Analytic Number Theory
Solution key of Test No 1, 17 February 2016

Solution of Question 1. First we verify whether f is multiplicative by considering the following four
cases. Let (m,n) =1 for some m,n € N.

1) If at least one of n and m is even, then f(mn) = f(m)f(n) =0.

2) If m = 1 (mod 4), and n = 1 (mod 4), then f(mn) = (—=1)™=D/2 = 1 and f(m)f(n) =
(_1)(77%1)/2 . (_1)(n*1)/2 —1-1=1.

3) If m = 3 (mod 4), and n = 1 (mod 4), then f(mn) = (—=1)™=D/2 = _1 and f(m)f(n) =
(=1)m=D/2 (—1)(=1/2 = (—1). 1 = —1.

4) If m = 3 (mod 4), and n = 3 (mod 4), then f(mn) = (=1)"*=D/2 = 1 and f(m)f(n) =
(=)D~ = (1) (1) = 1
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which converges if and only if Re(s) > 1.

By a theorem in the lectures, for every s with Re(s) > 1 we have
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for primes p of the form 4k 4 3, we have
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and for primes p of the form 4k 4 1 we have
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Solution of Question 2. Using the Euler’s product formula




for Re(s) > 1, we have
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On the other hand, since d(n) < n, we have
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The above series is convergent for every s with Re(s) > 3. This implies that the abscissa of absolute

convergent of the Dirichlet series is less than or equal to 3.

Since d(n?) is a multiplicative function, by a theorem in the lectures, for every s with Re(s) > 3 we
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must have

Thus, to prove the identity in the question, it is enough to show that
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This can be verified as follows:
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