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Edward Sa↵, Vanderbilt University, USA
“Minimal Discrete Energy and Maximal Polarization”

This talk concerns minimal energy point configurations as well maximal polarization
(Chebyshev) point configurations on manifolds, which are optimization problems that
are asymptotically related to best-packing and best-covering. In particular, we discuss
how to generate N points on a d-dimensional manifold that have the desirable local
properties of well-separation and optimal order covering radius, while asymptotically
having a uniform distribution (as N grows large). Even for certain small numbers
of points like N = 5, optimal arrangements with regard to energy and polarization
can be challenging problems. Connections to the very recent major breakthrough on
best-packing results in R8 and R24 will also be described.

Dave Hewett, UCL, UK
“Homogenized boundary conditions and resonance e↵ects in Faraday cages”

We consider two-dimensional electrostatic and electromagnetic shielding by a cage of
conducting wires (the so-called ‘Faraday cage e↵ect’). In the limit as the number of wires
in the cage tends to infinity we use the asymptotic method of multiple scales to derive
continuum models for the shielding, which involve homogenized boundary conditions on
an idealised cage boundary. We investigate how the resulting models depend on the key
cage parameters such as the size and shape of the wires, and in the electromagnetic case
the frequency and polarisation of the incident field. We find in the electromagnetic case
that there are resonance e↵ects, whereby at frequencies close to the natural frequencies
of the equivalent solid shell, the presence of the cage actually amplifies the incident field,
rather than shielding it. By appropriately modifying our continuum model we are able
to calculate to high precision the modified resonant frequencies, and their associated
peak amplitudes. We discuss applications to radiation containment in microwave ovens
and acoustic scattering by perforated membranes.

Bruno Carneiro da Cunha, UFPE, Recife, Brazil
“The isomonodromy method and applications to physics ”

Many problems and physics can be phrased in terms of the connection problem of
the solutions of (ordinary) di↵erential equations. This is, in turn, related to the
Riemann-Hilbert problem, which displays an interesting set of symmetries encoded
by the Schlesinger equations and is intimately related to the theory of Painlev tran-
scendents. I will review the recent e↵orts by myself and collaborators to apply these
techniques to extract analytical solutions to interesting physical problems, ranging from
laminar flow to black hole scattering.
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Dimitris Askitis, University of Copenhagen, Denmark
“Complete monotonicity of ratios of products of entire functions ”

In their recent paper [1], Karp and Prilepkina investigate conditions for logarithmic
complete monotonicity of ratios of products of weighted gamma functions on (0,+1),

i.e. products of the form
Q

j �(Ajx+aj)Q
j �(Bjx+bj)

where the argument of each gamma function has

di↵erent scaling factor. The proof there is based on the classical integral representation
of the gamma function �(z) =

R1
0 e�ttz�1dt. Noting that the reciprocal of � is an entire

function of order 1 with negative zeros, we show that an analogue of their result holds
for more general entire functions of arbitrary order ⇢ with negative zeros of divergent
class, i.e. where the following sum diverges:
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[1] D. B. Karp and E. G. Prilepkina, Completely monotonic gamma ratio and infinitely
divisible H-function of Fox. Computational Methods and Function Theory, 16(1):135–
153, (2016).

Takashi Sakajo and Yuuki Shimizu, Kyoto University
“Point Vortex Dynamics on a toroidal surface ”

Interactions of vortex structures play an important role in the understanding of
complex evolutions of fluid flows. Incompressible and inviscid flows with point-wise
vorticity distributions in two-dimensional space, called point vortices, have been used
as a theoretical model to describe such vortex interactions. The motion of point vortices
has been investigated well in unbounded planes with boundaries as well as on a sphere
owing to their physical relevance. On the other hand, it is of a theoretical interest to
investigate how geometric nature of curved surfaces and the number of holes gives rise
to di↵erent vortex interactions that are not observed in vortex dynamics in the plane
and on the sphere. In the preceding studies, point-vortex interactions on surfaces of
revolution have been investigated. In this presentation, we consider the dynamics of
point vortices on a toroidal surface, which is a compact, orientable 2D Riemannian
manifold with a non-constant curvature with one handle. Deriving the equation of
motion of point vortices, we obtain some stationary point-vortex configurations and
describe the interactions of two point vortices in order to cultivate an insight into
vortex interactions on this manifold.

[1] T. Sakajo and Y. Shimizu, Point vortex interactions on a toroidal surface, Proceed-
ings of Royal Society A, vol. 472 20160271 (2016) (doi:10.1098/rspa.2016.0271)

Takaaki Nara, Tetsuya Furuichi, and Motofumi Fushimi, Tokyo University
“Generalized Cauchy formula for magnetic resonance electrical property tomography ”

Recently, magnetic resonance electrical property tomography (MREPT) has at-
tracted attention as an imaging modality that reconstructs the electrical conductivity
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and permittivity from radio-frequency (RF) magnetic fields measured by a magnetic
resonance imaging (MRI) scanner. It can provide important diagnostic information,
since electrical properties of cancerous tissues are di↵erent from those of normal tissues
[1]. In this talk, we show that the time-harmonic Maxwell equations for the electric
and magnetic fields inside the body can be reduced to a Dbar problem. Then, by using
the generalized Cauchy formula, we obtain an explicit reconstruction formula which ex-
presses the electrical conductivity and permittivity in terms of the measured magnetic
field and the boundary condition.

Denote the magnetic and electric field inside the body generated by an MRI scanner
byH = (H
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When the magnetic field is generated by the so-called birdcage coil and the electric
properties is homogeneous with respect to the z-axis, we can assume that H

z

= 0 and
@
z

H+ = 0 [2]. Under these assumptions, the time harmonic Maxwell equations are
written as

4@H+ = i�E
z

, @̄E
z

= !µ0H
+, (1)

where � = �+i!✏ is the admittivity to be reconstructed, with the electrical conductivity
� and the permittivity ✏, respectively, µ0 is the permeability inside the body and is the
same as that in the free space, and ! is the Larmor frequency. MREPT inverse problem
is to reconstruct � from H+ that can be measured by using the MRI scanner.

Since E
z

satisfies the second equation in (1), that is a Dbar equation, it holds from
the generalized Cauchy formula [3] that
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Substituting this into the first equation in (1) (Ampere’s law), we obtain
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Eq. (3) is our explicit reconstruction formula in which the admittivity � at an arbitrary
point in ⌦ can be reconstructed from the measured H+ and the boundary value of �.

Verification with numerical simulations as well as phantom experiments will be
shown in the presentation.

Acknowledgement. This work was supported by JSPS Grant-in-Aid for Scientific
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Research on Innovative Areas (Multidisciplinary Computational Anatomy) JSPS KAK-
ENHI Grant Number 26108003.

[1] Zhang, X., Liu, J., and He, B., Magnetic-resonance-based electrical properties to-
mography: a review, IEEE Reviews in Biomedical Engineering, 7, 87-96, 2014.

[2] Nara, T. Furuichi, T. and Motofumi, F, An Explicit Reconstruction Method for Mag-
netic Resonance Electrical Property Tomography Based on the Generalized Cauchy For-
mula, Mathematical Engineering Technical Reports, The University of Tokyo, METR2016-
12, 2016.

[3] Ablowitz, M. J. and Fokas, A. S., Complex variables, Introduction and Applications,
Second edition, Cambridge University Press, 2003.

Tomoki Uda, Kyoto University
“Shape derivative of the contour integral type and its application to vortex patch equi-
libria ”

We propose a new shape derivative formula for singular contour integrals with log-
arithmic kernels which yields a numerical scheme to compute vortex patch equilibria.
Owing to its simplicity, any steady configuration of point vortices can be extended to
that of vortex patches. As a test problem, a doubly periodic array of vortex patches is
considered to show the e�ciency of the new formula. Non-trivial families of stationary
vortex patch lattices are found and presented.

In a two-dimensional ideal flow, the finite area region on which the uniform vorticity
distribution is supported is called a vortex patch. In the planar flow domain C, a vortex
patch D ⇢ C of vorticity ! 2 R induces the velocity field of the form

u� iv =
!

2⇡i

ZZ

D

dw1 dw2

z � w
= � !

4⇡

I

@D

log (z � w) dw. (4)

Elcrat and Protas [1] have applied the shape calculus to (4), whereafter the linear
stability of vortex patch equilibria is considered. In order to apply the shape derivative
formula of the boundary integral type, one needs to deal with the singularity of the
integrand in (4). In general, this gives rise to di�culties in dealing with a logarithmic
kernel coming from geometry of an arbitrary flow domain. We thus derive an alternative
formula of the singular contour integral type which is applicable to contour integrals
with any logarithmic kernels.

[1] A. Elcrat and B. Protas, A framework for linear stability analysis of finite-area
vortices, Proc. Roy. Soc. A, 469, 2151, (2013).

Saleh Tanveer, Ohio State University, USA
“Proof of existence of a steadily translating oppositely rotating vortex patch pair ”

A canonical problem in 2-D vortex dynamics is a translating pair of oppositely
rotating vortex patches. These have been calculated numerically by Pierrehumbert
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in the early eighties. The theoretical mathematical problem of showing existence of
solution is limited to near circular shapes when the translating pairs are far apart.
However, the vortices are quite distorted when the distance between the centroids is
smaller.

We adapt a quasi-solution method, where strongly nonlinear problems can be ana-
lyzed through a weakly nonlinear analysis, to the nonlocal integro-di↵erential equation
arising in this problem. We use an analytical expression of an approximate solution,
obtained through numerics, and prove that there is an actual solution in the neighbor-
hood of this solution. This requires use of a good space of functions for which non-local,
non-linear terms can be controlled. There are no theoretical restrictions on how dis-
torted the shapes are in this approach, and the approach can be generalized to other
vortex configurations.
(Work with T.E. Kim)

Samuel Brzezicki, Imperial College
“A theoretical study of low-Reynolds-number swimming near corners ”

An analytical determination of the dynamical system governing the motion of an
idealized two-dimensional microorganism in a corner of arbitrary angle is given. A novel
solution method capable of fully resolving the complicated singularity structure typi-
cally associated with biharmonic boundary value problems in corners is described. The
microorganism studied is modelled using the point swimmer introduced by Crowdy &
Or [Phys. Rev. E, 81, (2010)]. Such swimmers are non-self-propelling in free space but
are capable of both steady and unsteady translation along a straight wall. Swimmers
approaching corners of su�ciently small angle are found to be liable to trapping in
these wedge regions. Those swimmers approaching corners with opening angles greater
than ⇡ generally scatter from the corner point. [Joint work with D. Crowdy]

Koya Sakakibara, Tokyo University
“Method of fundamental solutions for biharmonic equation based on Almansi-type de-
composition ”

In this talk, we consider the boundary value problem for the biharmonic equation.
Namely, let ⌦ be a bounded region in the plane with smooth boundary, and consider
the following problem. 8

>><

>>:

42u = 0 in ⌦,

u = f on @⌦,
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@y4
is the biharmonic operator in the plane,

@u

@⌫
denotes

the derivative of u along outward normal direction. The conventional scheme for the
method of fundamental solutions (MFS) o↵ers an approximate solution for the above
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problem as a linear combination of the fundamental solutions of the biharmonic operator
and ones of the Laplace operator. Namely, u(N) is of the form

u(N)(x) =
NX
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Although the above is the conventional scheme for MFS applied to biharmonic equa-
tion, in this talk, we consider the another scheme for MFS based on Almansi-type
decomposition of biharmonic function. Namely, we seek an approximate solution for
the above problem having the following form:
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k=1

�
Qp

k

+Qq

k

|x|2
�
E(x� y

k

).

Since there are no mathematical result for MFS applied to biharmonic equation, we
consider the case where ⌦ is a disk as a first step to establish mathematical theory,
and then we prove that an approximate solution actually exists uniquely and that an
approximation error decays exponentially with respect to N . We also present results
of numerical experiments, which verify that our error estimate is almost optimal.

Elliott Ginder, University of Hokkaido, Research Institute for Electronic
Science, Department of Mathematical Modeling
“Multiphase optimization in phononic crystal design ”

This research approaches the design and imaging of phononic crystals (PnC) through
means of experimentation, mathematics, and computation. We will present surface
wave imaging results of composite elastic materials where we are aiming at the devel-
opment of techniques for preforming noninvasive CT imaging. Finite element methods
for approximating the solution to the model equations are then used to investigate the
control of band-gaps through related eigenvalue problems. We will also remark about
our technique for expressing the multiphase nature of PnC and its role in formulating
shape and density gradient optimization problems.
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Michael Chen, University of Oxford
“Pressurisation in microstructured optical fibre drawing ”

A series of experiments where cylindrical glass preforms (diameter 10-30 mm) with
air channels running along their length are heated and stretched (or drawn) to produce
microstructured optical fibres (diameter 160 microns) are compared to a model of
this fabrication process. The softened glass is modelled as a 3D Stokes flow, with the
shape of the air channels determined by solving a free boundary problem in a multiply-
connected domain. Although there is excellent agreement between the model and most
experiments, there are marked discrepancies with others. One possible (or at least
partial) explanation is that an overpressure is induced in each air channel as the fibre
is drawn, and modelling the air flow inside the channels confirms that, under some
conditions, there is indeed significant pressure. The magnitude of this pressure varies
along the direction of the fibre axis and depends on a number of factors, including the
cross-sectional shape of the channel.

Khadija Al-Amoudi, UCL
“Using singularity structure to find special solutions of di↵erential equations” ”

In this talk I will explain how to use singularity structure combined with global
methods to identify special exact solutions of a di↵erential equation, even if it is not
integrable.

Rhodri Nelson, Imperial College
“Outer boundary e↵ects in a petroleum reservoir ”

A new toolkit for potential theory based on the Schottky-Klein prime function
is first introduced. This potential theory toolkit is then applied to study fluid flow
structures in bounded 2D petroleum reservoirs. In the model, reservoirs are assumed
to be heterogeneous and isotropic porous media and can thus be modeled using Darcys
equation. First, computations of flow contours are carried out on some test domains
and benchmarked against results from the ECLIPSE reservoir simulator. Following
this, a case study of the Quitman oil field in Texas is presented. [Joint work with D.
Crowdy, R. Weijermars, L. Zuo]
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Relaxations of discrete gradients for di↵erential equations

Daisuke Furihata

Osaka University, 1-32 Machikaneyama, Toyonaka, Osaka 560–0043 JAPAN, furihata@cmc.osaka-u.ac.jp

1 Introduction

As you know, discrete gradients play essential role to design some structure-preserving schemes for ordinary/partial
di↵erential equations. For a set U with an inner product < ,> and a map V : U ! K, typical discrete gradients
rV : U2 ! U are defined [1, 3, 5, 6, 7] to satisfy the following two conditions:

(
V (x0)� V (x) =

⌦
rV (x0

,x), (x0 � x)
↵
,

rV (x,x) = rV (x),
for any x,x

0 2 U. (1)

These conditions are symmetric and rigorous, however, we are able to relax these requirements to design some
structure-preserving schemes “superior” in performance to conventional ones. Here, we would like to introduce
those relaxed discrete gradients and applications, i.e., structure-preserving schemes for ordinary/partial di↵erential
equations.

With some appropriate boundary conditions and a definition of the inner product like < f, g >

def
=

P
k fkgk�x,

we are able to treat discrete variational derivatives as discrete gradients. This means that the conventional discrete
variational derivative method (conventional DVDM) [3] are one of those structure-preserving methods mentioned
above and we have a hope to develop some relaxed or extended DVDM schemes based on relaxed discrete gradients.

2 Extended DVDM and relaxed discrete gradients

To date, we have developed three main families of extended DVDM schemes with relaxed discrete variational
derivative, i.e., relaxed discrete gradients for PDEs. The first one is “(symmetric) linearized DVDM” [3] which is
based on a straightforward extension of discrete gradients. This extension applies to only polynomial problems,
and the obtained schemes are unstable frequently. The second is “asymmetric linearized DVDM” similar to the
first. However, the extensions are asymmetric, and sometimes we are able to expect the obtained schemes are
superior in performance. The last “asymmetric non-linearized DVDM” is based on most flexible relaxations of
discrete gradients, and we obtain some excellent schemes fairly infrequently via this idea. In this talk, we will
describe them in detail and show relationships between their relaxed discrete gradients and those DVDM schemes.

This work was supported by JSPS KAKENHI Grand number 25287030 and 26610038.

References

[1] E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O’Neale, B. Owren and G. R. W. Quispel, Preserving energy resp.
dissipation in numerical PDEs using the “Average Vector Field” method , J. Comput. Phys., Vol. 231 (2012), pp.6770–6789.

[2] M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci.
Comput., Vol.33 (2011), pp.2318–2340.

[3] D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-preserving Numerical Method for Partial
Di↵erential Equations, CRC press, Florida, 2010.

[4] D. Furihata and T. Matsuo, A Stable, Convergent, Conservative and Linear Finite Di↵erence Scheme for the Cahn-Hilliard
Equation, Japan J. Indust. Appl. Math., Vol.20 (2003), pp.65–85.

[5] O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., Vol. 6 (1996), pp.449–467.

[6] A. Harten, P. D. Lax and B. Van Leer, On Upstream di↵erencing and Godunov-type schemes for hyperbolic conservation laws,
SIAM Review, Vol. 25 (1983), pp.35–61.

[7] T. Itoh and K. Abe, Hamiltonian-converving discrete canonical equations based on variational di↵erence quotients, J. Comput.
Phys., Vol. 77 (1988), pp.85–102.



TOPOLOGICAL PROPERTIES OF SURFACES FLOWS

TOMOO YOKOYAMA

Abstract. In this talk, we introduce that generic topological structures of global stream-
line patterns generated by the complex velocity potentials of uniform flows and point
vortices are uniquely represented by labelled trees. Moreover, we show that topological
structures of generic surface flows can be represented by finite combinational structures.
Finally, we discuss the relations between topological structures and data structures.
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Surface flow → Tree

{ Surface flow of finite type } → { Labelled Tree } 

Local stream topological structure → Letter
Global stream topological structure → Label + Edge

“1 to 1”

Surface flows and Data structures✓ ✏
Topology of a flow =⇒ Regular tree grammar + Cyclic order + Label
Resolution =⇒ Depth of nodes
Good data structure =⇒ Persistent =⇒ Easy to implement
Bad data structure =⇒ Sensitive to error =⇒ Hard to implement✒ ✑
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