Analytic Number Theory

Solutions

Solution to Problem 1. We prove the formula for $\operatorname{Li}(x)$ by the induction on k. By the definition,

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\log t} d t
$$

We use the integration by parts $\int f g^{\prime}=f g-\int g f^{\prime}$ with $f(t)=1 / \log t$ and $g(t)=t$ to obtain

$$
\int_{2}^{x} \frac{1}{\log t} d t=\left.\frac{t}{\log t}\right|_{2} ^{x}+\int_{2}^{x} \frac{1}{t} \frac{1}{(\log t)^{2}} \cdot t d t=\frac{x}{\log x}-\frac{2}{\log 2}+I_{1}(x)
$$

This implies the formula for $k=1$. Now assume that the formula holds for $k \geq 1$ and we wish to prove it for $k+1$. Again using the integration by parts with $f(t)=1 /(\log t)^{k+1}$ and $g(t)=t$ we have

$$
I_{k}(x)=\left.\frac{t}{(\log t)^{k+1}}\right|_{2} ^{x}-\int_{2}^{x} \frac{-(k+1)}{t(\log t)^{k+2}} \cdot t d t=\frac{x}{(\log x)^{k+1}}-\frac{2}{(\log 2)^{k+1}}+(k+1) I_{k+1}(x)
$$

Therefore,

$$
\begin{aligned}
\operatorname{Li}(x) & =C_{k}+\sum_{n=0}^{k-1} n!\frac{x}{(\log x)^{n+1}}+k!I_{k}(x) \\
& =C_{k}+\sum_{n=0}^{k-1} n!\frac{x}{(\log x)^{n+1}}+k!\left(\frac{x}{(\log x)^{k+1}}-\frac{2}{(\log 2)^{k+1}}+(k+1) I_{k+1}(x)\right) \\
& =\left(C_{k}-k!\frac{2}{(\log 2)^{k+1}}\right)+\sum_{n=0}^{k} n!\frac{x}{(\log x)^{n+1}}+(k+1)!I_{k+1}(x) .
\end{aligned}
$$

This finishes the proof of the formula by introducing the appropriate constant C_{k+1}.
Since the function $1 /(\log t)^{2}$ is decreasing as t increases, we have

$$
\begin{aligned}
I_{1}(x) & =\int_{2}^{\sqrt{x}} \frac{1}{(\log t)^{2}} d t+\int_{\sqrt{x}}^{x} \frac{1}{(\log t)^{2}} d t \\
& \leq(\sqrt{x}-2) \frac{1}{(\log 2)^{2}}+(x-\sqrt{x}) \frac{1}{\left(\log x^{1 / 2}\right)^{2}} \\
& \leq \frac{\sqrt{x}}{(\log 2)^{2}}+\frac{4 x}{(\log x)^{2}}
\end{aligned}
$$

Using the formula for $\operatorname{Li}(x)$ with $k=1$ we have

$$
\operatorname{Li}(x)=C_{1}+\frac{x}{\log x}+I_{1}(x)
$$

Then,

$$
\lim _{x \rightarrow \infty} \frac{\operatorname{Li}(x)}{x / \log x}=\lim _{x \rightarrow \infty} \frac{C_{1} \log x}{x}+\lim _{x \rightarrow \infty} 1+\lim _{x \rightarrow \infty} \frac{I_{1}(x)}{x / \log x}=1+\lim _{x \rightarrow \infty} \frac{I_{1}(x)}{x / \log x}
$$

However, by the above inequality

$$
\lim _{x \rightarrow \infty} \frac{I_{1}(x)}{x / \log x} \leq \lim _{x \rightarrow \infty} \frac{\frac{\sqrt{x}}{(\log 2)^{2}}}{\frac{x}{\log x}}+\lim _{x \rightarrow \infty} \frac{\frac{4 x}{(\log x)^{2}}}{\frac{x}{\log x}}=\lim _{x \rightarrow \infty} \frac{\log x}{x(\log 2)^{2}}+\lim _{x \rightarrow \infty} \frac{4}{\log x}=0
$$

Solution to Problem 2. We have

$$
\lim _{n \rightarrow \infty} \frac{f_{1}(n) / f_{3}(n)}{f_{2}(n) / f_{4}(n)}=\lim _{n \rightarrow \infty} \frac{f_{1}(n) f_{4}(n)}{f_{2}(n) f_{3}(n)}=\lim _{n \rightarrow \infty} \frac{f_{1}(n)}{f_{2}(n)} \cdot \lim _{n \rightarrow \infty} \frac{f_{4}(n)}{f_{3}(n)}=1 \cdot 1=1
$$

and

$$
\lim _{n \rightarrow \infty} \frac{f_{1}(n)+f_{3}(n)}{f_{2}(n)+f_{4}(n)}=\lim _{n \rightarrow \infty} \frac{f_{1}(n)+f_{3}(n)}{f_{2}(n)+f_{4}(n)} \cdot \lim _{n \rightarrow \infty} \frac{f_{4}(n)}{f_{3}(n)}=\lim _{n \rightarrow \infty} \frac{f_{1}(n) / f_{3}(n)+1}{f_{2}(n) / f_{4}(n)+1}=\frac{1+1}{1+1}=1
$$

In the special case given, we have $f_{1}(n)-f_{3}(n)=n$ and $f_{2}(n)-f_{4}(n)=2 n$, thus,

$$
\lim _{n \rightarrow \infty} \frac{f_{1}(n)-f_{3}(n)}{f_{2}(n)-f_{4}(n)}=\frac{1}{2} \neq 1
$$

Solution to Problem 3. Let us introduce the notation

$$
G_{1}(N, M)=\sum_{n=N}^{M} f_{1}(n), \quad G_{2}(N, M)=\sum_{n=N}^{M} f_{2}(n)
$$

By the hypothesis, for every $\epsilon>0$ there is N_{0} such that for all $n \geq N_{0}$ we have

$$
f_{2}(n)(1-\epsilon) \leq f_{1}(n) \leq(1+\epsilon) f_{2}(n) .
$$

This implies that $F_{1}(N) \rightarrow \infty$ if and only if $F_{2}(N) \rightarrow \infty$, when $N \rightarrow \infty$. Also, summing up these inequalities we conclude that for all $M \geq N_{0}$ we have

$$
(1-\epsilon) G_{2}\left(N_{0}, M\right) \leq G_{1}\left(N_{0}, M\right) \leq(1+\epsilon) G_{2}\left(N_{0}, M\right)
$$

Hence,

$$
\begin{aligned}
\limsup _{M \rightarrow \infty} \frac{F_{1}(M)}{F_{2}(M)} & =\limsup _{M \rightarrow \infty} \frac{G_{1}\left(1, N_{0}-1\right)+G_{1}\left(N_{0}, M\right)}{G_{2}\left(1, N_{0}-1\right)+G_{2}\left(N_{0}, M\right)} \\
& =\limsup _{M \rightarrow \infty} \frac{G_{1}\left(1, N_{0}-1\right) / G_{2}\left(N_{0}, M\right)+G_{1}\left(N_{0}, M\right) / G_{2}\left(N_{0}, M\right)}{G_{2}\left(1, N_{0}-1\right) / G_{2}\left(N_{0}, M\right)+1} \\
& =\limsup _{M \rightarrow \infty} \frac{G_{1}\left(N_{0}, M\right)}{G_{2}\left(N_{0}, M\right)} \\
& \leq 1+\epsilon .
\end{aligned}
$$

Similarly, $\lim \inf _{M \rightarrow \infty} \frac{F_{1}(M)}{F_{2}(M)} \geq 1-\epsilon$. As $\epsilon>0$ was arbitrary, we conclude that the limit exists and is equal to +1 .

Solution to Problem 4. a) the answer is no, for instance one can define

$$
f(x)=g(x)+\sin \left(e^{g(x)}\right)+\sin \left(e^{x}\right) .
$$

Then, since $g(x)$ is bounded from below fro $x \geq 1$, then $f(x)=O(g(x))+O(1)+O(1)=$ $O(g(x))$. On the other hand,

$$
f^{\prime}(x)=g^{\prime}(x)+g^{\prime}(x) e^{g(x)} \cos \left(e^{g(x)}\right)+e^{x} \cos \left(e^{x}\right)
$$

Depending on whether $g(x)=O(1)$ (and hence $g^{\prime}(x) \rightarrow 0$ as $\left.x \rightarrow \infty\right)$ or not, one can see that $f^{\prime}(x) \neq O\left(g^{\prime}(x)\right)$.
b) The answer is yes, since $f(x) \leq C g(x)$ implies that

$$
\int_{2}^{X} f(t) d t \leq \int_{2}^{X} C g(t) d t \leq C \int_{2}^{X} g(t) d t
$$

Solution to Problem 5. By contradiction, assume that there is n_{0} such that for $n \geq n_{0}$ the differences $p_{n+1}-p_{n}$ are strictly increasing. Since the differences are integers, then for $n>n_{0}, p_{n+1}-p_{n} \geq 1+\left(p_{n}-p_{n-1}\right)$. In particular, for large values of $n>n_{0}$ we have

$$
p_{n+1}-p_{n} \geq 1+\left(p_{n}-p_{n-1}\right) \geq 2+\left(p_{n-1}-p_{n-2}\right) \geq \cdots \geq\left(n-n_{0}\right)+\left(p_{n_{0}+1}-p_{n_{0}}\right) \geq\left(n-n_{0}\right)+1 .
$$

Putting these together, we obtain

$$
p_{n}-p_{n_{0}}=\sum_{i=n_{0}}^{n-1}\left(p_{i+1}-p_{i}\right) \geq \sum_{i=n_{0}}^{n-1}\left(i-n_{0}+1\right)=\sum_{i=1}^{n-n_{0}} i=\frac{\left(n-n_{0}\right)^{2}}{2}+\frac{n-n_{0}}{2} \geq \frac{\left(n-n_{0}\right)^{2}}{2}
$$

By PNT we have $\pi(x) \sim \frac{x}{\log x}$. For instance, for large values of x we must have $\pi(x) \geq \frac{x}{2 \log x}$. Since, for large enough n, p_{n} is large enough, we must have $n=\pi\left(p_{n}\right) \geq \frac{p_{n}}{2 \log p_{n}}$.

On the other hand, for large enough x, we know that $\frac{x}{\log x} \geq x^{3 / 4}$. Then, for large n we must have

$$
2 n \geq \frac{p_{n}}{\log p_{n}} \geq p_{n}^{3 / 4} \geq\left(\frac{\left(n-n_{0}\right)^{2}}{2}\right)^{3 / 4} \geq \frac{\left(n-n_{0}\right)^{3 / 2}}{2^{3 / 4}}
$$

which is a contradiction.

Solution to Problem 6. By PNT

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

In particular, we look at the limit along the sequence p_{n} as $n \rightarrow \infty$. By the definition $\pi\left(p_{n}\right)=n$. Then,

$$
\lim _{n \rightarrow \infty} \frac{n}{p_{n} / \log p_{n}}=1
$$

In other words, $\frac{p_{n}}{\log p_{n}} \sim n$. Since \log is a continuous function over the positive real numbers, we have

$$
\lim _{n \rightarrow \infty}\left(\log n-\log p_{n}+\log \left(\log p_{n}\right)\right)=\lim _{n \rightarrow \infty} \log \left(\frac{n}{p_{n} / \log p_{n}}\right)=0
$$

This implies that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\log n}{\log p_{n}} & =\lim _{n \rightarrow \infty}\left(\frac{\log n-\log p_{n}+\log \left(\log p_{n}\right)}{\log p_{n}}+\frac{\log p_{n}}{\log p_{n}}+\frac{\log \left(\log p_{n}\right)}{\log p_{n}}\right) \\
& =0+1+0=1 .
\end{aligned}
$$

To find the limit of the last ration in the above equation we may for instance use $\log (x) \leq x^{1 / 2}$, that is, $\log \left(\log p_{n}\right) \leq\left(\log p_{n}\right)^{1 / 2}$.

Finally,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n \log n}{p_{n}} & =\lim _{n \rightarrow \infty}\left(\frac{n \log n}{p_{n}} \times \frac{\log p_{n}}{\log p_{n}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{n \log p_{n}}{p_{n}} \times \frac{\log n}{\log p_{n}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{n}{p_{n} / \log p_{n}} \times \lim _{n \rightarrow \infty} \frac{\log n}{\log p_{n}} \\
& =1 \times 1=1
\end{aligned}
$$

Solution to Problem 7. Let us define the sets

$$
A_{n}=\{d \leq n ; d \mid n\}, B_{n}=\left\{d \leq 2^{n}-1 ; d \mid 2^{n}-1\right\}
$$

We have $d(n)=\# A_{n}$ and $d\left(2^{n}-1\right)=\# B_{n}$. We claim that $\psi(d)=2^{d}-1$ maps A_{n} into B_{n}. To see this, let $n=d k$, for some $d \in A_{n}$. We have

$$
2^{n}-1=\left(2^{d}\right)^{k}-1=\left(2^{d}-1\right)\left(\left(2^{d}\right)^{k-1}+\left(2^{d}\right)^{k-2}+\cdots+1\right)
$$

which implies $2^{d}-1 \mid 2^{n}-1$. Since, $\psi: A_{n} \rightarrow B_{n}$ is one -to-one, we must have $\# A_{n} \leq \# B_{n}$.

Solution to Problem 8. Let $N=[X]$.

$$
\begin{aligned}
& \int_{1}^{X} S(t) F^{\prime}(t) d t \\
& =\sum_{i=1}^{N-1} \int_{i}^{i+1} S(t) F^{\prime}(t) d t+\int_{N}^{X} S(t) F^{\prime}(t) d t \\
& =\sum_{i=1}^{N-1} S(i) \int_{i}^{i+1} F^{\prime}(t) d t+S(N) \int_{N}^{X} F^{\prime}(t) d t \\
& =\sum_{i=1}^{N-1} S(i)(F(i+1)-F(i))+S(N)(F(X)-F(N)) \\
& =\sum_{i=1}^{N-1} S(i) F(i+1)-\sum_{i=1}^{N-1} S(i) F(i)+S(N)(F(X)-F(N)) \\
& =\sum_{i=1}^{N-1} S(i) F(i+1)-\sum_{i=0}^{N-2} S(i+1) F(i+1)+S(N)(F(X)-F(N)) \\
& =\sum_{i=1}^{N-2}(S(i)-S(i+1)) F(i+1)+(S(N-1) F(N)-S(1) F(1))+S(N)(F(X)-F(N)) \\
& =-\sum_{i=1}^{N-2} f(i+1) F(i+1)+(S(N-1) F(N)-S(1) F(1))+(S(N-1)+f(N))(F(X)-F(N)) \\
& =-\sum_{i=1}^{N} f(i) F(i)+S(N-1) F(X)+f(N) F(X) \\
& =-\sum_{i=1}^{N} f(i) F(i)+S(X) F(X)
\end{aligned}
$$

