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Thanks

Thanks for the invitation.
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Collaborators

The work is collaborated with Shing-Tung Yau, Feng Luo, Tony
Chan, Ronald Lok Ming Lui, Paul Thompson, Yalin Wang, Hong
Qin, Dimitris Samaras, Jie Gao, Arie Kaufman, and many other
mathematicians, computer scientists and medical doctors.
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Klein’s Program

Klein’s Erlangen Program

Different geometries study the invariants under different
transformation groups.

Geometries

Topology - homeomorphisms

Conformal Geometry - Conformal Transformations

Riemannian Geometry - Isometries

Differential Geometry - Rigid Motion
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Motivation

Conformal Geometric methods have merits:
1 Unification: All the surfaces in real life can be eventually

unified to one of three canonical shapes, the sphere, the
plane or the hyperbolic disk.

2 Dimension Reduction: All 3D geometric processing
problems are converted to 2D image processing problems.

3 Information Preservation: All the deformation preserves
the intrinsic geometric information.

4 General Transformation: Capable of modeling all the
mappings among surfaces.
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Motivation

Practical View

Conformal geometry offers the theoretic frameworks for

Shape Space

Mapping Space
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Reasons for Booming

Data Acquisition

3D scanning technology becomes mature, it is easier to obtain
surface data.
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System Layout
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3D Scanning Results
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3D Scanning Results
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System Layout
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Reasons for Booming

Our group has developed high speed 3D scanner, which can
capture dynamic surfaces 180 frames per second.

Computational Power

Computational power has been increased tremendously. With
the incentive in graphics, GPU becomes mature, which makes
numerical methods for solving PDE’s much easier.
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Fundamental Problems

1 Given a Riemannian metric on a surface with an arbitrary
topology, determine the corresponding conformal structure.

2 Compute the complete conformal invariants (conformal
modules), which are the coordinates of the surface in the
Teichmuller shape space.

3 Fix the conformal structure, find the simplest Riemannian
metric among all possible Riemannian metrics

4 Given desired Gaussian curvature, compute the
corresponding Riemannian metric.

5 Given the distortion between two conformal structures,
compute the quasi-conformal mapping.

6 Compute the extremal quasi-conformal maps.
7 Conformal welding, glue surfaces with various conformal

modules, compute the conformal module of the glued
surface.
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Complete Tools

Computational Conformal Geometry Library

1 Compute conformal mappings for surfaces with arbitrary
topologies

2 Compute conformal modules for surfaces with arbitrary
topologies

3 Compute Riemannian metrics with prescribed curvatures
4 Compute quasi-conformal mappings by solving Beltrami

equation
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Books

The theory, algorithms and sample code can be found in the
following books.

You can find them in the book store.
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Source Code Library

Please email me gu@cs.sunysb.edu for updated code library
on computational conformal geometry.
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Computational Method - Harmonic Mapping
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Spherical harmonic map
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Harmonic Map

Let (M,g) and (N,h) be Riemannian manifolds, u : M → N is a
C1 mapping.

ds2
M = ∑gαβ dxαdxβ

,ds2
N = ∑hij(u(x))du idu j

.

The pull back metric of h induced by u is u∗(ds2
N) is a

symmetric bilinear form

u∗(dS2
N) = ∑

α ,β
(∑

i ,j

hij(u(x))
∂u i

∂xα
∂u j

∂xβ )dxαdxβ
.

The energy density of mapping u is defined as

|du|2 = ∑
i ,j ,α ,β

gαβ (x)hij(u(x))
∂u i

∂xα
∂u j

∂xβ .
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Energy of the mapping

Equivalently, choose an orthogonal frame field under u∗(ds2
N),

each basis vector field is of unit length under g, the dual
1-forms are {ω1,ω2, · · · ,ωn}, such that

u∗(ds2
N) =

n

∑
α=1

λα(ωα)2
.

The the energy density of the mapping u is given by

|du|2 =
n

∑
α=1

λα .
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Harmonic Energy and Harmonic Mapping

Definition (Harmonic Energy)

The harmonic energy functional E(u) is defined as

E(u) =

∫

M
|du|2dvM ,

where dvM = (detg)
1
2 dx is the volume element of M.

Definition (Harmonic Mapping)

In the space of mappings, the critical points of E(u) are called
harmonic mappings.
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Harmonic Energy Conformal Invariant

Suppose u is a mapping from a surface (S,g) to (N,h).
Suppose g̃ = e2λ g is another metric of S, conformal to g, then

|d̃u|2 = e−2λ |du|2,
√

detg̃ = e2λ
√

detg,

Then g̃ = g. Harmonic energy is invariant under conformal
metric transformation.

Theorem

Harmonic energy only depends on the conformal structure of
the surface, independent of the choice of Riemannian metric.
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Harmonic Mapping

Suppose N is embedded in R
3, u : S → N is a harmonic

mapping, then
∆guTuN ≡ 0.

where ∆gu = (∆gu1,∆gu2,∆gu3). Namely, ∆gu is orthogonal to
the tangent plane at the target space.
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Heat Flow method

Definition (Heat flow)

Let u : S → N ⊂ R
3, the heat flow is given by

du(x , t)
dt

= −(∆gu)Tu(x)N

The heat flow method will deform a mapping to the harmonic
mapping under special normalization conditions.
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Heat Flow method

Theorem

Harmonic mapping from a genus zero closed surface to the unit
sphere must be a conformal mapping.

Proof.

Let u : S → S
2. Choose isothermal coordinates of both

surfaces, define

φ(z) = 〈∂u
∂z

,
∂u
∂z

〉

then

φ(z) =
1
4
(|∂u

∂x
|2 −|∂u

∂y
|2 −〈∂u

∂x
,

∂u
∂y

〉).

if φ(z) = 0, then the mapping is conformal.
On the other hand, ∂φ(z)

∂ z̄ = 0, then φ(z) is holomorphic.
φ(z)dz2 is globally defined, the so-called Hopf differential.
Sphere has no non-zero holomorphic quadratic differentials.
therefore φ(z) = 0. David Gu Conformal Geometry



Möbius transformation

Theorem

The conformal automorphism from a sphere to itself must be a
Möbius transformation

z → az +b
cz +d

,ad −bc = 1,a,b,c,d ∈ C.
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Rado’s theorem

Theorem (Rado)

Let Ω ⊂ R
2 is a convex domain with smooth boundary. For any

homeomorphism φ : S1 → ∂Ω, there exists a unique harmonic
mapping u : D → Ω, such that u|∂ D = φ , furthermore, u is a
diffeomorphism.
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Discrete Approximation

We use piecewise linear triangle mesh to approximate the
original surface. suppose u : M → R the harmonic energy is
given by

E(u) =
1
2 ∑

[vi ,vj ]∈M

wij(f (vi )− f (vj))
2
.

The discrete Laplace-Beltrami operator is given by

∆f (vi) = ∑
j

wij(f (vj )− f (vi)).

where wij is the cotangent formula.
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Harmonic Map Between Surfaces

Suppose a map w : (M,σ |dz|2) → (N,ρ |dw |2) is given, the
energy density is given by

e(w ;σ ,ρ) =
ρ(w(z))

σ(z)

(

|wz |2 + |wz̄ |2
)

Harmonic energy is given

E(w ;σ ,ρ) =
∫

e(w ;σ ,ρ)
1
2i

σdz ∧dz̄
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Harmonic Map Between Surfaces

The Euler-Lagrange equation is

wzz̄ +(logρ)wwzwz̄ = 0,

the heat flow is given by

∂w
∂ t

= −wzz̄ − (logρ)wwzwz̄ .
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Harmonic Map Between Surfaces

Theorem

Suppose a degree one harmonic map
w : (M,σ |dz|2) → (N,ρ |dw |2) is given, the curvature on the
target is negative everywhere, then w is a diffeomorphism.
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Spherical harmonic map
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Spherical harmonic map
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Spherical harmonic map
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Computational Method - Holomorphic Form
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Hodge Theory

Harmonic 1-form

Each cohomologous class has a unique harmonic 1-form,
which represents a vortex free, source-sink free flow field.

Theorem (Hodge)

All the harmonic 1-forms form a group, which is isomorphic to
H1(M).

Theorem (Hodge Decomposition)

Ωk (M) = Imgdk−1⊕ Imgδ k+1⊕Hk
∆(M).
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Compute Harmonic 1-forms

Harmonic 1-form

Let ω be a closed 1-form. Compute a function f ∈ C0(M,R),
such that

δ 1(ω +df ) = 0,

then ω +df is the unique harmonic 1-form, cohomologous to ω .

Harmonic 1-form Basis
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Compute Harmonic 1-forms

Harmonic 1-form

Let ω be a closed 1-form. Compute a function f : V → R, such
that

∑
j

wij(ω +df )([vi ,vj ]) = 0,∀vi ∈ V .

Then ω +df is the unique harmonic 1-form, cohomologous to
ω .

Harmonic 1-form Basis
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Hodge Star Operator

Hodge Star Operator

Let (S,g) be a metric surface, {e1,e2} be an orthonormal frame
field, { ∂

∂u ,
∂

∂v } be the base vector fields, {du,dv} be the dual
differential 1-form fields.

∗du = dv ,
∗dv = −du.

Conjugate harmonic 1-forms ω +
√
−1∗ω
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Hodge Star Operator

Hodge Star Operator

If ω is a harmonic 1-form, so is ∗ω . Suppose {ω1,ω2, · · · ,ω2g} is
the set basis of harmonic 1-forms, then ∗ω = ∑k λkωk . Locally,
on each triangle ∗(adx +bdy) = ady −bdx . Solve linear system

∫

M
ωi ∧ ∗ω = ∑

k

λk

∫

M
ωi ∧ωk , i = 1,2, · · · ,2g.

to solve λk ’s, where ∗ω on the left hand side is locally evaluated.

Conjugate harmonic 1-forms ω +
√
−1∗ω
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Holomorphic 1-form

Holomorphic 1-form Basis
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Topological Quadrilateral
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Topological Quadrilateral

p1 p2

p3p4

Figure: Topological quadrilateral.
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Topological Quadrilateral

Definition (Topological Quadrilateral)

Suppose S is a surface of genus zero with a single boundary,
and four marked boundary points {p1,p2,p3,p4} sorted
counter-clock-wisely. Then S is called a topological
quadrilateral, and denoted as Q(p1,p2,p3,p4).

Theorem

Suppose Q(p1,p2,p3,p4) is a topological quadrilateral with a
Riemannian metric g, then there exists a unique conformal map
φ : S → C, such that φ maps Q to a rectangle, φ(p1) = 0,
φ(p2) = 1. The height of the image rectangle is the conformal
module of the surface.
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Topological Quadrilateral

Assume the boundary of Q consists of four segments
∂Q = γ1 + γ2 + γ3 + γ4, such that

∂γ1 = p2 −p1,∂γ2 = p3 −p2,∂γ3 = p4 −p3,γ4 = p1 −p4.

We compute two harmonic functions f1, f2 → R, such that















∆f1 = 0
f1|γ1 = 0
f1|γ3 = 1
∂ f1
∂n |γ2∪γ4 = 0















∆f2 = 0
f2|γ2 = 0
f2|γ4 = 1
∂ f2
∂n |γ1∪γ3 = 0
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Topological Quadrilateral

The df1 and df2 are two exact harmonic 1-forms. We need to
find a scalar λ , such that ∗df1 = λdf2, this can be achieved by
solving the following equation,

∫

S
df1 ∧ ∗df2 = λ

∫

S
df1 ∧df2.

Then the desired holomorphic 1-form ω = df1 + iλdf2. The
conformal mapping is given by

φ(p) =
∫ p

q
ω ,

where q is the base point, the path from q to p is arbitrarily
chosen.
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Topological Annulus
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Topological Annulus

Figure: Topological annulus.
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Topological Annulus

Definition (Topological Annulus)

Suppose S is a surface of genus zero with two boundaries, the
S is called a topological annulus.

Theorem

Suppose S is a topological annulus with a Riemannian metric
g, the boundary of S are two loops ∂S = γ1 − γ2, then there
exists a conformal mapping φ : S → C, which maps S to the
canonical annulus, φ(γ1) is the unit circle, φ(γ2) is another
concentric circle with radius γ . Then − logγ is the conformal
module of S. The mapping φ is unique up to a planar rotation.
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Topological Annulus

First, we compute a harmonic function f : S → R, such that






f |γ1 = 0
f |γ2 = 1
∆f = 0

Then df is an exact harmonic 1-form. Then we compute a
harmonic 1-form τ , such that

∫

γ1
τ = 1.
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Topological Annulus

Then we compute a constant λ , such that ∗df = λτ , by solving
the following equation,

∫

S
df ∧ ∗df = λ

∫

S
df ∧ τ .

Then ω = df + iλτ is a holomorphic 1-form. Let Img(
∫

γ1
ω) = k .

The conformal mapping is given by

φ(p) = exp
2π
k

∫ p
q ω

.
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Topological Annulus

γ0

γ1 γ2

γ0

γ1 γ2

Figure: Topological annulus.
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Riemann Mapping
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Conformal Module

Simply Connected Domains
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Topological Disk

Definition (Topological Disk)

Suppose S is a surface of genus zero with one boundary, the S
is called a topological disk.

Theorem

Suppose S is a topological disk with a Riemannian metric g,
then there exists a conformal mapping φ : S → C, which maps
S to the canonical disk. The mapping φ is unique up to a
Möbius transformation,

z → eiθ z −z0

1− z̄0z
.
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Topological Disk

Punch a small hole in the disk, then use the algorithm for
topological annulus to compute the conformal mapping. The
punched hole will be mapped to the center.
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Multiply connected domains
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Multiply-Connected Annulus

Definition (Multiply-Connected Annulus)

Suppose S is a surface of genus zero with multiple boundaries,
then S is called a multiply connected annulus.

Theorem

Suppose S is a multiply connected annulus with a Riemannian
metric g, then there exists a conformal mapping φ : S → C,
which maps S to the unit disk with circular holes. The radii and
the centers of the inner circles are the conformal module of S.
Such kind of conformal mapping are unique up to Möbius
transformations.
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Conformal Slit Mapping

Figure: Harmonic forms and holomorphic forms.
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Conformal Slit Mapping

Slit Mapping

Suppose there are n +1 boundary
components{γ0,γ1,γ2, · · · ,γn}. {ω1,ω2, · · · ,ωn} are the
holomorphic 1-form basis. Choose two boundary components,
γ0,γ1, solve linear equation ω = ∑n

k=1 λk ωk ,

img(

∫

γ0

ω) = 2π, img(

∫

γ1

ω) = −2π, img(

∫

γk

ω) = 0,2 ≤ k ≤ n.

Then the mapping is given by

p → exp
∫ p

q
ω ,

where q is the base point on the surface.
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Conformal Circular Slit Mapping

Figure: Conformal circular slit mapping.
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Hole Filling

Adding sample points in the center hole, use Delaunay
triangulation to fill in with boundary constraints.

Figure: Fill interior holes.
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Koebe’s Iteration - I

Figure: Koebe’s method for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - II

Figure: Koebe’s method for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - III

Figure: Koebe’s method for computing conformal maps for multiply
connected domains.
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Convergence Analysis

Theorem (Gu and Luo 2009)

Suppose genus zero surface has n boundaries, then there
exists constants C1 > 0 and 0 < C2 < 1, for step k, for all z ∈ C,

|fk ◦ f−1(z)−z| < C1C
2[ k

n ]

2 ,

where f is the desired conformal mapping.
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Topological Torus
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Topological torus

Figure: Genus one closed surface.
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Topological Torus

1 We compute a basis for the fundamental group π1(S),
{γ1,γ2}.

2 Compute the holomorophic 1-form basis ω1,ω2, such that
∫

γi
ωj = δij .

3 Slice the surface along γ1,γ2 to get a fundamental domain
S̃,

4 The conformal mapping φ : S̃ → C is given by

φ(p) =
∫ p

q
ω1,

where q is the base point, the path from q to p in S̃ can be
arbitrarily chosen.
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Topological Torus

Suppose a+ ib =
∫

γ2
ω1, then a+ ib is the conformal module of

the torus. The deck transformation group generators are

T1(z) = z +1,T2(z) = z +a+ ib.

By using all deck transformations to translate φ(S̃), we can
conformally map the universal covering space of S onto the
whole complex plane C, each fundamental domain is a
parallelogram.
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Conformal Mapping

Definition (Conformal Mapping)

Suppose (S1,g1) and (S2,g2) are two surfaces with
Riemannian metrics. A conformal mapping φ : S1 → S2 is a
diffeomorphism, such that

φ∗g2 = e2λ g1.
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Conformal Mapping

Properties

Conformal mappings preserve infinitesimal circles, and
preserve angles.
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Uniformization

Theorem (Poincar é Uniformization Theorem)

Let (Σ,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric g̃ = e2λ g conformal to g which has
constant Gauss curvature.

Spherical Euclidean Hyperbolic
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Uniformization

Theorem (Poincar é Uniformization Theorem)

Let (Σ,g) be a compact 2-dimensional Riemannian manifold
with finite number of boundary components. Then there is a
metric g̃ conformal to g which has constant Gauss curvature,
and constant geodesic curvature.
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Yamabe Problem

David Gu Conformal Geometry



Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface M with a
Riemannian metric g, a
local coordinate system
(u,v) is an isothermal
coordinate system, if

g = e2λ(u,v)(du2 +dv2).
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Gaussian Curvature

Gaussian Curvature

Suppose ḡ = e2λ g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K = −∆gλ = − 1
e2λ ∆λ ,

where

∆ =
∂ 2

∂u2 +
∂ 2

∂v2
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Conformal Metric Deformation

Definition

Suppose M is a surface with a
Riemannian metric,

g =

(

g11 g12

g21 g22

)

Suppose λ : Σ → R is a function
defined on the surface, then
e2λ g is also a Riemannian
metric on Σ and called a
conformal metric. λ is called
the conformal factor.

g → e2λ g

Conformal metric deformation.

Angles are invariant measured
by conformal metrics.
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Curvature and Metric Relations

Yamabi Equation

Suppose ḡ = e2λ g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K̄ = e−2λ(−∆gλ +K ),

geodesic curvature on the boundary

k̄g = e−λ (−∂nλ +kg).
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Surface Ricci Flow
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Surface Ricci Flow

Key Idea

K = −∆gλ ,

Roughly speaking,
dK
dt

= −∆g
dλ
dt

Let dλ
dt = −K ,

dK
dt

= ∆gK +2K 2

Heat equation!
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Surface Ricci Flow

Definition (Hamilton’s Surface Ricci Flow)

A closed surface with a Riemannian metric g, the Ricci flow on
it is defined as

dgij

dt
= −2Kgij .

If the total area of the surface is preserved during the flow, the
Ricci flow will converge to a metric such that the Gaussian
curvature is constant every where.
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Ricci Flow

Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K̄ ) every where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K̄ ) every where.
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Summary

Surface Ricci Flow

Conformal metric deformation

g → e2ug

Curvature Change - heat diffusion

dK
dt

= ∆gK +2K 2

Ricci flow
du
dt

= K̄ −K .
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Discrete Surface Ricci Flow
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.

Isometric gluing of triangles in E
2.

Isometric gluing of triangles in H
2,S2.
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.

Isometric gluing of triangles in E
2.

Isometric gluing of triangles in H
2,S2.
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.

Isometric gluing of triangles in E
2.

Isometric gluing of triangles in H
2,S2.
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Discrete Generalization

Concepts

1 Discrete Riemannian Metric
2 Discrete Curvature
3 Discrete Conformal Metric Deformation
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Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on
the vertices, l : E = {all edges}→ R

+, satisfies triangular
inequality.

A mesh has infinite metrics.

David Gu Conformal Geometry



Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} → R
1.

K (v) = 2π −∑
i

αi ,v 6∈ ∂M;K (v) = π −∑
i

αi ,v ∈ ∂M

Theorem (Discrete Gauss-Bonnet theorem)

∑
v 6∈∂M

K (v)+ ∑
v∈∂M

K (v) = 2πχ(M).

α1 α2
α3

v α1
α2

v
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Discrete Metrics Determines the Curvatures

vi vj

vk

li
lj

lk

θi

θk

θj

vi vj

vk

vi vj

vk

lili

lk
lk

ljlj

θi θi

θk θk

θjθj

R2 H2
S2

cosine laws

cos li =
cosθi +cosθj cosθk

sinθj sinθk
(1)

cosh li =
coshθi +coshθj coshθk

sinhθj sinhθk
(2)

1 =
cosθi +cosθj cosθk

sinθj sinθk
(3)
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Discrete Conformal Metric Deformation

Conformal maps Properties

transform infinitesimal circles to infinitesimal circles.

preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation

Replace infinitesimal circles by circles with finite radii.

David Gu Conformal Geometry



Discrete Conformal Metric Deformation vs CP
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Circle Packing Metric

CP Metric

We associate each vertex vi

with a circle with radius γi . On
edge eij , the two circles
intersect at the angle of Φij .
The edge lengths are

l2ij = γ2
i + γ2

j +2γiγj cosΦij

CP Metric (Σ,Γ,Φ), Σ
triangulation,

Γ = {γi |∀vi},Φ = {φij |∀eij}

v1

v2 v3

e12 e23

e31

r1

r2

r3φ12

φ23

φ31
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Discrete Conformal Factor

Conformal Factor

Defined on each vertex u : V → R,

ui =







logγi R
2

logtanh γi
2 H

2

logtan γi
2 S

2

Properties

Symmetry
∂Ki

∂uj
=

∂Kj

∂ui

Discrete Laplace Equation

dK = ∆du,

∆ is a discrete Lapalce-Beltrami operator.
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Unified Framework of Discrete Curvature Flow

Analogy

Curvature flow
du
dt

= K̄ −K ,

Energy

E(u) =

∫

∑
i

(K̄i −Ki)dui ,

Hessian of E denoted as ∆,

dK = ∆du.
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Criteria for Discretization

Key Points

Convexity of the energy E(u)

Convexity of the metric space (u-space)

Admissible curvature space (K-space)

Preserving or reflecting richer structures

Conformality
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Hyperbolic Ricci Flow
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Hyperbolic Yamabe Flow

a1

b1

a2

b2

a1

b1

a
−1

1

b
−1

1

a2

b2

a
−1

2

b
−1

2
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Thurston’s Circle Packing Metric

CP Metric

We associate each vertex vi

with a circle with radius γi . On
edge eij , the two circles
intersect at the angle of Φij .
The edge lengths are

l2ij = γ2
i + γ2

j +2γiγjηij

CP Metric (Σ,Γ,η), Σ
triangulation,

Γ = {γi |∀vi},η = {ηij < 1|∀eij}

vi vj

vk
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Cj

Ck

C0

o

dij dji

lij

ℎk

wk

wi

wj

djk

dkj

dik

dki

ℎi
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Tangential Circle Packing Metric

Tangential CP Metric

l2ij = γ2
i + γ2

j +2γiγj ,

equivalently

ηij ≡ 1. vi vj

vk

wk

wi
wj

dij dji

djk

dkjdki

dik

o

ℎk

ℎi

ℎj
ri rj

rk

Ci C

Ck
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Inversive Distance Circle Packing Metric

Tangential CP Metric

l2ij = γ2
i + γ2

j +2ηijγiγj ,

equivalently

ηij > 1. vi vj

vk

Ci

C

Ck

C0

o

dij dji

lij

ℎk

wk

wi

wj

djk

dkj

dik
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Yamabe Flow

Yamabe Flow

l2ij = ηijγiγj ,

vi
v

vk

C0

o

dij dji

dkj

djk

dki

dik

wk

wiwj

ℎk

ℎj ℎi
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Imaginary Radius Circle Packing Metric

Imaginary Radius Circle
Packing Metric

l2ij = −γ2
i − γ2

j +2ηijγiγj ,

vi vj

vk

o
C

ri
rj

rk

wk

wiwj

dij dji

djk

dkjdki

dki
ℎj
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Mixed Type

Mixed Circle Packing

l2ij = αiγ2
i + αjγ2

j +2ηijγiγj ,

(αi ,αj ,αk ) = (+1,−1,0) vi vj

vk

lk

li

lj

o

dij dji

djk

dkj

dik

dki

hj
hi

hk
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Applications
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Medical Imaging Application

Medical Imaging

Quantitatively measure and analyze the surface shapes, to
detect potential abnormality and illness.

Shape reconstruction from medical images.

Compute the geometric features and analyze shapes.

Shape registration, matching, comparison.

Shape retrieval.
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Conformal Brain Mapping

Brain Cortex Surface

Conformal Brain Mapping for registration, matching,
comparison.
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Conformal Brain Mapping

Using conformal module to analyze shape abnormalities.

Brain Cortex Surface
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Automatic sulcal landmark Tracking

With the conformal structure, PDE on Riemann surfaces
can be easily solved.
Chan-Vese segmentation model is generalized to Riemann
surfaces to detect sulcal landmarks on the cortical
surfaces automatically
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Abnormality detection on brain surfaces

The Beltrami coefficient of the deformation map detects the
abnormal deformation on the brain.
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Abnormality detection on brain surfaces

The brain is undergoing gyri thickening (commonly observed in
Williams Syndrome) The Beltrami index can effectively measure
the gyrification pattern of the brain surface for disease analysis.
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Alzheimer Study
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Alzheimer Study
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Virtual Colonoscopy

Colon cancer is the 4th killer for American males. Virtual
colonosocpy aims at finding polyps, the precursor of cancers.
Conformal flattening will unfold the whole surface.
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Colon Flattening
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Virtual Colonoscopy

Supine and prone registration. The colon surfaces are scanned
twice with different postures, the deformation is not conformal.
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Virtual Colonoscopy

Supine and prone registration. The colon surfaces are scanned
twice with different postures, the deformation is not conformal.
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Colon Registration
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Computer Vision Application

Vision

Compute the geometric features and analyze shapes.

Shape registration, matching, comparison.

Tracking.
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Surface Matching

Isometric deformation is conformal. The mask is bent without
stretching.
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Surface Matching

Facial expression change is not-conformal.
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Surface Matching

3D surface matching is converted to image matching by using
conformal mappings.

f

f̄

φ1 φ2
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Face Surfaces with Different Expressions are Matched
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Face Surfaces with Different Expressions are Matched
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Face Expression Tracking
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Face Expression Tracking
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Surface Registration
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2D Shape Space-Conformal Welding

{2D Contours}∼=
{

Diffeomorphism on S1
}

∪{Conformal Module}
{Mobius Transformation}
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Computer Graphics Application

Graphics

Surface Parameterization, texture mapping

Texture synthesis, transfer

Vector field design

Shape space and retrieval.

David Gu Conformal Geometry



Surface Parameterization

Map the surfaces onto canonical parameter domains
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Surface Parameterization

Applied for texture mapping.
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n-Rosy Field Design

Design vector fields on surfaces with prescribed singularity
positions and indices.
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n-Rosy Field Design

Convert the surface to knot structure using smooth vector fields.
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Texture Transfer

Transfer the texture between high genus surfaces.
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Polycube Map

Compute polycube maps for high genus surfaces.
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Normal Map
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Normal Map
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Normal Map
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Normal Map
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Geometric Modeling Application: Manifold Spline

Manifold Spline

Convert scanned polygonal surfaces to smooth spline
surfaces.

Conventional spline scheme is based on affine geometry.
This requires us to define affine geometry on arbitrary
surfaces.

This can be achieved by designing a metric, which is flat
everywhere except at several singularities (extraordinary
points).

The position and indices of extraordinary points can be
fully controlled.
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Manifold Spline

Extraordinary Points

Fully control the number, the index and the position of
extraordinary points.

For surfaces with boundaries, splines without extraordinary
point can be constructed.

For closed surfaces, splines with only one singularity can
be constructed.
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Manifold Spline

ua ub

fa fb

fab

faua fbub

F

M

cafa cbfb

Z
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Manifold Spline

Converting a polygonal mesh to TSplines with multiple
resolutions.
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Manifold Spline

Converting scanned data to spline surfaces.
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Manifold Spline

Converting scanned data to spline surfaces, the control points,
knot structure are shown.
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Manifold Spline

Converting scanned data to spline surfaces, the control points,
knot structure are shown.
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Manifold Spline

Polygonal mesh to spline, control net and the knot structure.
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Manifold Spline
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Manifold Spline

volumetric spline.
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Visualization
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Wireless Sensor Network Application

Wireless Sensor Network

Detecting global topology.

Routing protocol.

Load balancing.

Isometric embedding.
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Greedy Routing

Given sensors on the ground, because of the concavity of the
boundaries, greedy routing doesn’t work.
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Greedy Routing

Map the network to a circle domain, all boundaries are circles,
greedy routing works.
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Load Balancing

Schoktty Group - Circular Reflection
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Graph Theory

Optimal Planar Graph Embedding.
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Graph Embedding

Thurston-Andreev Theorem

A planar graph can be embedded on the unit sphere, such that
the face circles are orthogonal to vertex circles; the circles at
the vertices of an edge are tangent to each other. Such kind of
embedding differ by a Möbius transformation.
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Computational Topology Application

Canonical Homotopy Class Representative

Under hyperbolic metric, each homotopy class has a unique
geodesic, which is the representative of the homotopy class.

Γ

γ

γ

Γ
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Shortest Word Problem

Shortest word Problem (NP Hard):

a1

b1

a2

b2

a3

b3




γ = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 = (a3b3a−1
3 b−1

3 )−1
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Loop Lifting
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Loop Lifting
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Hyperbolic Ricci Flow
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Hyperbolic Yamabe Flow

Lifting a loop from base surface to the universal covering space.

a1

b1

a2

b2

a1

b1

a
−1

1

b
−1

1

a2

b2

a
−1

2

b
−1

2
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Birkoff Curve Shorting

Birkoff curve shortening deforms a loop to a geodesic.

v0 v1

v2

v3

v4
v5

v6

v7

w0

w1

w2

w3

w4

w5

w6

w7

v
′

0 v
′

1

v
′

2

v
′

3

v
′

4
v
′

5

v
′

6

v
′

7
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Birkoff Curve Shorting

Birkoff curve shortening deforms a loop to a geodesic.
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Computing Shortest Word

1 Compute the uniformization metric using Ricci flow.
2 Compute the geodesic loop by Birkoff curve shortening.
3 Lift the geodesic loop to the universal covering space.
4 Trace the lifted loop to compute the word.
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Meshing

Theorem

Suppose S is a surface with a Riemannian metric. Then there
exist meshing method which ensures the convergence of
curvatures.

Key idea: Delaunay triangulations on uniformization domains.
Angles are bounded, areas are bounded.
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Meshing
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Curvature Measure Convergence

Theorem

Let M be a compact Riemannian surface embedded in E
3 with

the induced Euclidean metric, T the triangulation generated by
Delaunay refinement on conformal uniformization domain, with
circumradius bound ε . If B is the relative interior of a union of
triangles of T , then

|φG
T (B)−φG

M (π(B))| ≤ K ε
|φH

T (B)−φH
M (π(B))| ≤ K ε

where π : T → M is the closest point projection, φH ,φG are the
mean and Gaussian curvature measures, where

K = O(area(B))+O(length(∂B)).
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Thanks

For more information, please email to gu@cs.sunysb.edu.

Thank you!
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