
Examination solutions 2015-16
Course: M3P16, M4P16, M5P16

Solution to Question 1.

Part a) The functions µ and u are multiplicative, and by a Theorem in the lectures,
the convolution of any two multiplicative functions is multiplicative. seen, 2

Let f(n) = µ ⇤ u(n). For an integer e � 1 and a prime p, we have

f(pe) =
X

ab=p

e

µ(a)u(b) =
X

a|pe
µ(a)

= µ(1) + µ(p) + . . .+ µ(pe) = 1 + (�1) + 0 + . . .+ 0 = 0.

seen, 3

Since f is multiplicativ, f(pe1
1

· · · pek
k

) = f(pe1
1

) · · · f(pek
k

) = 0 if at least one of the
exponents is greater than or equal to 1. seen, 1

For n = 1 we have µ ⇤ u(1) = µ(1) · u(1) = 1 · 1 = 1. seen, 1

Part b) The equation in part a is equivalent to � ⇤ u = u
1

, where u
1

(n) = n, for
n 2 N. Since, µ ⇤ u = u ⇤ µ is the identity element of the convolution, we have
� = � ⇤ (u ⇤ µ) = (� ⇤ u) ⇤ µ = u

1

⇤ µ. seen, 4

Since the functions u
1

and µ are multiplicative, by the theorem mentioned in
part a, � must be multiplicative. seen, 2

Part c) For every prime p and integer e � 1 we have

�(pe) = #{n : n  pe, (n, pe) = 1} = #{n : n  pe, p - n}

= #{n : n  pe}�#{n : n  pe, p | n} = pe � pe�1 = pe(1� 1/p).

seen, 5

Since � is multiplicative, for distinct primes p
1

, p
2

, . . . , p
k

,

�(pe1
1

pe2
2

. . . pek
k

) = �(pe1
1

)�(pe2
2

) . . .�(pek
k

) =
kY

i=1

pei
i

kY

i=1

(1� 1

p
)

By the prime factorization theorem, �(n) = n
Q

p|n(1� 1

p

). seen, 2

Solution to Question 2.
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Part a) By the Euler’s product formula, for every s 2 C with Re(s) > 1,

⇣(s) =
1X

n=1

n�s =
Y

p

(
1

1� p�s

),

where the product is over all primes p. seen, 2

Part b) Let f(n) = 2⌫(n), n 2 N. If we show that f is multiplicative, then by a
theorem in the lectures, for every s with Re(s) greater that the AAC of the Dirichlet
series

P1
n=1

f(n)n�s we have

1X

n=1

f(n)n�s =
Y

p

⇣ 1X

e=0

f(pe)p�es

⌘
,

where the product is over all primes p. seen, 4

The function f is multiplicative, if f(mn) = f(m)f(n), for all positive integers
m and n with (m,n) = 1. First assume that one of m and n, say m, is equal
to 1 and n = pe1

1

pe2
2

. . . pek
k

, where p
i

’s are distinct primes and all e
i

� 1. Then,
f(mn) = f(n) = 2k, while f(m)f(n) = 20 · 2k = 2k. unseen, 2

Now letm = pe1
1

pe2
2

. . . pek
k

and n = qt1
1

qt2
2

. . . q
t

0
k
k

0 with all p
1

, p
2

, . . . , p
k

, q
1

, q
2

, . . . , q
k

0

distinct primes, and e
1

, e
2

, . . . , e
k

, t
1

, t
2

, . . . , t
k

0 positive integers. Then, f(mn) =
2k+k

0
= 2k · 2k0 = f(m)f(n). unseen, 2

We have f(1) = 1  1 and for n � 1 with prime factorization n = pe1
1

pe2
2

. . . pek
k

we have f(n) = 2k  p
1

p
2

. . . p
k

 pe1
1

pe2
2

. . . pek
k

= n. Then,

1X

n=1

|f(n) · n�s| 
1X

n=1

n�Re(s)+1,

which is convergent for Re(s) > 2. In particular, AAC of the Dirichlet series for f is
 2. unseen, 4

For each prime p and positive integer e we have

1X

e=0

f(pe)p�es = f(1) · 1 + f(p) · p�s + f(p2) · p�2s + · · · =

20 · 1 + 21 · p�s + 21 · p�2s + 21 · p�3s + · · · = �1 + 2(
1

1� p�s

) =
1 + p�s

1� p�s

.

unseen, 3
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On the other hand, by the Euler’s product formula,

⇣2(s)

⇣(2s)
=

Y

p

⇣� 1

1� p�s

�
2

�
1� p�2s

�⌘
=

Y

p

⇣1 + p�s

1� p�s

⌘
.

unseen, 3

Solution to Question 3

For n 2 N let us define

f(n) =

(
logn

n

if n is prime

0 otherwise.

Define, F (x) = 1/ log x, for x 2 (0,1). The function F (x) is C1 on (1,1). By the
partial summation formula, for every X > 1 we have

X

nX

f(n)F (n) = S(X)F (X)�
Z

X

1

S(t)F 0(t) dt,

where S(X) =
P

nX

f(n). unseen, 5

We have X

nX

f(n)F (n) =
X

pX

1

p
,

and

S(X) =
X

pX

log p

p
= logX +O(1),

where both sums are over primes p. Moreover, S(X) = 0 for X < 2. unseen, 2

By the formula,

X

pX

1

p
=

�
logX +O(1)

� 1

logX
+

Z
X

2

S(t)

t log2 t
dt = 1 +O(

1

logX
) +

Z
X

2

S(t)

t log2 t
dt.

unseen, 3

Let S(t) = log t+R(t), where R(t) = O(1). Then

Z
X

2

S(t)

t log2 t
dt =

Z
X

2

1

t log t
dt+

Z
X

2

R(t)

t log2 t
dt.
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unseen, 2

We have, Z
X

2

1

t log t
dt = log logX � log log 2,

using the substitution u = log t, and, unseen, 3

Z
X

2

R(t)

t log2 t
dt =

Z 1

2

R(t)

t log2 t
dt�

Z 1

X

R(t)

t log2 t
dt = C �O(

1

logX
),

for some constant C, using the same substitution. unseen, 3

Combining the above formulas, we obtain

X

pX

1

p
= 1 +O(

1

logX
) + log logX � log log 2 + C �O(

1

logX
)

= log logX + (1� log log 2 + C) +O(
1

logX
).

unseen, 2

Solution to Question 4

Part a) If Re s > 1, then by a theorem in the lecture, 1/⇣(s) =
P1

n=1

µ(n)n�s, where
µ is the Möbius function, and |

P1
n=1

µ(n)n�s| 
P1

n=1

|n�s| 
P1

n=1

n�Re(s) < 1,
for Re(s) > 1. In particular, ⇣(s) 6= 0. unseen, 3

If Re(s) < 0, then Re(1 � s) > 1 and by the above argument, ⇣(1 � s) 6= 0.
Therefore, by the hypothesis, ⇣(s) = 0 if and only if cos(⇡s

2

)�(s) has a pole at s. seen, 2

The function cos(⇡s/2) is entire and has no poles, while �(s) is meromorphic
with simple poles at points k = 0,�1,�2,�3, . . . . seen, 2

When �k is odd, the pole of �(s) at k is canceled by the zero of cos(⇡s/2) at k.
So, their product has no pole at k. seen, 2

When, �k is even, cos(⇡k/2) = ±1 and �(s) has a pole at k. Thus, their product
has a pole at k. seen, 2

Part b) The function f(s) = ⇣(s) is meromorohic on C. Since for every real s � 1,
⇣(s) is real, we have f(s) = ⇣(s) on (1,1). By the identity theorem, we must have
f(s) = ⇣(s) on C. seen, 3
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The relation ⇣(s) = ⇣(s) shows that ⇢ is a zero of ⇣(s) if and only if ⇢ is a zero
of ⇣(s). seen, 3

Also, for ⇢ 2 C with 0 < Re ⇢ < 1, cos(⇡⇢/2) 6= 0 and �(⇢) 6= 0. Hence, by
the functional equation in part a), for ⇢ with 0 < Re ⇢ < 1, ⇣(⇢) = 0 if and only if
⇣(1� ⇢) = 0. seen, 3

Solution to Question 5

Part a) We have

s

Z 1

1

 (x)

xs+1

dx = s

1X

i=1

Z
i+1

i

 (x)

xs+1

dx = s

1X

i=1

Z
i+1

i

 (i)

xs+1

dx

= �
1X

i=1

 (i)
�
(i+ 1)�s � i�s

�

= �1
⇣
 (1)(2�s � 1�s) + (2)(3�s � 2�s) + (3)(4�s � 3�s) + . . .

⌘

=  (1) · 1�s + ( (2)� (1)) · 2�s + ( (3)� (2)) · 3�s + . . .

=
1X

n=1

⇤(n) · n�s.

unseen, 5

Part b) By a theorem in the lectures, ⇣(s) has a simple pole of order 1 at 1 with
residue equal to 1. Hence, we have a convergent Laurent series,

⇣(s) =
1

s� 1
+ a

0

+ a
1

(s� 1) + a
2

(s� 1)3 + . . .

seen, 1

This implies that

⇣ 0(s) =
�1

(s� 1)2
+ a

1

+ 2a
2

(s� 1) + 3a
3

(s� 1)2 + . . .

This implies that

lim
s!1

⇣ 0(s)

⇣(s)
= �1.

unseen, 2

Part c)
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By the definition of the lim sup, given ✏ > 0, there is N(✏) > 0 such that for
x � N(✏),  (x)  x(� + ✏). Then, for real s we have

�⇣ 0(s)

⇣(s)
= s

Z
N(✏)

1

 (x)

xs+1

dx+ s

Z 1

N(✏)

 (x)

xs+1

dx  sC(✏)� s(� + ✏)
h xs�1

�s+ 1

i

= sC(✏) + (� + ✏)
s

s� 1
N(✏)�s+1

unseen, 3

Multiplying both sides by s� 1 and then taking limit we obtain 1  � + ✏. As ✏
was arbitrary, we conclude that 1  �. unseen, 2

Part d)

By the definition of the lim inf, given ✏ > 0, there is N 0(✏) > 0 such that for
x � N 0(✏),  (x) � x(� � ✏). Then, for real s we have

�⇣ 0(s)

⇣(s)
= s

Z
N(✏)

1

 (x)

xs+1

dx+ s

Z 1

N(✏)

 (x)

xs+1

dx

� sC 0(✏) + s(� � ✏)
h xs�1

�s+ 1

i
= C 0(✏) + (� � ✏)

s

s� 1
N(✏)�s+1

unseen, 3

Multiplying both sides by s� 1 and then taking limit we obtain 1  � � ✏. As ✏
was arbitrary, we conclude that 1 � �. unseen, 2

Finally, if lim
x!1 (x)/x exists, we must have

1  � = lim sup
x!1

 (x)

x
= lim

x!1

 (x)

x
= lim inf

x!1

 (x)

x
= �  1.

Hence, lim
x!1 (x)/x = 1. unseen, 2
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