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1. Recall the Euler function φ(n) = #{k ∈ N : k ≤ n, (k, n) = 1}, the unit function u(n) ≡ 1,
as well as the Möbius function µ defined by µ(1) = 1 and for distinct primes pi and positive
integers ei

µ(pe11 pe22 . . . pekk ) =

{
(−1)k if ei = 1 for all i,

0 if ei ≥ 2 for some i.

(a) Prove that

(µ ∗ u)(n) =
{
1 if n = 1

0 otherwise,

where ∗ denotes the convolution operation.

(b) Assuming the relation
∑

d|n φ(d) = n, for n ∈ N, prove that φ is a multiplicative
arithmetic function.

[You may use any theorems from the lectures, provided you state them clearly.]

(c) Prove that for n ∈ N we have

φ(n) = n
∏

p|n

(1− 1

p
),

where the product runs over all primes p.

2. (a) State (without proof) the Euler product formula for the Riemann zeta-function ζ(s).

(b) Consider the arithmetic function

ν(n) =

{
0 if n = 1

k if n = pe11 pe22 . . . pekk with pi’s distinct primes and all ei ≥ 1.

Prove that for every s ∈ C with Re(s) > 2 we have

ζ2(s)

ζ(2s)
=

∞∑

n=1

2ν(n)n−s.

3. Assuming the relation

∑

p≤x,p prime

log p

p
= log x+O(1), for x ≥ 1,

prove that, for some constant A,

∑

p≤x,p prime

1

p
= log(log(x)) + A+O(

1

log x
), for all x ≥ 2.



4. (a) Let ζ(s) denote the Riemann zeta-function, and Γ(s) denote the Euler gamma function.
Assuming the functional equation

ζ(1− s) = 21−sπ−s cos
(πs
2

)
Γ(s)ζ(s), ∀s ∈ C− {0},

prove that if ζ(s) = 0 then either s ∈ {−2k : k ∈ N}, or s lies in the strip 0 ≤ Re(s) ≤ 1.

(b) Prove that if ζ(ρ) = 0 with 0 < Re(ρ) < 1, then each of ρ, 1− ρ, ρ, and 1− ρ is a zero
of ζ(s).

[You are required to prove any relation about ζ(s) you need, except for the functional
equation in part (a).]

5. Let Ψ(x) =
∑

n≤x Λ(n), where Λ(n) is the von Mangold function

Λ(n) =

{
log p if n = pe for some prime p and integer e ≥ 1,

0 otherwise.

We recall that for every s ∈ C with Re(s) > 1 we have

−ζ ′(s)

ζ(s)
=

∞∑

n=1

Λ(n)n−s.

(a) Prove that for every s with Re(s) > 1 we have

−ζ ′(s)

ζ(s)
= s

∫ ∞

1

Ψ(x)

xs+1
dx.

(b) Prove that

lim
s→1

(1− s)
ζ ′(s)

ζ(s)
= 1.

(c) Let δ = lim supx→∞
Ψ(x)
x . Show that for every ϵ > 0 there is a constant C(ϵ) such that

for every real s > 1,

−ζ ′(s)

ζ(s)
≤ sC(ϵ) +

s(δ + ϵ)

s− 1
.

Using the limit in part (b), or otherwise, deduce that δ ≥ 1.

(d) Let γ = lim infx→∞
Ψ(x)
x . By a similar argument, prove that γ ≤ 1.

(e) Deduce Chebycheff’s theorem, that is, if limx→∞
Ψ(x)
x exists, it must be equal to 1.
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