphere are given to the right and left of each figure.
L=1 corresponds to a wall spanning exactly half a great
circle. In this case, all trajectories are qualitatively the same
and are closed contours encircling the wall. The south pole is
an elliptic stationary point. As L decreases so that the length
of the wall increases, it is found that there is a critical value
at which the distribution of trajectories changes qualitatively.
The south pole becomes a hyperbolic stationary point and
spawns two elliptic stationary points that emerge symmetri-
cally to either side along the great circle at right angles to the
one corresponding to the wall, i.e., along latitudes ¢
==+1/2. Thus, two regions of closed trajectories form on
either side of the wall. These regions of enclosed streamlines
grow in size as the length of the wall increases (so that the
gap width decreases). As the gap width gets small (compared
to the radius of the sphere), locally, in the region near the gap
where the effect of the global curvature of the sphere is only
slight, the trajectories resemble those computed by Johnson
and McDonald' for point vortex motion near a gap in a wall
on the plane (see the right-most diagram in Fig. 5).

Phys. Fluids 18, 036602 (2006)

FIG. 4. Vortex trajectories when 6,=5m/8, L=0.6682. The south pole is
now a hyperbolic critical point.

The critical value of L at which the transition between
the two qualitatively different types of vortex behavior oc-
curs can be found analytically. By symmetry, the critical
separatrix trajectory goes through the south pole at {=0.
Thus, the critical trajectory is the algebraic curve in the pre-
image { plane given by

Pla,a@) = (1+ (1 + @)+ 8L%aa(l + &) (1 + &)
+16L% %@ - (1 - ad)(1 - (aa-1)>=0. (38)

By letting a=x+iy, and examining when the determinant of
the Hessian matrix

PPlox> P Ploxdy
; (39)
PPloxdy  FPldy
is zero, it is found that
L= L (40)
2

is the critical value at which the two qualitatively different
types of behavior cross over. Typical trajectories in this case
are shown in Fig. 3. For values of L just below this critical
value, two elliptic stationary points emerge to either side of
the south pole as shown in Fig. 4.

IV. CONNECTION WITH A LIOUVILLE-TYPE PARTIAL
DIFFERENTIAL EQUATION

The partial differential equation

V2¢=<§+§>¢=ce‘w, 41)
where ¢ and d are real constants, is known as the elliptic
Liouville equation.12 In planar vortex dynamics, it arises in
two quite unrelated contexts. First, the Hamiltonian govern-
ing the motion of a single vortex in a simply connected re-
gion of the plane bounded by impenetrable walls satisfies
this equation, together with the condition that it is infinite

FIG. 3. Vortex trajectories in the critical case L=1/ \"5:0.7071.

FIG. 5. Vortex trajectories when 6,=3m/4, L=0.4142. Near the gap, these
resemble the trajectories in the planar case (Ref. 10).
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everywhere on the boundary of the flow region. Gustafsson'?

(see also Ref. 14) and Richardson" independently discov-
ered this fact. Second, it also arises if one seeks steady so-
lutions of the incompressible Euler equations consisting of
an everywhere-smooth vorticity distribution where the vor-
ticity and stream function are exponentially related. This
leads to exact solutions of the steady Euler equations known
as Stuart vortices.'® Stuart'® used these solutions as a model
of the mixing layer. In this section we demonstrate the inter-
esting result that, when considering the analogues of both of
these vortex dynamics problems generalized to a spherical
surface, precisely the same circumstance arises: both prob-
lems again lead to the same partial differential equation. In-
stead of Liouville’s equation, however, the relevant partial
differential equation that arises is

V%l//Z ce® +2/d, (42)

where V% is the Laplace-Beltrami operator on the spherical
surface.
To see this, let

2, = cot(6,/2)e'a (43)

and define the operator

1 a (. d 1 &
—— ——(sinf,— |+ ——5. (44)
sin 6,90, a6,/ sin” 0, ¢

v
Vi =

a

On use of the fact!! that

Vi=(142,2) (43)

20

it is now possible to check directly that zAﬁ, as given in (17),
satisfies the quasilinear partial differential equation

V%(?/z - Ke_z@/" - K. (46)

Equation (46) is not the usual Liouville equation since the
operator on the left-hand side is not the usual planar Laplac-
ian whereas the right-hand side is not just an exponential
term. However, (46) is precisely the generalized quasilinear
partial differential equations posed by Crowdy17 as being
relevant for generalizing the planar Stuart vortex solutions to
the surface of a sphere. There, (46) was referred to as a
modified Liouville equation and it was considered in the gen-
eral form

V%lﬂZ ce®+ g, (47)

where ¢, d, and g are arbitrary real constants. It was shown in
Ref. 17 that the general solution to this partial differential
equation can be found in the special case when c is arbitrary
and when g and d satisfy the relation

2
g= 2 (48)

The general solution given in Ref. 17 when ¢d <0 is then

Phys. Fluids 18, 036602 (2006)

N20:74) = L log (49)

( 2f (@)F E)(1 + zaza>2>
y :

- Cd(f(za)f(z_a) + 1)2

where f(z) is an arbitrary analytic function in D except pos-
sibly for a finite number of simple pole singularities. It is
easy to show that another general solution in the case cd
>0, and for an arbitrary f(z) with the same properties as
previously given, is

1 21" (z)f (Z) (1 + 2,7,)°
m,za):_log< JREATCAITRERA ) 50
d cd(f(z)f(Za) = 1)*
In respect of (47) and (46) corresponds to the choice
2
c=—-k, d=-—, g=-kK (51)
K

which, significantly, satisfies (48). Indeed, (17) corresponds
to the particular choice

fz,) = (z,) (52)

in (50). As dD corresponds to |{(z)|=1, it follows that (17)

satisfies the boundary condition that LZ is infinite on the
boundary dD. This is precisely the same boundary condition
relevant in the planar case.” "

V. DISCUSSION

Formulas for the trajectories of a single vortex in simply
connected bounded regions on the surface of a sphere, where
the stereographic projections of the regions are obtained by
conformal mappings from both the upper-half plane and the
unit disk in a parametric { plane, have been presented. For-
mulas (18) and (22) embody the key new results of this
article.

The theory should be amenable to development in a
number of directions. It is of interest to rephrase our results
in terms of a generalization of the classical Kirchhoff-Routh
theoryl’3 for point vortex motion in bounded regions on the
surface of a sphere. In such a formulation, a Hamiltonian (or
Kirchhoff-Routh path function) is considered together with
its transformation properties under the effects of a conformal

mapping of the fluid domain (indeed, the function 12/ used in
this article is essentially the Hamiltonian in the single vortex
case). From this perspective, the recent work of Crowdy and
Marshall’ implementing the Kirchhoff-Routh theory in pla-
nar multiply connected fluid domains of arbitrary finite con-
nectivity should be generalizable to the surface of a sphere.
Note that Kidambi and Newton’ have presented an example
of point vortex motion in a doubly connected domain on the
surface of a sphere using their method-of-images approach.
These various matters are under investigation.

This work also points to the importance of quasilinear
partial differential equation (47) with g=2/d. The evidence
herein suggests that it is a natural analogue of the planar
Liouville equation when working on the surface of a sphere.
It would be interesting to see if it arises in any other applied
mathematical contexts.
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