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Solution of Question 1. First we verify whether f is multiplicative by considering the following four

cases. Let (m,n) = 1 for some m,n 2 N.
1) If at least one of n and m is even, then f(mn) = f(m)f(n) = 0.

2) If m ⌘ 1 (mod 4), and n ⌘ 1 (mod 4), then f(mn) = (�1)(mn�1)/2 = 1 and f(m)f(n) =

(�1)(m�1)/2 · (�1)(n�1)/2 = 1 · 1 = 1.

3) If m ⌘ 3 (mod 4), and n ⌘ 1 (mod 4), then f(mn) = (�1)(mn�1)/2 = �1 and f(m)f(n) =

(�1)(m�1)/2 · (�1)(n�1)/2 = (�1) · 1 = �1.

4) If m ⌘ 3 (mod 4), and n ⌘ 3 (mod 4), then f(mn) = (�1)(mn�1)/2 = 1 and f(m)f(n) =

(�1)(m�1)/2 · (�1)(n�1)/2 = (�1) · (�1) = 1.
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which converges if and only if Re(s) > 1.

By a theorem in the lectures, for every s with Re(s) > 1 we have
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For p = 2,
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for primes p of the form 4k + 3, we have
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and for primes p of the form 4k + 1 we have
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Thus,
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Solution of Question 2. Using the Euler’s product formula
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for Re(s) > 1, we have
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On the other hand, since d(n)  n, we have
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The above series is convergent for every s with Re(s) > 3. This implies that the abscissa of absolute

convergent of the Dirichlet series is less than or equal to 3.

Since d(n2) is a multiplicative function, by a theorem in the lectures, for every s with Re(s) > 3 we

must have
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Thus, to prove the identity in the question, it is enough to show that
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This can be verified as follows:
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(2e+ 1� 4e+ 2 + 2e� 3)p�es = 1 + p�s.


