Imperial College London

This paper is also taken for the relevant examination for the Associateship of the Royal College of Science.

M3P16/M4P16/M5P16
Analytic Number Theory
Date: Wednesday, 25th May 2016
Time: 14:00-16:30

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Recall the Euler function $\phi(n)=\#\{k \in \mathbb{N}: k \leq n,(k, n)=1\}$, the unit function $u(n) \equiv 1$, as well as the Möbius function μ defined by $\mu(1)=1$ and for distinct primes p_{i} and positive integers e_{i}

$$
\mu\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}\right)= \begin{cases}(-1)^{k} & \text { if } e_{i}=1 \text { for all } i \\ 0 & \text { if } e_{i} \geq 2 \text { for some } i\end{cases}
$$

(a) Prove that

$$
(\mu * u)(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

where $*$ denotes the convolution operation.
(b) Assuming the relation $\sum_{d \mid n} \phi(d)=n$, for $n \in \mathbb{N}$, prove that ϕ is a multiplicative arithmetic function.
[You may use any theorems from the lectures, provided you state them clearly.]
(c) Prove that for $n \in \mathbb{N}$ we have

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

where the product runs over all primes p.
2. (a) State (without proof) the Euler product formula for the Riemann zeta-function $\zeta(s)$.
(b) Consider the arithmetic function

$$
\nu(n)= \begin{cases}0 & \text { if } n=1 \\ k & \text { if } n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}} \text { with } p_{i} \text { 's distinct primes and all } e_{i} \geq 1 .\end{cases}
$$

Prove that for every $s \in \mathbb{C}$ with $\operatorname{Re}(s)>2$ we have

$$
\frac{\zeta^{2}(s)}{\zeta(2 s)}=\sum_{n=1}^{\infty} 2^{\nu(n)} n^{-s} .
$$

3. Assuming the relation

$$
\sum_{p \leq x, p \text { prime }} \frac{\log p}{p}=\log x+O(1), \text { for } x \geq 1
$$

prove that, for some constant A,

$$
\sum_{p \leq x, p \text { prime }} \frac{1}{p}=\log (\log (x))+A+O\left(\frac{1}{\log x}\right) \text {, for all } x \geq 2 \text {. }
$$

4. (a) Let $\zeta(s)$ denote the Riemann zeta-function, and $\Gamma(s)$ denote the Euler gamma function. Assuming the functional equation

$$
\zeta(1-s)=2^{1-s} \pi^{-s} \cos \left(\frac{\pi s}{2}\right) \Gamma(s) \zeta(s), \quad \forall s \in \mathbb{C}-\{0\}
$$

prove that if $\zeta(s)=0$ then either $s \in\{-2 k: k \in \mathbb{N}\}$, or s lies in the strip $0 \leq \operatorname{Re}(s) \leq 1$.
(b) Prove that if $\zeta(\rho)=0$ with $0<\operatorname{Re}(\rho)<1$, then each of $\rho, 1-\rho, \bar{\rho}$, and $1-\bar{\rho}$ is a zero of $\zeta(s)$.
[You are required to prove any relation about $\zeta(s)$ you need, except for the functional equation in part (a).]
5. Let $\Psi(x)=\sum_{n \leq x} \Lambda(n)$, where $\Lambda(n)$ is the von Mangold function

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{e} \text { for some prime } p \text { and integer } e \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We recall that for every $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$ we have

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \Lambda(n) n^{-s} .
$$

(a) Prove that for every s with $\operatorname{Re}(s)>1$ we have

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=s \int_{1}^{\infty} \frac{\Psi(x)}{x^{s+1}} d x .
$$

(b) Prove that

$$
\lim _{s \rightarrow 1}(1-s) \frac{\zeta^{\prime}(s)}{\zeta(s)}=1
$$

(c) Let $\delta=\lim \sup _{x \rightarrow \infty} \frac{\Psi(x)}{x}$. Show that for every $\epsilon>0$ there is a constant $C(\epsilon)$ such that for every real $s>1$,

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)} \leq s C(\epsilon)+\frac{s(\delta+\epsilon)}{s-1}
$$

Using the limit in part (b), or otherwise, deduce that $\delta \geq 1$.
(d) Let $\gamma=\liminf _{x \rightarrow \infty} \frac{\Psi(x)}{x}$. By a similar argument, prove that $\gamma \leq 1$.
(e) Deduce Chebycheff's theorem, that is, if $\lim _{x \rightarrow \infty} \frac{\Psi(x)}{x}$ exists, it must be equal to 1 .

