Analytic Number Theory

Solutions
Solution to Problem 1. We have (n)
d(n 1+e;
nl/a = H peild’
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where n = [[p{".

By the proof of Theorem 2.9
1+ €;
pei/4

<1 for p; > 16

and
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Thus, for all n € N,

40 1/4
< . .
d(n) (log 2)° n

We need to find ng such that for all n > ng we have
48 1/4

<

(log2)5 ~ "
which is guaranteed by n > 1.9 x 1018 > (4/1og 2)**.

For primes p < 16 we may have a better bound on (1+ei)/pfi/4. One needs to find the maximum values

;j/ﬁ for p = 2,3,5,7,11,13. By taking derivative we see that gz’,(loép —-1) =0,
while for x > @ —1, gp(z) is decreasing. By some elementary calculations we can obtain a better bound.

of the functions g,(x) =

Solution to Problem 2. We use the partial summation formula with f(n) = d(n) and F(z) = 1/z. By
Theorem 2.10 we have S(X) =}, .,y d(n) = Xlog X + O(X). Hence,
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=log X +0(1) + alogQX + O(log X)

1
=3 log? X + O(log X) + O(1).

In the above equation we have used the integration by parts with f(¢) = logt and g(¢t) = logt. This

implies the desired asymptotic relation.



Solution to Problem 3. Using the partial summation with f(n) =1, F(z) = 1/x we have

s(X)= ) 1=[X],
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and hence
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= 7+O(§) + log X.

Solution to Problem 4. We use Lemma 2.11 with the increasing function f(z) = x to obtain

which reduces to
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Similarly,
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The above two inequalities imply that Y . n = 2%/2 + O(z).
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Moving to the next stage, we have
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Also, recall that >.°° , 1/n? = 72/6. Combining these with the above equation we obtain
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=0(z) + O(z(1 4+ log z)) = O(z(1 + log x)).

Solution to Problem 5.
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On the other hand,
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u<vX v<X/u u<vX

—x 3 Liowx)
wvx
= X (log VX + v+ 0(1/VX)) + O(VX)

1
= 5Xlog X + Xy + O(VX)

The second sum is equal to the above one. For the third sum we have

> > 1= > VA

u<VX v<vVX u<vX
= VXVX +0(VX)=X+0(VX).

Combining the above equations we obtain the desired asymptotic formula.

Solution to Problem 6. Let

So = {Re(s) : s € C, Z |f(n)n™?| is convergent},
n=1

and

S1 ={Re(s): s €C, Z f(n)n™* is convergent}.
n=1

By the definitions inf Sy = oy and inf S = o7y.

Let s be a complex number such that Y02 | f(n)n~° is convergent. Then, by the convergence criteria
the terms of the series must tend to zero. In particular, there is ng such that for all n > ng we have
| < 1.

Assume s’ be a complex number with Re(s’) > Re(s) + 1. Define n = s’ — s so that Re(n) > 1. Then,

Sy - 55

This implies that s’ belongs to Sy, that is, og < Re(s) + 1.

’ L i 1
nm| - nRC(W) < 00
n=ng

By the above argument, cg—1—¢ ¢ S1, for every § > 0. That is, S is bounded from below. Moreover,
S1 contains Sy and is not empty. These imply that S; has an infimum. Finally, we have
oo =infog <infRe(s) +1 < o7 + 1.
S1 S1

This finishes the proof of the statement.
The other inequality follows from Sy C Sy, that is, inf S7 < inf Sj.



Solution to Problem 7. The sum F(s) =Y >°, f(n)n~° is convergent at s = so.

Consider the arithmetic function g(n) = f(n)n™°° ans denote its partial sum with
x) = Z f(n)n™*0.
n<z

Fix a complex constant s with Res > Resg. Let G(z) = %05, for z > 0. Using the partial summation

formula we have

S H) - N~ (3 ) / i S(a)ao= " do

Now we take limit at N tends to co. We have

N
li =
i > f(n)n F(s),
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and on the other hand

lim Zf n=% = F(sp)

N%oo

is finite by the assumption, which implies that

i (S s ) <o

Thus, -
F(s) = (so — 9) /7 S(z)xo"  d

The infinite integral is finite since |S(X)| is uniformly bounded from above, and Re(s) > Re sp.

Let s € C with Res > o1. By the definition of o7, there is sg with 01 < Resg < Re(s) such that
Yomey f(n)n™%0 is convergent. In particular the partial sums of this series are uniformly bounded from
above in absolute value, and tend to F(sg) Also note that Resp — s — 1 < 1. Therefore, by the above

formula

/ S(z)zReto=s=D 4z < o,

=1
is well-defined.
Solution to Problem 8. Let s = o + it. We know that
n 1| o 1

o | (=
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is convergent if and only if o > 1. This implies that o9 = 1.

_1\)n—1
On the other hand, for o < 0, the series Y o ; % is divergent. However, for every ¢ > 0, by
(=n~*
nU

the alternating series test the series y o, is convergent. (need to see that the sequence 1/n% is
monotone decreasing!). This implies that o1 = 0.

We need to build an example of a Dirichlet series such that o3 = « and oy = 1.

If o = 0 then the above example provides the answer to the problem, and if & = 1 then we take the
series > >°, 1/n®. Below we assume that a € (0,1).

Define the function h(z) = z%, for > 0. The function h(z) is strictly increasing and for every integer
n > 1 we have

lh(n+1)—h(n)| <1- sup [W(t)|= sup at*'<1-1=1.
ten,n+1] te[n,n+1]

Let ay, for n > 1, be a sequence of numbers and define S(N) = 25:1 ap. Inductively we define the
sequence of numbers a,, € {+1,—1}, for n > 1, such that the corresponding S(n) satisfies |S(N) — N¢| =
[S(N) — h(N)| < 1. Let a1 = +1 which satisfies the inequality for N 4+ 1. Assume that a; are defined for
1 <i<n,and let

+1 if S(n) <h(n+1)
-1 if S(n) > h(n+1).

ap41 =

When a,4+1 = +1 we have

h(n) —1<S(n) <h(n+1)
= h(n) < S(n+1) <h(n+1)+1
= h(n) —h(n+1) <S(n+1)—h(n+1) <+1
= |S(n+1) — h(n+1)] < +1

When a,,41 = —1 we have

hin+1) < S(n) < h(n) +
—  Wn+1)—1<S(n+1) < hn)
= —1<Sn+1)—h(n+1) <h(n)—h(n+1)
= [S(n+1) —h(n+1)| < +1

For the sequence a;, for i« > 1 defined above we have

log S(NV) log S(NV)  log N* log S(N) — log N

I = Jim | — lim | < i ~0.
Ne log N N—ool log N log N N—oo log N = N log N
That is,
. logS(N)
lim ———= = 1
N e log N (1)



The Dirichlet series we introduce is

A(s) = i anpn”?°.
n=1

Let us denote the partial sums of this series with the notation

N
An(s) = Z anpn”®.
n=1

It is clear that for A(s) we have o9 = 1. We want to show that o1 = «. We will prove this in two

steps.

Step 1: a < oy.

Let s be a complex number with Res > ;. Then, the series

A(s) = i ann”!
n=1

is convergent. In particular, there is M > 0 such that for all N > 1 we have |Ayn(s)| < M. We have

N
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nj;l
=D (An) - A(n—1)) -n*
N v
= ZA(n)ns - ZA(n —1)-nf
nj;l 7]1\’111
=) Amn® = > A(n)- (n+1)°
7]1\[—}1 n=0
=3 Am) @ — (n + 1)) + A(N)N*
<MY ((n+1)* —n®)+ MN*
n=1
<2MN*

The above equation implies that
log |S(N)| <log2+log M + slog N.

Hence,

Taking infimum over all s with Re s > 01 we conclude from the above inequality that o < 7.



Step 2: 01 < a. Let § be an arbitrary positive real number and let s = a + 0. We aim to prove that
A(s) is a convergent series.

Using the partial summation with f(n) = a, and F(x) = 2~° we have

N N
Z apn” = S(N)N° + / S(x)sz 5" dx
n=1 1

By the relation

Lo loglSe)l

n—oo  logn

there is ng > 1 such that for all n > ny we have
log|S(n)| < (a+6/2)logn.

In other words,
|S(TL)| < na+5/2

Using this inequality we see that

lim S(N)N~° < lim NeH/2N=(@+) < i N79/2 =0,

N—oo N—oo N—oo
Similarly,
N N N
s/ 5(36)967571 dr < s/ 20 T0/2p =014, < S/ 271792 4y < 0.
no no no

The above bounds prove that A(s) is a convergent series. In particular, o1 < a4+ §. As § was chosen

arbitrarily, we may conclude that o1 < a.
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