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Introduction

The subject of complex variables appears in many areas of mathematics as it has been

truly the ancestor of many subjects. It is employed in a wide range of topics, including,

algebraic geometry, number theory, dynamical systems, and quantum field theory, to name

a few. Basic examples and techniques in complex analysis have been developed over a

century into sophistication methods in analysis. On the other hand, as the real and

imaginary parts of any analytic function satisfy the Laplace equation, complex analysis

is widely employed in the study of two-dimensional problems in physics, for instance in,

hydrodynamics, thermodynamics, ferromagnetism, and percolation.

In complex analysis one often starts with a rather weak requirement (regularity) of

differentiability. That is, a map f : U → C is called holomorphic on Ω, if the limit

lim
h→0

f(z + h)− f(z)

h

exists at every point in the open set U ⊆ C. Then with little effort one concludes from the

above property that f is infinity many times differentiable, and indeed it has a convergent

power series. This is in a direct contrast with the notions of Ck regularities we have

for real maps of Euclidean spaces. That is, there are Ck real maps that are not Ck+1,

for any k ≥ 1. Or, there are C∞ real maps that have no convergent power series. The

difference is rooted in the fact that here h tends to 0 in all directions, and there is a

multiplication operation on the plane that interacts nicely with the addition. Due to

this difference, complex analysis is not merely “extending the calculus to complex-valued

functions”; rather it is a subject of mathematics on its own.

Let Ω be an open set in C that is bounded by a piece-wise smooth simple closed curve,

and let f : ω → C be a holomorphic map. For any C1 simple closed curve γ in Ω, if we

know the values of f on γ, the Cauchy Integral Formula provides a simple formula for the

values of f inside γ:

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz.

Also, there is a similar formula for the higher order derivatives of f at any point inside γ.

On the other hand, if we know all derivatives of f at some point z0 ∈ Ω, then the infinite

series
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n,

is convergent for z close enough to z0, and the value of the series is equal to f(z).
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When the domain Ω enjoys some form of symmetry, for example, when Ω is the unit

disk

D = {z ∈ C : |z| < 1}

with rotational symmetry, the objects of interest in complex analysis often find simple

algebraic forms. In Chapters 2 we prove some results of this nature, including,

Theorem 0.1. Let f : D → D be a one-to-one and onto holomorphic mapping. Then,

there are θ ∈ R and a ∈ D such that

f(z) = eiθ
a− z

1− az
.

Although the above type of results point to the restrictive nature of holomorphic prop-

erty, there are also statements that go in the other direction. For example, in Chapter 5,

we prove the Riemann mapping theorem, which, as a special case, implies the following.

Theorem 0.2. Let Ω ⊂ C be an open set that is bounded by a continuous simple closed

curve, and let z0 ∈ Ω. Then, there is a one-to-one and onto holomorphic map f : D → Ω

with f(0) = z0.

The domain Ω in the above theorem may have a very complicated shape (geometry),

or may have a highly irregular boundary (analysis) obtained from a randomly generated

curve. See Figure 1.

b

Figure 1: An arbitrary open set Ω bounded by a continuous simple closed curve.

The map f in the above theorem is called the uniformlization of the domain Ω. One

aim of this course is to study the behavior of the uniformizations in connection with the

geometric shape of Ω and its boundary. We also look for such geometric quantities that

remain invariant under conformal mappings.
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In applications, one often comes across domains Ω that have very complicated shapes,

or very irregular boundaries. Although the above theorem provides us with a seemingly

nice behaving map, there are little chances that we know the higher order derivatives of

f at some z0 ∈ Ω or the behavior of the map f on the boundary of D in order to use the

Taylor series or the Cauchy Integral Formula to study the behavior of f . But, is it still

possible to say something about the map f? As we shall see in Chapter 6 there are some

universal laws that every one-to-one holomorphic map must obey. Let us give an example

of this type. For an arbitrary θ ∈ [0, 2π), one map ask how fast the curve r 7→ f(reiθ), for

r ∈ [0, 1), move away from 0, or how fast it may spiral about 0? In Chapter 6 we prove

some results of the following type.

Theorem 0.3. Let f : D → C be an arbitrary one-to-one and holomorphic map normalized

with f(0) = 0 and f ′(0) = 1. Then, for every θ ∈ [0, 2π] and r ∈ (0, 1) we have

| arg f ′(reiθ)| ≤ 2 log
1 + r

1− r
. (1)

While Theorem 0.2 is strong and general, its proof is far from constructive. On rare

occasions we are able to provide a formula for the map f (a list of such examples appear in

Chapter 5). This is a rather general theme in holomorphic mappings that we often know

that a holomorphic function with some prescribed conditions exists, but we don’t have a

constructive approach to it.

In Chapter 7 we introduce the concept of quasi-conformal maps, a generalization of

conformal maps. Roughly speaking, these are homeomorphisms whose first partial deriva-

tives exist almost everywhere, and the Cauchy-Riemann condition is nearly satisfied (being

small instead of 0). These maps naturally come up in complex analysis in several ways.

It turns out that such maps still enjoy many properties of conformal maps, while having

a more constructive nature. Many problems related to the behavior of conformal maps

through quasi-conformal maps reduce to the study of a certain type of partial differential

equation, where there are constructive approaches to the solutions.

Although the above method turns out to be unexpectedly powerful, we must remain

humble. It is easy to pose simple looking open (and probably extremely hard) questions

in complex analysis, for instance,

Brennans conjecture: For every one-to-one and onto holomorphic map f : D → Ω,

and every real p with −2 < p < 2/3, we have∫
D
|f ′(reiθ)|p dxdy <∞.
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We will see in this course that geometric complications and irregularities in the bound-

ary of Ω results in large and small values for |f ′|. The above conjecture suggests some

bounds on the average values of |f ′|. This is part of a set of conjectures knows as univer-

sal integral means spectrum, and covers some conjectures of Littlewood on the extremal

growth rate of the length of the closed curves f(r · eiθ), θ ∈ [0, 2π], as r tends to 1. These

questions are motivated by important problems in statistical physics.

The actual prerequisite for this course is quite minimal. We assume that the students

taking this class are familiar with the notions of holomorphic maps and their basic prop-

erties. This is a concise math course with ε-δ proofs, and so precise forms of definitions

and statements appear in the notes. To rectify the challenge of where we start, we have

summarized in Chapter 1 (in three pages) the basic results from complex analysis that we

will rely on.

I prepared these notes for the course Geometric Complex Analysis, M3/4/5P60, for

the autumn term of 2016 at Imperial College London. I am very pleased with the maths

department for agreeing to offer this course for the first time. Complex analysis with its

surprises is one of the most beautiful areas of mathematics. You may help me to improve

these notes by emailing me any comments or corrections you have.
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Chapter 1

Preliminaries from complex analysis

1.1 Holomorphic functions

In this section we recall the key concepts and results from complex analysis.

Let R denote the set of real numbers, and C denote the set of complex numbers. It is

standard to write a point z ∈ C as z = x+ iy, where x and y are real, and i · i = −1. Here

x = Re z is called the real part of z and y = Im z is called the imaginary part of z. With

this correspondence z 7→ (x, y), C is heomeomorphic to R2.

Definition 1.1. Let Ω be an open set in C and f : Ω → C. Then f is called differentiable

at a point z ∈ Ω if the limit

lim
h→0

f(z + h)− f(z)

h

exists and is a finite complex number. This limit is denoted by f ′(z). The map f is called

holomorphic (analytic) on Ω, if f is differentiable at every point in Ω.

It easily follows that if f : Ω → C is differentiable at z ∈ Ω, then it is continuous at z.

It is important to note that in Definition 1.1 h tends to 0 in the complex plane. (This

is rather an abuse of the terminology “differentiable”, as we shall see in a moment!) In

particular, h may tend to 0 in any direction. Let us write the map f in the real and

imaginary coordinates as f(x+ iy) = u(x, y) + iv(x, y), where u(x, y) and v(x, y) are real

valued functions on Ω. When h tends to 0 in the horizontal direction, then

f ′(z) = lim
x→0

f(z + x)− f(z)

x
=
∂u

∂x
+ i

∂v

∂x
=
∂f

∂x
. (1.1)

On the other hand, if h tends to 0 in the vertical direction, that is, in the y direction, then

f ′(z) = lim
y→0

f(z + iy)− f(z)

iy
= −i∂u

∂y
+
∂v

∂y
= −i∂f

∂y
(1.2)

Then, if f ′(z) exists, we must have

∂f

∂x
= −i∂f

∂y
(1.3)
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In terms of the coordinate functions u and v, we must have

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1.4)

The above equations are known as the Cauchy-Riemann equations. On the other hand,

if u and v are real-valued functions on Ω that have continuous first partial derivatives

satisfying Equation (1.4), then f(x+ iy) = u(x, y) + iv(x, y) is holomorphic on Ω.

Theorem 1.2 (Cauchy-Goursat theorem-first version). Let Ω be an open set in C that is

bounded by a smooth simple closed curve, and let f : Ω → C be a holomorphic map. Then,

for any piece-wise C1 simple closed curve γ in Ω we have∫
γ
f(z) dz = 0.

There is an important corollary of the above theorem, that we state as a separate

statement for future reference.

Theorem 1.3 (Cauchy Integral Formula-first version). Let Ω be an open set in C that is

bounded by a smooth simple closed curve, and let f : Ω → C be a holomorphic map. Then,

for any C1 simple closed curve γ in Ω and any point z0 in the region bounded by γ we

have

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz.

The condition Ω bounded by a smooth simple closed curve is not quite necessary in

the above two theorem. Indeed, you may have only seen the above theorems when Ω is

a disk or a rectangle. We shall see a more general form of these theorems later in this

course, where a topological feature of the domain Ω comes into play.

Theorem 1.3 reveals a remarkable feature of holomorphic mappings. That is, if we

know the values of a holomorphic function on a simple closed curve, then we know the

values of the function in the region bounded by that curve, provided we a priori know

that the function is holomorphic on the region bounded by the curve.

There is an analogous formula for the higher derivatives of holomorphic maps as well

1. Under the assumption of Theorem 1.3, and every integer n ≥ 1, the n-th derivative of

f at z0 is given by

f (n)(z0) =
n!

2πi

∫
γ

f(z)

(z − z0)n+1
dz. (1.5)

1Chauchy had proved Theorem 1.2 when the complex derivative f ′(z) exists and is a continuous function

of z. Then, Édouard Goursat proved that Theorem 1.2 can be proven assuming only that the complex

derivative f ′(z) exists everywhere in Ω. Then this implies Theorem 1.3 for these functions, and from that

deduce these functions are in fact infinitely differentiable.
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In Definition 1.1, we only assumed that the first derivative of f exists. It is remarkable

that this seemingly weak condition leads to the existence of higher order derivatives.

Indeed, an even stronger statement holds.

Theorem 1.4 (Taylor-series). Let f : Ω → C be a holomorphic function defined on an

open set Ω ⊆ C. For every z0 ∈ Ω, the infinite series

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n,

is absolutely convergent for z close to z0, with the value of the series equal to f(z).

The above theorems are in direct contrast with the regularity properties we know for

real maps on R or on Rn. That is, we have distinct classes of differentiable functions,

C1 functions, C2 functions, C∞ functions, real analytic functions (Cω). For any k, it is

possible to have a function that is Ck but not Ck+1 (Find an example if you already don’t

know this). There are C∞ functions that are not real analytic. For example, the function

defined as f(x) = 0 for x ≤ 0 and f(x) = e−1/x for x > 0. But these scenarios don’t exist

for complex differentiable functions.

Figure 1.1: The graph of the function f .

Since a holomorphic function f : Ω → C is infinitely differentiable, higher order partial

derivatives of u and v exist and are continuous. Differentiating Equations (1.4) with

respect to x and y, and using ∂x∂yv = ∂y∂xv and ∂x∂yu = ∂y∂xu, we conclude that the

real functions u : Ω → R and v : Ω → R are harmonic, that is,

∂2u

∂x2
+
∂2u

∂y2
= 0 and

∂2v

∂x2
+
∂2v

∂y2
= 0

hold on Ω. We state this as a separate theorem for future reference.

Theorem 1.5 (Harmonic real and imaginary parts). Let f(x + iy) = u(x, y) + iv(x, y)

be a holomorphic function defined on an open set Ω in C. Then, u(x, y) and v(x, y) are

harmonic functions on Ω.
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A pair of harmonic functions u and v defined on the same domain Ω ⊆ C are called

harmonic conjugates, if they satisfy the Cauchy-Riemann equation, in other words, the

function f(x+ iy) = u(x, y) + iv(x, y) is holomorphic.

Theorem 1.6 (maximum principle). If f : Ω → C is a non-constant holomorphic function

defined on an open set Ω, then its absolute value |f(z)| has no maximum in Ω. That is,

there is no z0 ∈ Ω such that for all z ∈ Ω we have |f(z)| ≤ |f(z0)|.
On the other hand, under the same conditions, either f has a zero on Ω or |f(z)| has

no minimum on Ω.

Let K be an open set in Ω such that the closure of K is contained in Ω. If f : Ω → C is

an analytic function, |f(z)| is continuous on K and by the extreme value theorem, |f | has
a maximum on the closure of K. But by the above theorem, |f | has no maximum on K.

This implies that the maximum of |f | must be realized on the boundary of K. Similarly,

the minimum of |f | is also realized on the boundary of K.
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Chapter 2

Schwarz lemma and automorphisms of the

disk

2.1 Schwarz lemma

We denote the disk of radius 1 about 0 by the notation D, that is,

D = {z ∈ C : |z| < 1}.

Given θ ∈ R the rotation of angle θ about 0, i.e. z 7→ eiθ · z, preserves D. Due to the

rotational symmetry of D most objects studied in complex analysis find special forms on

D that have basic algebraic forms. We study some examples of these in this section, and

will see more on this later on.

A main application of the maximum principle (Theorem 1.6) is the lemma of Schwarz.

It has a simple proof, but has far reaching applications.

Lemma 2.1 (Schwarz lemma). Let f : D → D be holomorphic with f(0) = 0. Then,

(i) for all z ∈ D we have |f(z)| ≤ |z|;

(ii) |f ′(0)| ≤ 1;

(iii) if either f(z) = z for some non-zero z ∈ D, or |f ′(0)| = 1, then f is a rotation about

0.

Proof. Since f is holomorphic on D, we have a series expansion for f centered at 0,

f(z) = a0 + a1z + a2z
2 + . . . ,

that is convergent on D. Since f(0) = 0, a0 = 0, and we obtain

f(z) = a1z + a2z
2 + · · · = z(a1 + a2z + a3z

2 + . . . ).

In particular, the series in the above parenthesis is convergent on D. In particular, the

function g(z) = f(z)/z = a1 + a2z + a3z
2 + . . . is defined and holomorphic on D. Note

that g(0) = a1 = f ′(0).
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On each circle |z| = r < 1, as |f(z)| < 1, we have

|g(z)| < 1

r
.

Then by the maximum principle, we must have the above inequality on |z| < r. Taking

limit as r → 1 from the left, we conclude that on D, |g(z)| ≤ 1. This implies part (i) and

(ii) of the lemma.

To prove part (iii) of the lemma, note that if any of the two equality holds, then g

attains its maximum in the interior of D. Then, by the maximum principle, g must be a

constant on D, say g(z) ≡ a. Then, either of the relations |f ′(0)| = 1 and f(z) = z for

some z ̸= 0, implies that |a| = 1. This finishes the proof of part (iii).

As an application of the Schwarz lemma we classify the one-to-one and onto holomor-

phic mappings of D.

2.2 Automorphisms of the disk

Definition 2.2. Let U and V be open subsets of C. A holomorphic map f : U → V that

is one-to-one and onto is called a biholomorphism from U to V . A biholomorphism from

U to U is called an automorphism of U . The set of all automorphisms of U is denoted by

Aut(U).

Obviously, Aut(U) contains the identity map and hence is not empty. The composition

of any two maps in Aut(U) is again an element of Aut(U). Indeed, Aut(U) forms a group

with this operation.

Proposition 2.3. For every non-empty and open set U in C, Aut(U) forms a group with

the operation being the composition of the maps.

Proof. The composition of any pair of one-to-one and onto holomorphic maps from U to

U is a one-to-one and onto holomorphic map from U to itself. Thus the operation is well

defined on Aut(U). The identity map z 7→ z is the identity element of the group.

The associativity (f ◦ g) ◦ h = f ◦ (g ◦ h) holds because the relation is valid for general

maps. The inverse of every f ∈ Aut(U) is given by the inverse mapping f−1. Note that

the inverse of any one-to-one map is defined and is a holomorphic map.

We have already seen that every rotation z 7→ eiθ · z, for a fixed θ ∈ R, is an automor-

phism of the disk. For a ∈ D define

φa(z) =
a− z

1− az
.
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Lemma 2.4. For every a ∈ D, φa is an automorphism of D.

Proof. First note that φa is defined and holomorphic at every z ∈ C, except at z = 1/a

where the denominator becomes 0. However, since |a| < 1, we have |1/a| = 1/|a| > 1, and

therefore, 1/a /∈ D. Hence, φa is holomorphic on D.
To see that φa maps D into D, fix an arbitrary z ∈ C with |z| = 1. Observe that

|φa(z)| =
∣∣∣∣ a− z

1− az

∣∣∣∣ = ∣∣∣∣ a− z

1− az

∣∣∣∣ · 1

|z|
=

∣∣∣∣a− z

z − a

∣∣∣∣ = 1,

since zz = |z|2 = 1. By the maximum principle (Theorem 1.6), |φa(z)| < 1 on D.
We observe that

φa(a) = 0, and φa(0) = a.

Then,

φa ◦ φa(0) = 0, and φa ◦ φa(a) = a.

By the Schwarz lemma, this implies that φa ◦φa must be the identity map of D. It follows
that φa is both one-to-one and onto from D to D.

It turns out that the composition of rotations and the maps of the form φa are all the

possible automorphisms of D.

Theorem 2.5. A map f is an automorphism of D iff there are θ ∈ R and a ∈ D such that

f(z) = eiθ · a− z

1− az
.

Proof. Let f be an element of Aut(D). Since f is onto, there is a ∈ D with f(a) = 0. The

map

g = f ◦ φa

is an automorphism of D with g(0) = 0. By the Schwarz lemma, we must have |g′(0)| ≤ 1.

Applying the Schwarz lemma to g−1 we also obtain |(g−1)′(0)| ≤ 1. By the two inequalities,

we have |g′(0)| = 1. Thus, by the same lemma, g(z) = eiθ · z, for some θ ∈ R. That

is, f ◦ φa(z) = eiθz, for z ∈ D. Since φa ◦ φa is the identity map, we conclude that

f(z) = eiθφa(z).

On the other hand, for any θ ∈ R and any a ∈ D, f belongs to Aut(D). That is

because, f is the composition of the automorphism φa (Lemma 2.4) and a rotation.
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φa

Figure 2.1: The images of the circles and rays under the map φa where a = 0.5 + i0.5.

2.3 Automorphisms of the half-plane

Define the upper half plane H as

H = {z ∈ C : Im z > 0}.

There are biholomorphic maps between D and H given by explicit formulae

F : H → D, F (z) =
i− z

i+ z
, F (i) = 0 (2.1)

and

G : D → H, G(w) = i · 1− w

1 + w
, G(0) = i.

G

Figure 2.2: Similar line colors are mapped to one another by F .

Lemma 2.6. The map F : H → D is a biholomorphic map with inverse G : D → H.

14



The proof of the above lemma is elementary and is left to the reader as an exercise.

The explicit biholomorphic map F allows us to identify Aut(H) in terms of Aut(D).
That is, define

Γ : Aut(D) → Aut(H) as Γ(φ) = F−1 ◦ φ ◦ F.

It is clear that if φ ∈ Aut(D) then Γ(φ) = F−1 ◦φ◦F ∈ Aut(H). The map Γ is one-to-one

and onto with inverse given by Γ−1(ψ) = F ◦ ψ ◦ F−1. Indeed, Γ is more than just a

bijection, it also preserves the operations on the groups Aut(D) and Aut(H). To see this,

assume that φ1 and φ2 belong to Aut(D).

Γ(φ1 ◦ φ2) = F−1 ◦ (φ1 ◦ φ2) ◦ F = F−1 ◦ φ1 ◦ F ◦ F−1 ◦ φ2 ◦ F = Γ(φ1) ◦ Γ(φ2).

The isomorphism Γ : Aut(D) → Aut(H) show that indeed the two groups are the same.

However, we still would like to have explicit formulas for members of Aut(H). Using the

explicit formulas for F and G, as well as the explicit formulas for elements of Aut(D) in

Theorem 2.5, a long series of calculations shows that an element of Aut(H) is of the form

z 7→ az + b

cz + d
,

where a, b, c, and d are real, and ad − bc = 1. We shall present an alternative proof of

this, but before doing that we introduce some notations that simplify the presentation.

Define

SL2(R) =

{(
a b

c d

)
: a, b, c, d ∈ R and ad− bc = 1

}
.

The set SL2(R) forms a group with the operation of matrix-multiplication. This is called

the special linear group. To each matrix M =
(
a b
c d

)
in SL2(R) we associate the map

fM (z) =
az + b

cz + d
.

It is a straightforward calculation to see that for every M and M ′ in SL2(R) we have

fM ◦ fM ′ = fM ·M ′ . (2.2)

That is, the correspondence M 7→ fM respects the group operations.

Theorem 2.7. For every M ∈ SL2(R) the map fM is an automorphism of H. Conversely,

every automorphism of H is of the form fM for some M in SL2(R).

Proof. We break the proof into several steps.
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Step 1. Let M ∈ SL2(R). The map fM is holomorphic on H. Moreover, for every

z ∈ H we have

Im fM (z) = Im
az + b

cz + d
= Im

(az + b)(cz + d)

(cz + d)(cz + d)
=

(ad− bc) Im z

|cz + d|2
=

Im z

|cz + d|2
> 0.

Thus, fM maps H into H. As SL2(R) forms a group, there is a matrix M−1 in SL2(R)
such that M ·M−1 = M−1 ·M is the identity matrix. It follows that fM ◦ fM−1 is the

identity map of H. In particular, fM is both one-to-one and onto. This proves the first

part of the theorem.

Step 2. Let h ∈ Aut(H) with h(i) = i. Define I = F ◦ h ◦ F−1, where F is the map in

Equation (2.1). Then, I ∈ Aut(D) and I(0) = 0. Also, I−1 is a holomorphic map from D
to D that sends 0 to 0. By the Schwarz lemma, |I ′(0)| ≤ 1, and |(I−1)′(0)| ≤ 1. Thus, by

the Schwarz lemma, I must be a rotation about 0, that is, there is θ ∈ R such that

F ◦ h ◦ F−1(z) = eiθ · z. (2.3)

Step 3. Let

Q =

(
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)
.

The matrix Q belongs to SL2(R), and one can verify that fQ(i) = i and f ′Q(i) = eiθ.

Then the map F ◦ fQ ◦F−1 is an automorphism of D that maps 0 to 0 and has derivative

eiθ at 0. By the Schwarz lemma, F ◦ fQ ◦ F−1 is the rotation z 7→ eiθ · z. That is,

F ◦ fQ ◦ F−1 = F ◦ h ◦ F−1. Since F is one-to-one we conclude that h = fQ, where h is

the map in Step 1.

Step 4. We claim that for every z0 ∈ H there is N ∈ SL2(R) such that fN (i) = z0.

First we choose a re-scaling about 0 that maps i to a point whose imaginary part is equal

to Im z0. This map is given by the matrix

O =

(√
Im z0 0

0 1/
√
Im z0

)
,

that is, Im fO(i) = Im z0. Then we use the translation z + (z0 − fO(i)) to map fO(i) to

z0. The latter map is obtained from the matrix

P =

(
1 z0 − fM (i)

0 1

)
.

The map fP ◦ fO = fP ·O maps i to z0. Set N = P ·O.
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Step 5. Let g be an automorphism of H. There is z0 in H with g(z0) = i. By Step 4,

there is N ∈ SL2(R) such that fN (i) = z0. The composition h = g ◦ fN belongs to Aut(H)

and sends i to i. Thus, by Steps 2 and 3, h = fQ. Now, using Equation (2.2), we have

g = h ◦ (fN )−1 = fQ ◦ fN−1 = fQ·N−1 .

This shows that g has the desired form.

2.4 Exercises

Exercise 2.1. For a ∈ C and r > 0 let B(a, r) = {z ∈ C : |z − a| < r}, that is, the open

disk of radius r about a. Let a and b be arbitrary points in C, and let r and s be positive

real numbers. Prove that for every holomorphic map f : B(a, r) → B(b, s) with f(a) = b

we have |f ′(a)| ≤ s/r.

Exercise 2.2. Let f : D → D be a holomorphic map.

(i) Prove that for every a ∈ D we have

|f ′(a)|
1− |f(a)|2

≤ 1

1− |a|2
,

(ii) Prove that for every a and b in D we have∣∣∣∣∣ f(a)− f(b)

1− f(a)f(b)

∣∣∣∣∣ ≤
∣∣∣∣ a− b

1− ab

∣∣∣∣ .
The above inequalities are known as the Schwarz-Pick lemma.

Exercise 2.3. Let h : H → H be a holomorphic map. Prove that for every a ∈ H we have

|h′(a)| ≤ Imh(a)

Im a
.

Exercise 2.4. Prove that for every z and w in D there is f ∈ Aut(D) with f(z) = w.

[For an open set U ⊆ C, we say that Aut(U) acts transitively on U , if for every z and

w in U there is f ∈ Aut(U) such that f(z) = w. By the above statements, Aut(D) act

transitively on D.

Exercise 2.5. Prove Lemma 2.6
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Chapter 3

Riemann sphere and rational maps

3.1 Riemann sphere

It is sometimes convenient, and fruitful, to work with holomorphic (or in general continu-

ous) functions on a compact space. However, we wish to still “keep” all of C in the space

we work on, but see it as a subset of a compact space. There are sequences in C that

have no sub-sequence converging to a point in C. The least one needs to do is to add the

limiting values of convergent sub-sequences to C. It turns out that one may achieve this

by adding a single point to C in a suitable fashion. We denote this point with the notation

∞. Below we discuss the construction in more details.

Let us introduce the notation Ĉ for the set C∪ {∞}, where ∞ is an element not in C.
The arithmetic on C may be extended, to some extent, by assuming that

• for all finite a ∈ C, ∞+ a = a+∞ = ∞.

• for all non-zero b ∈ C ∪ {∞}, b · ∞ = ∞ · b = ∞.

Remark 3.1. It is not possible to define ∞ + ∞ and 0 · ∞ without violating the laws of

arithmetic. But, by convention, for a ∈ C \ {0} we write a/0 = ∞, and for b ∈ C we write

b/∞ = 0.

We “attach” the point ∞ to C by requiring that every sequence zi ∈ C, for i ≥ 1, with

|zi| diverging to infinity converges to ∞. This is rather like adding the point +1 to the

set (0, 1). With this definition, it is easy to see that every sequence in Ĉ has a convergent

sub-sequence. We have also kept a copy of C in Ĉ.
There is a familiar model for the set C ∪ {∞} obtain from a process known as “stere-

ographic projection”. To see that, let

S = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1}.

Let N = (0, 0, 1) ∈ S. We define a homeomorphism π : S → Ĉ as follows. Let π(N) = ∞,

and for every point (x1, x2, x3) ̸= N in S define

π(x1, x2, x3) =
x1 + ix2
1− x3

. (3.1)
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By the above formula,

|π(X)|2 = x21 + x22
(1− x3)2

=
1 + x3
1− x3

,

which implies that

x3 =
|π(X)|2 − 1

|π(X)|2 + 1
, x1 =

π(X) + π(X)

1 + |π(X)|2
, x2 =

π(X)− π(X)

i(1 + |π(X)|2)
.

The above relations imply that π is one-to-one and onto.

The continuity of π at every point on S \{N} is evident from the formula. To see that

π is continuous at N , we observe that if X tends to N on S, then x3 tends to +1 from

below. This implies that |π(X)| tends to +∞, that is, π(X) tends to ∞ in Ĉ.
If we regard the plane (x1, x2, 0) in R3 as the complex plane x1 + ix2, there is a nice

geometric description of the map π, called stereographic projection. That is the points N ,

X, and π(X) lie on a straight line in R3. See Figure 3.1.

Figure 3.1: Presentation of the map π.

The set Ĉ, with the convergence of sequences described above, is known as the Riemann

sphere. In view of the above construction, as we know S as a symmetric space, Ĉ should

be also viewed as a symmetric space. To discuss this further, we need to give some basic

definitions.

Let Ω be an open set in C. Recall that f : Ω → C is called continuous at a point

z ∈ Ω, if for every ε > 0 there is δ > 0 such that for all z′ ∈ Ω with |z − z′| < δ we have

|f(z)− f(z′)| < ε. This is equivalent to saying that f is continuous at z if and only if for

every sequence zn, n ≥ 1, in Ω that converges to z, the sequence f(zn) converges to f(z).

We use the above idea to define the notion of continuity for maps f : Ĉ → Ĉ. That is,
f : Ĉ → Ĉ is called continuous at z ∈ Ĉ, if every sequence that converges to z is mapped

by f to a sequence that converges to f(z).
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When f maps ∞ to ∞, the continuity of f at ∞ is equivalent to the continuity of the

map z 7→ 1/f(1/z) at 0. Similarly, when f(∞) = a ̸= ∞, the continuity of f at ∞ is

equivalent to the continuity of the map z 7→ f(1/z) at 0. When f(a) = ∞ for some a ∈ C,
the continuity of f at a is equivalent to the continuity of the map z 7→ 1/f(z) at a.

As usual, f : Ĉ → Ĉ is called continuous, if it is continuous at every point in Ĉ.

Definition 3.2. Let f : Ĉ → Ĉ be a continuous map and a ∈ Ĉ. Then,

(i) When a = ∞ and f(a) = ∞, we say that f is holomorphic at a if the map z 7→
1/f(1/z) is holomorphic at 0.

(ii) If a = ∞ and f(a) ̸= ∞, then f is called holomorphic at a if the map z 7→ f(1/z) is

holomorphic at 0.

(iii) If a ̸= ∞ but f(a) = ∞, then f is called holomorphic at a if the map z 7→ 1/f(z) is

holomorphic at a.

Continuous and Holomorphic maps from C to Ĉ, from D to Ĉ, and vice versa, are

defined accordingly.

Example 3.3. You have already seen that every polynomial P (z) = anz
n + an−1z

n−1 +

· · ·+a0 is holomorphic from C to C. As z tends to ∞ in C, P (z) tends to ∞ in C. Hence,
we may extend P to a continuous map from Ĉ to Ĉ by defining P (∞) = ∞. To see

whether P is holomorphic at ∞ we look at

1

P (1/z)
=

zn

an + an−1z + · · ·+ a0zn
,

which is well-defined and holomorphic near 0. When n > 1, the complex derivative of the

above map at 0 is equal to 0. When n = 1, its derivative becomes 1/a1. Thus, P is a

holomorphic map of Ĉ.

Proposition 3.4. If f : Ĉ → C is a holomorphic map, then f is a constant map.

Proof. We break the proof into several steps.

Step1. There is z0 ∈ Ĉ such that for all z ∈ Ĉ we have |f(z)| ≤ |f(z0)|. That is, |f |
attains its maximum value at some point.

To prove the above statement, first we note that there isM > 0 such that for all z ∈ Ĉ,
we have |f(z)| ≤M . If this is not the case, there are zn ∈ Ĉ, for n ≥ 1, with |f(zn)| ≥ n.

As Ĉ is a compact set, the sequence zn has a sub-sequence, say znk
that converges to some
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point w ∈ Ĉ. By the continuity of f we must have f(w) = limk→+∞ f(znk
) = ∞. This

contradicts with f : Ĉ → C.
The set V = {|f(z)| : z ∈ Ĉ} is a subset of R, and by the above paragraph, it is

bounded from above. In particular, V has a supremum, say s. For any n ≥ 1, since s

is the least upper bound, there is zn ∈ Ĉ such that |f(zn)| ≥ s − 1/n. The sequence

zn is contained in the compact set Ĉ. Thus, there is a sub-sequence znl
, for l ≥ 1, that

converges to some point z0 in Ĉ. It follows from the continuity of |f(z)| that |f(z0)| = s.

Therefore, for all z ∈ Ĉ, |f(z)| ≤ |f(z0)|.

Step 2. If z0 ∈ C, then the map f : C → C is holomorphic and |f | attains its maximum

value at a point inside C. By the maximum principle, f must be constant on C. Then, by
the continuity of f : Ĉ → C, we conclude that f is constant on Ĉ.

Step 3. If z0 = ∞, then we look at the map h(z) = f(1/z). Buy definition, h : C → C is

holomorphic and |h| attains its maximum value at 0. Again, by the maximum principle, h

must be constant on C. Equivalently, f is constant on Ĉ\{0}. As in the above paragraph,

the continuity of f : Ĉ → C, implies that indeed f is constant on Ĉ.

Example 3.5. The exponential map z 7→ ez is holomorphic from C to C. As z tends to

infinity along the positive real axis, ez tends to ∞ along the positive real axis. But as

z tends to ∞ along the negative real axis, ez tends to 0. Hence there is no continuous

extension of the exponential map from Ĉ to Ĉ.

Definition 3.6. Let Ω be an open set in C and f : Ω → C be a holomorphic map. We

say that f has a zero of order k ∈ N at z0 ∈ Ω, if f (i)(z0) = 0 for 0 ≤ i ≤ k − 1, and

f (k)(z0) ̸= 0. Similarly, we can say that f attains value w0 at z0 of order k, if z0 is a zero

of order k for the function z 7→ f(z) − w0. Here, the series expansion of f at z0 has the

form f(z) = w0 + ak(z − z0)
k + ak+1(z − z0)

k+1 . . . , with ak ̸= 0.

Definition 3.7. Definition 3.6 may be extended to holomorphic maps f : Ĉ → Ĉ. That

is, we say that f attains ∞ at z0 ∈ C of order k, if z0 is a zero of order k for the map

z 7→ 1/f(z). Then, near z0 we have

1/f(z) = ak(z − z0)
k + ak+1(z − z0)

k+1 + ak+2(z − z0)
k+2 + . . . .
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This implies that

f(z) =
1

ak(z − z0)k + ak+1(z − z0)k+1 + ak+2(z − z0)k+2 + . . .

=
1

zk(ak + ak+1(z − z0) + ak+2(z − z0)2 + . . . )

=
1

(z − z0)k
(b0 + b1(z − z0) + b2(z − z0)

2 + . . . )

=
b0

(z − z0)k
+

b1
(z − z0)k−1

+
b2

(z − z0)k−2
+ . . . .

Recall that z0 is also called a pole of order k for f .

Similarly, if f(∞) = ∞, we say that f attains ∞ at ∞ of order k, if the map z 7→
1/f(1/z) has a zero of order k at 0

Proposition 3.8. Let g : Ĉ → Ĉ be a holomorphic map such that for every z ∈ C,
g(z) ∈ C. Then, g is a polynomial.

Proof. The map g has a convergent power series on all of C as

g(z) = a0 + a1z + a2z
2 + a3z

3 + . . . .

We consider two possibilities.

If g(∞) ̸= ∞, then g : Ĉ → C is holomorphic and by Proposition 3.4, g must be

constant on Ĉ. Therefore, g(z) ≡ a0 is a polynomial.

The other possibility is that g(∞) = ∞. To understand the behavior of g near ∞, we

consider the map h(w) = 1/g(1/w) near 0. We have h(0) = 0. Let n ≥ 1 be the order of

0 at 0 for the map h, that is, h(w) = anw
n + an+1w

n+1 + . . . near 0. This implies that

there is δ > 0 such that for |w| ≤ δ we have

|h(w)| ≥ |anwn|
2

.

In terms of g, this means that for |z| ≥ 1/δ we have |g(z)| ≤ 2|zn|/|an|. Then, by the

Cauchy integral formula for the derivatives, for every j ≥ n+ 1 and R > 0 we have

g(j)(0) =
j!

2πi

∫
∂B(0,R)

g(z)

zj+1
dz.

Then, for R > 1/δ,

|g(j)(0)| ≤ 2 · j!
2π|an|

∫
∂B(0,R)

|z|n

|zj+1|
dz ≤ 2 · j!

2π|an|
· 2πR · 1

Rj+1−n
.

Now we let R → +∞, and conclude that for all j ≥ n+ 1, g(j)(0) = 0. Therefore, for all

j ≥ n+ 1, aj = g(j)(0)/j! = 0, and thus, g is a polynomial of degree n.
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3.2 Rational functions

Example 3.9. If Q(z) = a0 + a1z + a2z
2 + · · · + anz

n is a polynomial, then Q attains

∞ of order n at ∞. The map 1/Q(z) : Ĉ → Ĉ is well-defined and holomorphic. At every

point z0 where Q(z0) ̸= 0, 1/Q(z) is well defined near z0. If z0 is a zero of order k for

Q(z), then 1/Q(z0) = ∞ and z0 is a pole of order k.

Definition 3.10. If P and Q are polynomials, the map z 7→ P (z)/Q(z) is a well-defined

holomorphic map from Ĉ to Ĉ. Any such map is called a rational function.

Theorem 3.11. Let f : Ĉ → Ĉ be a holomorphic map. Then, there are polynomials P (z)

and Q(z) such that

f(z) =
P (z)

Q(z)
.

Before we present a proof of the above theorem, we recall a basic result from complex

analysis.

Proposition 3.12. Let Ω be a connected and open set in C and f : Ω → C be a holomor-

phic map. Assume that there is a sequence of distinct points zj in Ω converging to some

z ∈ Ω such that f takes the same value on the sequence zj. Then, f is constant on Ω.

In the above proposition, the connectivity of Ω is necessary and is imposed to avoid

trivial counter examples. For example, one may set Ω = D ∪ (D+ 5) and defined f as +1

on D and as −1 on D+5. It is also necessary to assume that the limiting point z belongs to

Ω. For instance, the map sin(1/z) is defined and holomorphic on Ω = {z ∈ C : Re z > 0}
and has a sequence of zeros at points 1/(2πn), but it is not identically equal to 0.

Proof. Without loss of generality we may assume that the value of f on the sequence zj is

0 (otherwise consider f − c). Since f is holomorphic at z, it has a convergent power series

for ζ in a neighborhood of z as

f(ζ) = a1(ζ − z) + a2(ζ − z)2 + a3(ζ − z)3 + . . . .

If f is not identically equal to 0, there the smallest integer n ≥ 1 with an ̸= 0. Then,

f(ζ) = (ζ − z)n−1 · h(ζ), for some holomorphic function h defined on a neighborhood U of

z with h(z) ̸= 0. But for large enough j, zj belongs to U and we have f(zj) = 0. This is

a contradiction that shows for all n ≥ 1, an = 0. In particular, f is identically 0 on U .

Let us define the set E ⊆ Ω as the set of points w in Ω such that for all n ≥ 1 we have

f (n)(w) = 0. By the above paragraph, E contains z and hence it is not empty. Also, the

argument shows that E is an open subset of Ω (see Theorem 1.4).
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If E = Ω then we are done and f is identically equal to 0. Otherwise, there must be

an integer n ≥ 1 and w ∈ Ω such that f (n)(w) ̸= 0. Let us define the sets

Fn = {w ∈ Ω : f (n)(w) ̸= 0}, for n ≥ 1.

By the continuity of the map z 7→ f (n)(z) on Ω, each Fn is an open set. In particular, the

union F = ∪n≥1Fn is an open set. Now, Ω = E ∪ F , where E and F are non-empty and

open sets. This contradicts the connectivity of Ω.

By the above proposition, if holomorphic functions f and g defined on Ω are equal

on a sequence converging to some point in Ω, they must be equal. This follows from

considering the function f − g in the above proposition. In other words, a holomorphic

function is determined by its values on a sequence whose limit is in the domain of the

function. However, this does not mean that we know how to identify the values of the

function all over the domain.

Proof of Theorem 3.11. If the map f is identically equal to a constant c ̸= ∞ we choose

P ≡ c and Q ≡ 1. If the map f is identically equal to ∞ we choose, P ≡ 1 and Q ≡ 0.

Below we assume that f is not constant on Ĉ.
If f does not attain ∞ at any point on Ĉ, then f : Ĉ → C is holomorphic, and by

Proposition 3.4 it must be constant on Ĉ. So, if f is not constant, it must attain ∞ at

some points in Ĉ.
There are at most a finite number of points in C, denoted by a1, a2, . . . , an, where

f(ai) = ∞. That is because, if f attains ∞ at an infinite number of distinct points in C,
since Ĉ is a compact set, there will be a sub-sequence of those points converging to some

z0 in Ĉ. Then, we apply proposition 3.12 to the map 1/f(z) or 1/f(1/z) (depending on

the value of z0), and conclude that f is identically equal to ∞.

Each pole ai of Q has some finite order ki ≥ 1. Define

Q(z) = (z − a1)
k1(z − a2)

k2 . . . (z − an)
kn .

Consider the map g(z) = f(z)Q(z). Since f and Q are holomorphic functions from Ĉ to

Ĉ, g is holomorphic from Ĉ to Ĉ. The map g is holomorphic from Ĉ to Ĉ. Moreover, since

the order of zero of Q at ai is equal to the order of the pole of f at ai, g is finite at any

point in C. Thus, by Proposition 3.8, g is a polynomial in variable z. This finishes the

proof of the theorem.

The degree of a rational map f = P/Q, where P and Q have no common factors, is

defined as the maximum of the degrees of P and Q. There is an intuitive meaning of the
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degree of a rational map as in the case of polynomials. Recall that by the fundamental

theorem of algebra, for c ∈ C, the equation P (z) = c has deg(P ) solutions, counted with

the multiplicities given by the orders of the solutions. As the equation f(z) = c reduces

to cQ(z) − P (z) = 0, the number of solutions of f(z) = c counted with multiplicities is

given by deg(f).

Theorem 3.13. A holomorphic map f : Ĉ → Ĉ is an automorphism of Ĉ, iff there are

constants a, b, c, and d in C with ad− bc = 1 and

f(z) =
az + b

cz + d
. (3.2)

Proof. By Example 3.9, every map f of this form is holomorphic from Ĉ to Ĉ. Moreover,

one can verify that the map g(z) = (dz− b)/(−cz+ a) satisfies f ◦ g(z) = g ◦ f(z) = z, for

all z ∈ Ĉ. Hence, f is both on-to-one and onto from Ĉ to Ĉ. This proves one side of the

theorem.

On the other hand, if f is an automorphism of Ĉ, by Theorem 3.11, there are poly-

nomials P and Q such that f = P/Q. Let us assume that P and Q have no common

factors. Since f is one-to-one, every point has a single pre-image. Thus, by the paragraph

preceding the theorem, we must have max{deg(P ),deg(Q)} = 1. Then, there are complex

constants a, b, c, d such that P (z) = az + b and Q(z) = cz + d, where at least one of a

and c is non-zero.

Since P and Q have no common factors, we must have ad− bc ̸= 0. We may multiply

both P and Q by some constant to make ad− bc = 1.

Definition 3.14. Every map of the form in Equation (3.2), where a, b, c, and d are

constants in C with ad− bc = 1 is called a Möbius transformation. By Theorems 2.5 and

2.7, every automorphism of D and C is a Möbius transformation.

Theorem 3.15. Every automorphism of C is of the form az+ b for some constants a and

b in C with a ̸= 0.

Proof. Let f : C → C be an automorphism. We claim that when |z| → +∞, |f(z)| → +∞.

If this is not the case, there is an infinite sequence of distinct points zi with |zi| → +∞
but |f(zi)| are uniformly bounded. As f is one-to-one, the values f(zi) are distinct for

distinct values of i. There is a sub-sequence of f(zi) that converges to some point in C,
say w′. Since f : C → C is onto, there is z′ ∈ C with f(z′) = w′.

There is a holomorphic map g : C → C with f ◦ g(z) = g ◦ f(z) = z on C. We have

g(w′) = z′, and by the continuity of g, the points zi = g(f(zi)) must be close to z′. This

contradicts |zi| → +∞.
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We extend f to the map f : Ĉ → Ĉ by defining f(∞) = ∞. By the above paragraph,

f is continuous at ∞, and indeed holomorphic (see Exercise 3.2) from Ĉ to Ĉ. It follows

that f ∈ Aut(Ĉ), and by Theorem 3.13, it must be of the form (az+b)/(cz+d). However,

since f maps C to C, we must have c = 0. This finishes the proof of the theorem.

Definition 3.16. The automorphisms z 7→ z + c, for c constant, are called translations,

and the automorphisms z 7→ c ·z, for c constant, are called dilations. When c is real, these

are also automorphisms of H. When |c| = 1, the map z 7→ c · z is called a rotation of C.

3.3 Exercises

Exercise 3.1. Prove that

(i) for every z1, z2, w1, and w2 in C with z1 ̸= z2 and w1 ̸= w2, there is f ∈ Aut(C)
with f(z1) = w1 and f(z2) = w2;

(ii) for all distinct points z1, z2, and z3 in Ĉ and all distinct points w1, w2, and w3 in

Ĉ, there is f ∈ Aut(Ĉ) with f(zi) = wi, i = 1, 2, 3.

Exercise 3.2. Let f : Ĉ → Ĉ be a map whose restriction to C is holomorphic, and has a

continuous extension to ∞. Show that f : Ĉ → Ĉ is holomorphic.

Exercise 3.3. Let f : Ω → C be a holomorphic map that has a zero of order k ≥ 1 at

some z0 ∈ Ω.

(i) Prove that there is δ > 0 and a holomorphic function ψ : B(z0, δ) → C such that

ψ(z0) = 0, ψ′(z0) ̸= 0, and f(z) = (ψ(z))k on B(z0, δ).

(ii) Conclude from part (i) that near 0 the map f is k-to-one, that is, every point near

0 has exactly k pre-images near z0.

Exercise 3.4. Let Ω be an open set in C and f : Ω → C be a holomorphic map.

(i) Using Exercise 3.3, prove that if f is not constant, it is an open map, that is, f maps

every open set in Ω to an open set in C.

(ii) Using part (i), prove the maximum principle, Theorem 1.6.

Exercise 3.5. Let f : Ĉ → Ĉ be a Möbius transformation. Prove that the image of every

straight line in C is either a straight line or a circle in C. Also, the image of every circle

in C is either a straight line or a circle in C.
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Exercise 3.6. Let g : Ĉ → Ĉ be a holomorphic map which maps D into D and maps

∂D to ∂D. Prove that there are points a1, a2, . . . , ad (not necessarily distinct) in D and

θ ∈ [0, 2π] such that

g(z) = e2πiθ
d∏

j=1

z − aj
1− ajz

.

The maps of the above form are called Blaschke products of degree d.
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Chapter 4

Conformal geometry on the disk

4.1 Poincare metric

Let X be a set. Recall that a metric on X is a function d : X ×X → R such that for all

x, y, and z in X we have

(i) d(x, y) = d(y, x),

(ii) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

(iii) d(x, y) ≤ d(x, z) + d(z, y).

A metric on a spaceX allows us to talk about distances onX. The most familiar example is

probably the Euclidean distance on R given by the absolute value. That is, d(x, y) = |x−y|,
for x and y in R. This notion of distance respects the underlying operation of addition

that is described by the relation d(x, y) = d(x + c, y + c), for all c ∈ R. That is, d is

invariant under translations.

Another example of a metric on R is given by the function

d(x, y) =

1 if x ̸= y

0 if x = y.

The above notion of metric is rather general for our purpose. There is a more restrictive

notion of metric that is suitable in the world of complex analysis. Before we define that,

recall that a set A ⊂ C is called a discrete set, if for every z ∈ A there is an open set U in

C with A ∩ U = {z}.

Definition 4.1. Let Ω be a domain in C. A conformal metric on Ω is a continuously

differentiable (C1) function

ρ : Ω → [0,∞),

where ρ(z) ̸= 0 except on a discrete subset of Ω. If z ∈ Ω and ξ ∈ C is a vector, we define

the length of ξ at z with respect to the metric ρ as

∥ ξ ∥ρ,z= ρ(z) · |ξ|.
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Here, |ξ| denotes the Euclidean norm of ξ, i.e.
√
ξξ.

Remark 4.2. In contrast to what we learn in a calculus course that a vector has only direc-

tion and magnitude, in the above notion of the metric, a vector has direction, magnitude,

and position. That is the length of a vector also depends on its position.

Definition 4.3. Assume that γ : [a, b] → Ω is a C1 curve. The length of γ with respect to

the metric ρ is defined as

ℓρ(γ) =

∫ b

a

∥∥∥∂γ(t)
∂t

∥∥∥
ρ,γ(t)

dt =

∫ b

a
ρ(γ(t)) ·

∣∣∣∂γ(t)
∂t

∣∣∣ dt.
The length of a piece-wise C1 curve is defined as the sum of the lengths of its C1 parts.

As in the definition of the integration along a curve in complex analysis, the above

notion of length is independent of the parameterization of the curve.

It is convenient to think of the tangent vector to γ′(t) at γ(t) as a vector based at γ(t).

See Figure 4.1

b

b

b

b

b

b

γ(t)

γ′(t)

Figure 4.1: The tangent vectors to a C1 curve γ in the calculation of the length of γ with

respect to a conformal metric.

For every c ∈ C with |c| = 1 we have

∥ c · ξ ∥ρ,z=∥ ξ ∥ρ,z .

By the above relation, the length of a vector ξ at some z ∈ Ω is independent of its direction.

This feature makes conformal metrics natural in complex analysis, as we shall see in this

section.

In the classical literature in analysis, sometimes you find the notation

ℓρ(γ) =

∫
γ
ρ(z) |dz|,

for the length of γ with respect to the metric ρ. This is consistent with the definition of

integration along curves you learn in complex analysis.
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Definition 4.4. A set A in C is called path connected if for every two points z and w in

A there is a continuous map γ : [0, 1] → A with γ(0) = z and γ(1) = w.

It follows that any path connected subset of C is connected, but there are connected

subsets of C that are not path connected.

Definition 4.5. Let ρ be a conformal metric defined on an open and path connected set

Ω ⊆ C. Given z and w in Ω let Γz,w denote the set of all piece-wise C1 curves γ : [0, 1] → Ω

with γ(0) = z and γ(1) = w. Define

dρ(z, w) = inf{ℓρ(γ) : γ ∈ Γz,w}.

It follows (Exercise 4.1) that dρ defines a metric on Ω, that is, dρ : Ω × Ω → [0,∞)

satisfies the required properties listed at the beginning of this chapter.

Remark 4.6. One should not confuse the notion of dρ(z, w) with the notion of the length

of the vector w − z at z with respect to ρ. In general, these are different values and not

related.

Example 4.7. When ρ(z) ≡ 1 on Ω, the length of a piece-wise C1 curve γ with respect

to ρ, ℓρ(γ), becomes the Euclidean length of γ (which we learn in calculus). When Ω = C,
dρ becomes the Euclidean distance. In general, when Ω is a convex set, that is, the line

segment connecting any two points in Ω lies in Ω, then dρ is the restriction of the Euclidean

metric to Ω. But in general, there may not be a curve of shortest length between two points

in Ω. See Figure 4.2.

b

b

b

b

b

Figure 4.2: Examples of non-convex domains; one with a point omitted, and the other

with a special shape.

Definition 4.8. The Poincaré metric on D is defined as

ρ(z) =
1

1− |z|2
.

30



The Poincaré metric has been used to gain deep understanding into the complex anal-

ysis on the disk and beyond. We shall study this metric in details.

For any vector ξ ∈ C we have

∥ ξ ∥ρ,0= ρ(0) · |ξ| = |ξ|,

∥ ξ ∥ρ,(1/2+0i)= ρ(1/2 + 0i) · |ξ| = 4

3
· |ξ|,

∥ ξ ∥ρ,(0+i/2)= ρ(0 + i/2) · |ξ| = 4

3
· |ξ|,

∥ ξ ∥ρ,(0.99+0i)= ρ(0.99 + 0i) · |ξ| = (50.251256 . . . ) · |ξ|.

The metric ρ has a rotational symmetry about 0, i.e. ρ(c · z) = ρ(z) for all c ∈ C with

|c| = 1. Also, ρ(z) → ∞ as |z| tends to +1 from below. There are many conformal metrics

on D with rotational symmetry and diverging to +∞ near the boundary, but the speed of

divergence in the Poincaré metric is chosen to guarantee some significant properties.

Example 4.9. Let us calculate the length of the curve [0, 1 − ε] with respect to the

Pioncaré metric ρ on D. Define γ(t) = t+ 0i, for t ∈ [0, 1− ε]. Then,

ℓρ(γ) =

∫ 1−ε

0
ρ(γ(t)) · |γ′(t)| dt =

∫ 1−ε

0

1

1− t2
dt =

1

2
log
(1 + t

1− t

)∣∣∣t=1−ε

t=0
=

1

2
log
(2− ε

ε

)
.

We note that the above quantity tends to +∞ as ε tends to 0. This means that the point

+1 is at distance ∞ from the point 0 along the curve γ, with respect to the Poincaré

metric on D.

Proposition 4.10. Let ρ be the Poincaré metric on D. We have

dρ(0, 1− ε) =
1

2
log
(2− ε

ε

)
.

Proof. Let η : [a, b] → D be a C1 curve with η(a) = 0 and η(b) = 1−ε+0i. In coordinates,

let η(t) = η1(t)+iη2(t), for t ∈ [a, b]. Both η1 and η2 are C
1 and moreover, for all t ∈ [a, b],

|η′(t)| = |η′1(t) + iη′2(t)| ≥ |η′1(t)|.

Also, since |η(t)| ≥ |η1(t)|, for all t ∈ [a, b] we have

ρ(η(t)) ≥ ρ(η1(t)).

Note that η1 : [a, b] → (−1, 1) is a C1 curve with η1(a) = 0 and η1(b) = 1 − ε. However,

η1 may not a monotone function of t ∈ [a, b]. Its image may cover some parts of [0, 1− ε]

several times. If necessary, we may throw away parts of this curve and keep a piece-wise

31



C1 and monotone part of η1 that maps a subset of [a, b] to [0, 1− ε]. Let A ⊆ [a, b] be that

set. Using the above inequalities,

ℓρ(η) =

∫ b

a
ρ(η(t)) · |η′(t)| dt

≥
∫ b

a
ρ(η1(t)) · |η′1(t)| dt

≥
∫
A
ρ(η(t)) · |η′(t)| dt

=
1

2
log(

2− ε

ε
).

Figure 4.3 shows the graph of the function r 7→ dρ(0, r), on (0, 1). Note how on a large

interval (0, r) (with r close to 1) the distance of the points from 0 is less than 5.

0 1

10

Figure 4.3: The graph of the function r 7→ dρ(0, r), for r ∈ (0, 1).

4.2 Isometries

Definition 4.11. Assume that Ω1 and Ω2 are open sets in C and

f : Ω1 → Ω2

is a holomorphic map. Let ρ2 be a conformal metric on Ω2. The pull-back of ρ2 by f is

defined as

(f∗ρ2)(z) = ρ2(f(z)) · |f ′(z)|.
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It is clear that if ρ2 is C1 then f∗ρ2 is also C1. On the other hand, f∗ρ2(z) = 0 if

and only if either ρ(f(z)) = 0 or f ′(z) = 0. Since, f ′ is a holomorphic function on Ω1,

the set of points where it becomes 0 is a discrete set. These imply that the pull-back

of a conformal metric under a holomorphic map is a conformal metric. Indeed, this is

the reason for the name conformal metric. These are metrics that behave well under

holomorphic transformations.

By the above definition, if ξ is a vector in C and z ∈ Ω1, then

∥ ξ ∥f∗ρ2,z= ρ2(f(z)) · |f ′(z)| · |ξ| = ρ2(f(z)) · |f ′(z) · ξ|.

Let us denote the metric f∗ρ2 on Ω1 by ρ1. If γ1 is a C1 curve in Ω1, and γ2 = f ◦ γ1,
then it follows that ℓρ1(γ1) = ℓρ2(γ2).

ℓρ2(γ2) =

∫ b

a
ρ2(γ2(t)) · |γ′2(t)| dt =

∫ b

a
ρ2(f(γ1(t))) · |(f ◦ γ1)′(t)| dt =∫ b

a
ρ2(f(γ1(t))) · |f ′(γ1(t))| · |γ′1(t)| dt =

∫ b

a
ρ1(γ1(t))|γ′1(t)| dt = ℓρ1(γ1)

Definition 4.12. Let Ω1 and Ω2 be open sets in C and f : Ω1 → Ω2 be an onto holomor-

phic map. Let ρi be a conformal metric on Ωi, for i = 1, 2. Then, f is called an isometry

from (Ω1, ρ1) to (Ω2, ρ2) if for all z ∈ Ω1 we have

f∗ρ2(z) = ρ1(z).

Proposition 4.13. Let Ω1 and Ω2 be open sets in C with conformal metrics ρ1 and ρ2,

respectively. Assume that f is an isometry from (Ω1, ρ1) to (Ω2, ρ2). Then for every C1

curve γ : [0, 1] → Ω1 we have

ℓρ1(γ) = ℓρ2(f ◦ γ).

The curve f ◦ γ is often called the push-forward of the curve γ by f , and is denoted

by f∗γ. That is,

f∗γ(t) = f ◦ γ(t), for t ∈ [0, 1].

Proof. By Definition 4.3 we have

ℓρ1(γ) =

∫ 1

0
∥ γ′(t) ∥ρ1,γ(t) dt, ℓρ2(f ◦ γ) =

∫ 1

0
∥ (f ◦ γ)′(t) ∥ρ2,f◦γ(t) dt.
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To prove that the above integrals give the same value, it is enough to show that the

integrands are equal on [0, 1]. That is,

∥ (f ◦ γ)′(t) ∥ρ2,f◦γ(t) = ρ2(f ◦ γ(t)) · |(f ◦ γ)′(t)|

= ρ2(f ◦ γ(t)) · |f ′(γ(t)) · γ′(t)|

= ρ2(f ◦ γ(t)) · |f ′(γ(t))| · |γ′(t)|

= (f∗ρ2)(γ(t)) · |γ′(t)|

=∥ γ′(t) ∥ρ1,γ(t) .

Note that if f is an isometry from (Ω1, ρ1) to (Ω2, ρ2) we may not conclude that for

every z and w in Ω1 we have

dρ1(z, w) = dρ2(f(z), f(w)). (4.1)

That is because not every curve in Ω2 from f(z) to f(w) is obtained from push-forward

of a curve in Ω1 from z to w. We illustrate this by an example.

Example 4.14. Let

Ω1 = {z ∈ C : e−1 < |z| < e}, Ω2 = {z ∈ C : e−2 < |z| < e2}

and define

f : Ω1 → Ω2, f(z) = z2.

Consider the conformal metrics

ρ1(z) =
π

2
· 1

|z| · cos(π log |z|
2 )

,

ρ2(z) =
π

4
· 1

|z| · cos(π log |z|
4 )

.

We have

f∗ρ2(z) = ρ2(f(z)) · |f ′(z)|

=
π

4
· 1

|z|2 · cos(π log |z|2
4 )

· 2|z|

=
π

2
· 1

|z| · cos(π log |z|
2 )

= ρ1(z).
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That means that f is an isometry from (Ω1, ρ1) to (Ω2, ρ2).

Note that f is not one-to-one, for example, f(+1) = f(−1) = +1. If γ is a curve in Ω1

connecting +1 to −1, f ◦ γ is a curve in Ω2 that connects +1 to itself and wraps around

in Ω2 at least once. But, there is a constant curve with zero length from +1 to +1 in

Ω2. The constant curve is not the image of any continuous curve from +1 to −1 in Ω1.

This is the only issue that prevents us from having Equation (4.1). As you will show in

Exercise 4.5, if f : Ω1 → Ω2 is one-to-one, then Equation (4.1) holds for all z and w in Ω1.

Let Ω1, Ω2, and Ω3 be open sets in C with conformal metrics ρ1, ρ2, and ρ3, respectively.

Assume that f is an isometry from (Ω1, ρ1) to (Ω2, ρ2), and g is an isometry from (Ω2, ρ2)

to (Ω3, ρ3). You can show that g ◦ f is an isometry from (Ω1, ρ1) to (Ω3, ρ3).

Theorem 4.15. Every automorphism of D is an isometry from (D, ρ) to (D, ρ), where ρ
is the Poincaré metric on D.

Proof. By Theorem 2.5 every automorphism of D is of the form

z 7→ eiθ · z − a

1− az
,

for some θ ∈ R and a ∈ D. We shall prove the theorem in two steps.

First assume that h(z) = eiθ · z. We have

(h∗ρ)(z) = ρ(h(z)) · |h′(z)| = 1

1− |h(z)|2
· |eiθ| = 1

1− |z|2
= ρ(z).

Thus, h is an isometry of (D, ρ).
Now assume that h(z) = (z − a)/(1− az). we have

(h∗ρ)(z) = ρ(h(z)) · |h′(z)|

=
1

1−
∣∣ z−a
1−az

∣∣2 · 1− |a|2

|1− az|2

=
1− |a|2

|1− az|2 − |z − a|2

=
1− |a|2

1− |z|2 − |a|2 + |a|2|z|2

= ρ(z).

That is, h is an isometry of (D, ρ). Since the composition of isometries is an isometry, see

Exercise 4.4, we conclude that any member of Aut(D) is an isometry of (D, ρ).

As a corollary of the above theorem, and Proposition 4.10, we are able to calculate the

Poincaré distant between any two points on D.
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Proposition 4.16. Let p and q be two points in D equipped with Poincaré metric ρ. We

have

dρ(p, q) =
1

2
log

1 +
∣∣ p−q
1−pq

∣∣
1−

∣∣∣ p−q
1−pq

∣∣∣
 .

Proof. When p = 0 and q is a positive real number the formula in the proposition reduces

to the one in Proposition 4.10. Now, define

φ1(z) =
z − p

1− pz
,

and

φ2(z) =
|φ1(q)|
φ1(q)

· z.

Note that both of φ1 and φ2 belong to Aut(D). Then, by Theorem 4.15 and Exercise 4.5,

we must have

dρ(p, q) = dρ(φ1(p), φ1(q)) = dρ(0, φ1(q)) = dρ(φ2(0), φ2(φ1(q))) = dρ(0, |φ1(q)|).

Using Proposition 4.10 with 1− ε = |φ1(q)| we obtain

dρ(0, |φ1(q)|) =
1

2
log

(
1 + |φ1(q)|
1− |φ1(q)|

)
.

This finishes the proof of the proposition.

The proof of the above proposition also provides us with the shortest curve connecting

the two points p and q. We state this in a separate proposition.

Proposition 4.17. Let p and q be two distinct points in D. The shortest curve with

respect to ρ connecting p to q is given by the formula

γp,q(t) =
t q−p
1−qp + p

1 + tp q−p
1−qp

, 0 ≤ t ≤ 1.

Proof. In Proposition 4.10 and its preceding example, the shortest curve connecting 0 to

a point z on (0, 1) ⊂ D is given by the interval [0, z]. As the rotation z 7→ eiθ · z, for each
fixed θ ∈ R, is an isometry of (D, ρ), we conclude that the shortest curve connecting 0 to

a given point z ∈ D is the curve t 7→ t · z, 0 ≤ t ≤ 1.

Consider the automorphism

φ1(z) =
z − p

1− pz
.

We have φ1(p) = 0 and φ1(q) ∈ D. The inverse of this map is given by the formula

φ−1
1 (z) =

z + p

1 + pz
.
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By the above paragraph, the shortest curve connecting 0 to φ1(q) is given by the formula

θ(t) = t · φ1(q). Since φ
−1
1 is an isometry of the pair (D, ρ), the image of this curve under

φ−1 is the shortest curve connecting p to q. The formula for this curve is

t 7→ φ−1
1 (t · φ1(q)) =

t · φ−1
1 (q) + p

1 + pt · φ−1(q)
.

This finishes the proof of the proposition.

Definition 4.18. Let Ω be an open set in C and ρ be a conformal metric on Ω. A

continuous curve γ : [a, b] → Ω is called geodesic if for every t ∈ [a, b] there is εt > 0 such

that for all x and y in [a, b] ∩ [t− εt, t+ εt] we have

dρ(γ(x), γ(y)) = ℓρ(γ : [x, y] → Ω).

In other words, the curve γ is locally the shortest curve connecting points together.

For example, straight lines on C are geodesics with respect to the conformal metric ρ ≡ 1.

The curves γp,q in the above proposition provide examples of geodesics with respect to the

Poincaré metric on D.
There is an intuitive way to visualize the curve γp,q. To present this, we need to recall

a basic property of holomorphic maps.

Definition 4.19. A holomorphic map f : Ω → C is called conformal at z ∈ Ω if f ′(z) ̸= 0.

A holomorphic map f : Ω → C is called conformal, if it is conformal at every point in Ω.

If U ⊆ C is open and f : U → C is one-to-one, it follows that f is conformal at every

point in U ; see Exercise 3.3. In particular, biholomorphic maps are conformal at every

point in their domain of definition. However, note that a map that is conformal at every

point in its domain of definition is not necessarily one-to-one from its domain to its range.

For example, the map z 7→ z2 is conformal on the set

{w ∈ C | arg(w) ∈ (−3π/4, 3π/4), |w| ∈ (1, 2)}

but is not one-to-one on this set.

Recall from complex analysis that conformal maps preserve angles. We state this below

for future reference.

Proposition 4.20. Let U and V be two open subsets of C and f : U → V be a holomorphic

map that is conformal at some z ∈ U . Then f preserves angles at z.
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The curve t 7→ t · φ1(q) is part of a straight line segment in D. By Exercise 3.5, the

image of any line segment in D under φ−1
1 is either a line segment or part of a circle. The

image may be a line segment only if the three points p, q, and 0 lie on a straight line

segment, and other wise the curve is part of a circle. Moreover, since the line segment

passing through 0 is orthogonal to the boundary of D, and conformal maps preserve angles,

the circle passing through p and q is orthogonal to the circle |z| = 1. See Figure 4.4.

Figure 4.4: Some examples of geodesics with respect to the Poincaré metric ρ on D.

4.3 Hyperbolic contractions

Theorem 4.21 (Schwarz-Pick Lemma). Let f : D → D be a holomorphic map and ρ

denote the Poincaré metric on D. Then, f is distance decreasing with respect to ρ, that

is, for every z ∈ D we have

f∗ρ(z) ≤ ρ(z).

In particular, if γ : [0, 1] → D is a C1 curve then

ℓρ(f∗γ) ≤ ℓρ(γ).

Therefore, if z and w belong to D, then

dρ(f(z), f(w)) ≤ dρ(z, w).

Proof. Recall that

f∗ρ(z) = ρ(f(z)) · |f ′(z)| = 1

1− |f(z)|2
· |f ′(z)|,
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and

ρ(z) =
1

1− |z|2
.

Hence, the inequality in the theorem reduces to the Schwarz-Pick lemma we saw earlier

in Exercise 2.2.

The latter parts of the theorem follow directly from the definitions.

Theorem 4.22 (Farkas-Ritt). Let f : D → D be a holomorphic map and assume that f(D)
has a compact closure in D, that is, every sequence in f(D) has a sub-sequence converging

to some point in D. Then,

i) there is a unique point p ∈ D such that f(p) = p;

ii) for every w0 in D the sequence of points wi defined as wi+1 = f(wi), for i ≥ 0,

converges to p in the Euclidean metric.

Proof. Define

A = {f(z) : z ∈ D}.

By the hypothesis, the closure of A is contained in D. This implies that there is δ > 0

such that for every z ∈ C with |z| ≥ 1 and every w ∈ A we have |w − z| > δ.

Fix an arbitrary z0 ∈ D. Define the map

g(z) = f(z) +
δ

2
(f(z)− f(z0)), ∀z ∈ D.

The map g is holomorphic on D, and maps D into D since

|g(z)| ≤ |f(z)|+ δ

2
|f(z)− f(z0)| < (1− δ) +

δ

2
· 2 = 1.

We have g(z0) = f(z0) and g
′(z0) = (1+δ/2)f ′(z0). By Theorem 4.21, g is non-expanding

the Poincaré metric at z0, that is,

g∗ρ(z0) ≤ ρ(z0).

Writing the definition of g∗, this yields

(1 + δ/2) · |f ′(z0)| · ρ(f(z0)) ≤ ρ(z0).

As z0 ∈ D was arbitrary, we conclude that the above inequality holds for all z0 ∈ D. In

particular, if γ is any C1 curve in D, then

(1 + δ/2) · ℓρ(f ◦ γ) ≤ ℓρ(γ).

39



This implies that for arbitrary points z and w in D we have

dρ(f(z), f(w)) ≤ (1 + δ/2)−1 · dρ(z, w).

Fix an arbitrary w0 in D and define the sequence of points wi+1 = f(wi), for i ≥ 0.

Inductively using the above inequality we conclude that for every i ≥ 2 we have

dρ(wi+1, wi) ≤ (1 + δ/2)−1 · dρ(wi, wi−1) ≤ · · · ≤ (1 + δ/2)−i · dρ(w1, w0).

Since
∑∞

i=0(1 + δ/2)−i is finite, the sequence wi is Cauchy with respect to dρ. The space

D with respect to dρ is a complete metric space, see Exercise 4.3. This means that any

Cauchy sequence (w.r.t dρ) in D converges (w.r.t dρ) to some point in D. By Exercise 4.2,

the sequence wi converges with respect to the Euclidean metric on D. Let p denote the

limit of this sequence. Taking limit from the relation wi+1 = f(wi) as i tends to +∞, we

conclude that f(p) = p.

If there is q in D with f(q) = q, by the above inequalities,

dρ(p, q) = dρ(f(p), f(q)) ≤ (1 + δ/2)−1dρ(p, q).

As δ > 0, this is only possible if p = q. This shows the uniqueness of p. So far we have

completed the proof of Part i).

By the above arguments, dρ(wi, p) ≤ (1 + δ/2)−idρ(w0, p). Hence, wi converges to p

with respect to dρ. It follows that wi converges to p with respect to the Euclidean metric,

see Exercise 4.2.

4.4 Exercises

Exercise 4.1. Show that dρ : Ω× Ω → R defined in Definition 4.5 is a metric on Ω.

Exercise 4.2. Let zi, i ≥ 1, be an infinite sequence in D, and ρ be the Poincaré metric

on D. Show that zi converges to some point z in D with respect to dρ iff it converges to

z ∈ D with respect to the Euclidean metric.

Exercise 4.3. Show that the disk D equipped with the Poincaré metric ρ is a complete

metric space. That is, every Cauchy sequence in D with respect to dρ converges to some

point in D with respect to the distance dρ.

Exercise 4.4. Let ρ be the Poincaré metric on D. For z ∈ D and r > 0, the circle of

radius r about z with respect to the metric dρ is defined as

{w ∈ D : dρ(z, w) = r}.
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Show that for every z ∈ D and r > 0, the circle of radius r about z is an Euclidean circle.

Find the center of this circle.

Exercise 4.5. Let Ω1 and Ω2 be open sets in C with conformal metrics ρ1 and ρ2,

respectively. Assume that f : Ω1 → Ω2 is a one-to-one holomorphic map that is an

isometry from (Ω1, ρ1) to (Ω2, ρ2). Prove that for all z and w in Ω1 we have

dρ1(z, w) = dρ2(f(z), f(w)).

Exercise 4.6. Recall the biholomorphic map F : H → D given in Equation (2.1), and let

ρ be the Poincaré metric on ρ. Show that for all w ∈ H we have

(F ∗ρ)(w) =
1

2| Imw|
.
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Chapter 5

Conformal Mappings

In the previous chapters we studied automorphisms of D, and the geometric behavior of

holomorphic maps from D to D using the Poincaré metric. A natural question is whether

similar methods can be used for other domains in C. A possible approach is the idea

we used to describe Aut(H). To employ that idea for an open set Ω ⊂ C we need a

biholomorphic map f : D → Ω. Then, elements of Aut(Ω) obtain the form f ◦φ ◦ f−1, for

φ ∈ Aut(D), and the Poincaré metric can be pulled back by f−1 to a conformal metric on

Ω, etc. To carry out this idea we face the following key questions:

(i) for which domains Ω ⊆ C there is a biholomorphic map from D to Ω;

(ii) if the answer to question (i) is positive for some Ω, when is there an explicit biholo-

morphic map from D to Ω. For instance, a biholomorphic map given by an algebraic

formula, trigonometric functions, or a combination of such maps;

(iii) what if there are no elementary biholomorphic maps from D to Ω, but a biholomor-

phic map exists.

In this chapter we study the questions in parts (i) and (ii). We shall study the question

in part (iii) in the next chapters.

5.1 Conformal mappings of special domains

Example 5.1. The exponential map z 7→ ez = ex ·eiy = ex ·(cos y+i sin y), where x = Re z

and y = Im z. The exp map is biholomorphic from the strip {z ∈ C : 0 < Im z < π} to the

upper half plane. It maps horizontal lines Im z = y0 to straight rays {z ∈ C : arg z = y0},
and the vertical lines Re z = x0 to the arcs {z ∈ C : |z| = ex0 , Im z > 0}.

The inverse of exp is log which is only determined up to translations by 2πi. We often

fix a branch of the inverse to determine which inverse of exp we are considering. For

example, to map H to the strip {z ∈ C : 0 < Im z < π} we may work with the branch that
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0 < Im logw < 2π. If we write z = reiθ, then

log z = log r + iθ = log |z|+ i arg z.

Also, the restriction of log provides a biholomorphic map

log : {z ∈ C | |z| < 1, 0 < Im z} → {z ∈ C | Re z < 0, 0 < Im z < π}.

Example 5.2. Let n be a positive integer. The power map pn(z) = zn is biholomorphic

from the sector Sn = {z ∈ C : 0 < arg(z) < π/n} to the upper half plane. The inverse

of this map is given by w 7→ w1/n. This is defined using a branch of log as w 7→ e
1
n
·logw,

where 0 < Im log(w) < 2π.

The map pn has a rather simple behavior on Sn. To see this, we note that Sn is the

union of the straight rays Rθ = {reiθ : r > 0}, for 0 < θ < π/n. Then, pn maps Rθ to

Rnθ. Also, we may consider Sn as the union of the arcs Cr = {reiθ : 0 < θ < π/n}, for
r > 0. Then pn maps Cr to the arc {rneiθ : 0 < θ < π}.

In general, for α > 0 the power map pα(z) = zα = eα log z is defined and biholomorphic

from the sector {z ∈ C : 0 < arg(z) < π/α} to the upper half plane. The inverse of this

map is given by the formula w 7→ w1/α = e
1
α
logw, where 0 < Im log(w) < 2π.

Example 5.3. Recall the biholomorphic map G(w) = i1−w
1+w from D to H we introduced

in Equation 2.1. The restriction of this map provides a biholomorphic map

G : {z ∈ D : Im z > 0} → {z ∈ C : Re z > 0, Im z > 0}.

The composition of G with the map z 7→ z2 provides a biholomorphic map from the upper

half-disk to H.

Example 5.4. Let f(z) = z+1/z. For non-zero z ∈ C, z and 1/z are mapped to the same

point . On the other hand, for each non-zero w0 ∈ C, the equation f(z) = w0 reduces to

z2 −w0z + 1 = 0 that has two solutions, counted with multiplicity. The two solutions are

the same if and only if z = 1/z, which is only possible if z = ±1. This implies that f is

one-to-one on the set {z ∈ C : |z| > 1}.
When |z| = 1,

f(z) = z + 1/z = z + z = 2Re z.

That is, f maps the circle |z| = 1 in a two-to-one fashion to the interval [−2,+2]. Then,

the restriction of f to the set |z| > 1 covers C \ [−2,+2]. It follows that

f : {z ∈ C : |z| > 1} → C \ [−2,+2].
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is biholomorphic. By the same arguments,

f : D \ {0} → C \ [−2,+2]

is also biholomorphic. Since the map w 7→ 1/w is biholomorphic from C \ {0} to C \ {0},
the map

z 7→ 1

f(z)
=

z

1 + z2
: D → C \

(
(−∞,−1/2] ∪ [1/2,+∞)

)
is biholomorphic.

Example 5.5. The Koebe map

k(z) =
z

(1− z)2
: D → C \ (−∞,−1/4]

is biholomorphic. To see this, we write

k(z) =
1

4

(1 + z

1− z

)2
− 1

4
.

and observe that (1+ z)/(1− z) is biholomorphic from D to the right half-plane Re z > 0.

As we shall see in the next chapter, the Koebe function has some extreme behavior among

biholomorphic maps defined on D.

Figure 5.1: The images of the rays and circles by the Koebe function discussed in Exam-

ple 5.5.

Example 5.6. Using the relations eiθ = cos θ+ i sin θ and e−iθ = cos θ− i sin θ we obtain

a formula for the sine function sin θ = (eiθ − e−iθ)/2i, for real values of θ. This can be

used to extend sin onto the whole complex plane, i.e.

sin z =
eiz − e−iz

2i
.
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Let g(ζ) = −i log ζ. We have

sin ◦g(ζ) = 1

2i

(
ζ − 1

ζ

)
=

−1

2

(
iζ +

1

iζ

)
=

−1

2
f(iζ),

where f is the function in Example 5.4. Using Example 5.4, we obtain a biholomorphic

map

sin : {z ∈ C : −π/2 < Re z < π/2, Im z > 0} → H.

See Figure 5.6

−π
2

π
2

sin

−1

g

+1

×i

−1
2 f

Figure 5.2: The sine function.

5.2 Normal families, Montel’s theorem

Let Ω be an open set in C. We would like to introduce a limiting process to build new

holomorphic maps on Ω using limits of known holomorphic maps (just like how one build

real numbers as limits of rational numbers). There are many notions of convergence of

functions in analysis, but it turns out that the natural notion of limit in this setting is the

“uniform convergence on compact set”.

Definition 5.7. Let fn : Ω → C, for n ≥ 1, be a sequence of holomorphic functions

defined on an open set Ω ⊆ C. Assume that E is a subset of Ω. We say that the sequence

fn converges uniformly on E to some function f : E → C, if for every ε > 0 there is n0

such that for all n ≥ n0 and all z ∈ E we have |fn(z)− f(z)| ≤ ε.

Note that the above convergence is stronger than the point-wise convergence where we

say that the sequence fn converges to f on E if for every z ∈ E and every ε > 0 there is
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n0 such that for all n ≥ n0 we have |fn(z)−f(z)| ≤ ε. Here ε may depend on z, but in the

uniform convergence ε works for all z ∈ E. For example, the functions fn(z) = (1+1/n)z

converge to the function f(z) = z at every point z ∈ C bu the convergence is not uniform

on unbounded sets E ⊂ C.

Definition 5.8. Let fn : Ω → C, for n ≥ 1, be a sequence of holomorphic functions

defined on an open set Ω ⊆ C. We say that fn converges uniformly on compact sets to

f : E → C, if for every compact set E ⊂ Ω the sequence fn converges uniformly to f on

E.

It is a simple exercise to show that if fn : Ω → C, n ≥ 1, are continuous and converge

uniformly on compact sets to some f : Ω → C, then f : Ω → C is also continuous. We shall

prove in Theorem 5.10 that the holomorphic property also survives under convergence on

compact sets.

The Cauchy’s criterion also has a counter part here. The sequence fn converges uni-

formly on E if and only if for every ε > 0 there is an n0 > 0 such that for all n,m ≥ n0

and all z ∈ E we have |fn(z)− fm(z)| ≤ ε.

Definition 5.9. Let Ω be an open set in C and F be a family (set) of maps that are

defined on Ω. We say that the family F is normal if every sequence of maps fn, n ≥ 1, in

F has a sub-sequence that converges uniformly on every compact subset of Ω.

Note that in the above definition we do not require the limiting map to be in F . This

is often a consequence of the uniform convergence. For instance, when the maps involved

in the definition are holomorphic we may use the following theorem of Weierstrass.

For example, you can show that the sequence of functions fn(z) = zn is normal on D.
But this sequence is not normal on the ball |z| < 2.

Theorem 5.10. Let fn : Ω → C be a sequence of holomorphic functions defined on an

open set Ω ⊆ C. Assume that the sequence fn converges uniformly on compact sets to

some function f : Ω → C. Then, f is holomorphic on Ω.

Moreover, f ′n : Ω → C converges uniformly on compact sets to f ′ : Ω → C.

Proof. Let z0 be an arbitrary point in Ω and choose r > 0 such that the disk |z − z0| ≤ r

is contained in Ω. Let us denote the circle |z− z0| = r by γ. Since each fn is holomorphic

on Ω, by Cauchy integral formula, for every z1 in the disk |z − z0| < r we have

fn(z1) =
1

2πi

∫
γ

fn(z)

z − z1
dz.
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We wish to take limits as n tends to infinity. To that end we observe that∣∣∣ 1

2πi

∫
γ

fn(z)

z − z1
dz − 1

2πi

∫
γ

f(z)

z − z1
dz
∣∣∣ = ∣∣∣ 1

2πi

∫
γ

fn(z)− f(z)

z − z1
dz
∣∣∣

≤ 1

2π

∫
γ

∣∣∣fn(z)− f(z)

z − z1

∣∣∣ |dz|
≤ r

r − |z1 − z0|
max
z∈γ

|fn(z)− f(z)|.

(5.1)

The expression on the last line of the above equation tends to 0 as n tends to ∞. That is

because γ is compact in Ω. Taking limits in the Cauchy integral formula for fn, we obtain

f(z1) =
1

2πi

∫
γ

f(z)

z − z1
dz.

Note that the above equation holds for every point z1 enclosed by γ. It is easy to conclude

from the above formula that

f ′(z1) =
1

2πi

∫
γ

f(z)

(z − z1)2
dz. (5.2)

In particular, f ′(z1) exists and is a continuous function of z1, as long as z1 moves within

the disk |z − z0| < r. That is, f(z) is holomorphic on the disk |z − z0| < r. Since z0 ∈ Ω

was arbitrary we conclude that f is holomorphic on Ω.

To prove the uniform convergence in the last part of the theorem, let E be a compact

set in Ω. For every z ∈ E there is rz > 0 such that the closure of the disk B(z, 2rz) is

contained in Ω. Thus the union of B(z, rz), for z ∈ E, provides a cover of E by open

sets. Since E is compact, a finite number of such open sets covers E. Let zi ∈ E and

ri > 0 be a finite collection such that the closure of each B(zi, 2ri) is contained in Ω and

E ⊂ ∪iB(zi, ri).

Fix an arbitrary i and let γi denote the circle |z − zi| = 2ri. We may repeat the

inequalities in Equation 5.1 for the integral formula in Equation 5.2 to conclude that for

every z ∈ B(zi, ri) we have

|f ′n(z)− f ′(z)| =
∣∣∣ 1

2πi

∫
γi

fn(ζ)

(ζ − z)2
dζ − 1

2πi

∫
γi

f(ζ)

(ζ − z)2
dζ
∣∣∣

≤ 1

ri
max
ζ∈γi

|fn(ζ)− f(ζ)|.

Since fn converges to f uniformly on the compact set γi, the above inequality implies that

f ′n(z) converges to f ′(z) uniformly on the ball B(zi, ri). As there are a finite number of

such balls that covers E, and the convergence on each ball is uniform, we conclude that

f ′n converges to f ′ uniformly on E.
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When F is a class of one-to-one maps on Ω, we need the following theorem of A. Hurwitz

to conclude that the limiting maps are also one-to-one.

Theorem 5.11. Let fn : Ω → C be a sequence of holomorphic functions defined on an

open set Ω ⊆ C such that fn(z) ̸= 0 for all n and all z ∈ Ω. If fn converges uniformly on

compact subsets of Ω to some f : Ω → C, then either f is identically equal to 0 or has no

0 on Ω.

Proof. By Theorem 5.10, f is holomorphic on Ω. Thus, by Proposition 3.12, either f(z) ≡
0, or the set of solutions of f(z) = 0 forms a discrete subset of Ω. If the latter happens,

we show that the set of solutions is empty.

Let z0 be a solution of f(z) = 0. By the above paragraph, there is r > 0 such that the

ball B(z0, r) ⊂ Ω and the equation f(z) = 0 has no solution with 0 < |z − z0| ≤ r. Let γ

denote the circle |z − z0| = r. As γ is compact in Ω, fn converges uniformly on γ to f .

Also, by Theorem 5.10, f ′n converges uniformly on γ to f ′. Then, it follows that

lim
n→+∞

1

2πi

∫
γ

f ′n(z)

fn(z)
dz =

1

2πi

∫
γ

f ′(z)

f(z)
dz.

For each n ≥ 1, fn(z) = 0 has no solutions in Ω. It follows that f ′n(z)/fn(z) is holomorphic

on Ω. In particular, by Cauchy-Goursat Theorem (Thm 1.2), the integrals on the left hand

side of the above equation are equal to 0. Then, the right hand side integral is equal to 0.

However, the integral on the right hand side counts the number of points z within γ such

that f(z) = 0. That is, f(z) = 0 has no solution within γ. This contradiction proves that

f(z) = 0 has no solutions in Ω.

Corollary 5.12. Let Ω be an open set in C and let fn : Ω → C be a sequence of holomor-

phic functions that converge uniformly on compact sets to some function f : Ω → C. If

every fn is one-to-one on Ω, then either f is a constant function, or f is one-to-one on

Ω.

Proof. Assume that there are distinct points a and b in Ω with f(a) = f(b). Since each

fn is one to one on Ω, fn(z)− f(b) does not vanish on the ball |z − a| < r. Therefore, by

Theorem 5.11, either f(z)− f(b) has no zero in |z − a| < r or is identically constant. As

a is a zero of this function, f is a constant function.

It is often possible that a sequence of holomorphic maps has no convergent sub-

sequence, or the point-wise limit exists but is not holomorphic. We are looking for criteria

on a family that imply a convergent (uniformly on compact sets) sub-sequence exists.
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There are some natural conditions that a family of maps must fulfill in order to be uni-

formly convergent on compact sets. We state these as definitions.

Definition 5.13. Let F be a family of holomorphic functions defined on an open set

Ω ⊆ C. We say that the family F is uniformly bounded on compact subsets of Ω, if for

every compact set E ⊂ Ω, there is a constant M such that for all z ∈ E and all f ∈ F we

have |f(z)| ≤M .

Definition 5.14. Let F be a family of holomorphic functions defined on an open set

Ω ⊆ C, and let K ⊆ Ω. We say that the family F is equicontinuous on K, if for every

ε > 0 there is δ > 0 such that for all z and z′ in Ω with |z− z′| ≤ δ and all f ∈ F we have

|f(z)− f(z′)| ≤ ε.

By the above definition, each map in an equicontinuous family is uniformly continuous.

One can see that any normal family must satisfy the properties in Definitions 5.13 and

5.14. It turns out that the condition in Definition 5.13 is the key to the normality of a

family. The following theorem is due to P. Montel.

Theorem 5.15. Let F be a family of holomorphic maps defined on an open set Ω ⊆ C.
If F is uniformly bounded on every compact subset of Ω, then

(i) F is equicontinuous on every compact subset of Ω;

(ii) F is a normal family.

Before we prove the above theorem we give a basic property of compact and closed

sets in the plane.

Lemma 5.16. Let A be a compact set in C and B be a closed set in C such that A ̸= ∅,
B ̸= ∅, and A ∩ B = ∅. There is r > 0 such that for every z ∈ A and w ∈ B we have

|z − w| > r.

Proof. If there is no such r > 0, for each n ≥ 1 there are zn ∈ A and wn ∈ B such that

|zn−wn| ≤ 1/n. Since A is compact, there is a sub-sequence of zn, say znk
, that converges

to some z ∈ A. The sequence wnk
is bounded since |wnk

| ≤ |wnk
− znk

|+ |znk
| ≤ 1+ |znk

|,
and znk

belong to a compact set. Thus, there is a sub-sequence of wnk
that converges

to some w. As B is closed, w ∈ B, and since |znk
− wnk

| ≤ 1/n we have w = z. This

contradicts A ∩B = ∅.
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The above lemma allows us to define the distance between a non-empty compact set

and a non-empty closed set in C. That is,

d(A,B) = inf{|z − w| : z ∈ A,w ∈ B}.

The above set is bounded from below, and by Lemma 5.16, the infimum is strictly positive

when A ∩B = ∅.

Proof of Theorem 5.15. Part (i): LetK be an arbitrary compact set in Ω. By Lemma 5.16

there is r > 0 such that for every z ∈ K the ball B(z, 3r) ⊂ Ω.

Let z and w be in K with |z−w| ≤ r. By the choice of r, the closure of the ball B(z, 2r)

is contained in Ω. Let γz denote the boundary of the ball B(z, 2r). By the Cauchy integral

formula, for every f ∈ F we have

f(z)− f(w) =
1

2πi

∫
γz

f(ζ)
( 1

ζ − z
− 1

ζ − w

)
dζ.

We note that for ζ ∈ γz we have∣∣∣ 1

ζ − z
− 1

ζ − w

∣∣∣ ≤ |z − w|
|ζ − z||ζ − w|

≤ |z − w|
r2

.

Therefore,

|f(z)− f(w)| ≤ 1

2π

2πr

r2
|z − w| sup

ζ∈γz
·|f(ζ)|.

Define

ΓK = {a ∈ Ω : d(a,K) ≤ 2r}.

This is a compact subset of Ω. By the hypothesis of the theorem, there is C > 0, depending

on ΓK , such that for all f ∈ F and every a ∈ ΓK we have |f(a)| ≤ C. In particular,

supζ∈γz |f(ζ)| ≤ C.

By the above paragraphs, we have shown that for all f ∈ Fand all z and w in K with

|z−w| ≤ r we have |f(z)−f(w)| ≤ C/r. This implies that the family F is equicontinuous

on K (given ε > 0 let δ = min{r, rε/C}). As K was an arbitrary compact set in Ω, we

have proved the first part of the theorem.

Part (ii): Let fn be an arbitrary sequence in F . There is a sequence of points {wi},
for i ≥ 1, that is dense in Ω. We first extract a sub-sequence of fn that converges at each

of these points wj . The process we are going to use is known as the Cantor’s diagonal

process.
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By the hypothesis of the theorem, |fn(w1)|, for n ≥ 1, is uniformly bounded from above.

Hence there is a sub-sequence f1,1(w1), f2,1(w1), f3,1(w1), . . . of this sequence that con-

verges to some point in C. For the same reason, there is a sub-sequence f1,2, f2,2, f3,2, . . .

of the sequence f1,1, f2,1, f3,1, . . . such that limk→∞ fk,2(w2) exists in C. Inductively, for

l ≥ 1, we build a sub-sequence f1,l, f2,l, f3,l, . . . of the sequence f1,l−1, f2,l−1, f3,l−1, . . .

such that limk→∞ fk,l(wl) exists in C.
Let us define the sequence of maps gn = fn,n, for n ≥ 1. This is a sub-sequence of

{fn}, and for each j ≥ 1 the limit limn→∞ gn(wj) exists and is finite. We are going to

show that this sequence is uniformly convergent on compact sets of Ω. To this end we

shall show that this sequence is Cauchy on compact sets. Let K be an arbitrary compact

set in Ω and fix ε > 0.

Since F is equicontinuous on K, for ε/3 there is δ > 0 such that for all f ∈ F and

every z and w in K with |z − w| < δ we have |f(z) − f(w)| ≤ ε/3. Since K is compact,

there are a finite number of points w1, w2, . . . , wl such that K ⊂ ∪l
i=1B(wi, δ).

The sequence limn→∞ gn(wi) exists for each i = 1, 2, 3, . . . , l. In particular each of

these sequences is Cauchy. As there are a finite number of points wi, given ε/3 there is

N > 0 such that for all m,n ≥ N and all i = 1, 2, 3, . . . , l we have

|gn(wi)− gm(wi)| ≤ ε/3.

Now, for an arbitrary w ∈ K there is i ∈ {1, 2, 3, . . . , l} with w ∈ B(wi, δ/2). Then for all

n,m ≥ N , we have

|gn(w)− gm(w)| ≤ |gn(w)− gn(wi)|+ |gn(wi)− gm(wi)|+ |gm(wi)− gm(w)|

≤ ε/3 + ε/3 + ε/3 = ε.

The above property implies that for each w ∈ Ω the sequence of points gn(w) is convergent.

So, the sequence gn converges at every point in Ω. The convergence is uniform on compact

sets.

Corollary 5.17. Let F be a family of holomorphic maps f : Ω → D. Then, F is a normal

family.

The notion of normality corresponds to the notion of pre-compactness in a metric

space. To explain the correspondence we define a notion of metric on holomorphic maps

such that uniform convergence on compact sets becomes equivalent to the convergence

with respect to that metric.
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Lemma 5.18. Let Ω be an open set in C. There are compact sets Ei ⊂ Ω, for i ∈ N, such
that

(i) for all i ≥ 1, Ei is contained in the interior of Ei+1;

(ii) for every compact set E in Ω there is i ≥ 1 with E ⊂ Ei. In particular,

Ω =
∞∪
i=1

Ei.

A sequence of sets Ei satisfying the properties in the above lemma is called an exhaus-

tion of Ω by compact sets.

Proof of Lemma 5.18. Let us first assume that Ω is bounded in the plane, that is, there

is M > 0 such that Ω ⊆ B(0,M). For l ≥ 1 we define the set

Ei = {z ∈ Ω | ∀w ∈ ∂Ω, |w − z| ≥ 1/i}.

Each Ei is a bounded and closed subset of C. Therefore, each Ei is compact. Clearly,

every compact subset of Ω is contained in some Ei.

If Ω is not a bounded subset of C, we defined the sets

Ei = {z ∈ Ω | ∀w ∈ ∂Ω, |w − z| ≥ 1/i}
∩

{z ∈ Ω | |z| ≤ i}.

One can verify that these sets satisfy the properties in the lemma.

Define the new metric d′ on C as

d′(z, w) =
|z − w|

1 + |z − w|
. (5.3)

One can see that the above function on C× C is a metric, see Exercise 5.5.

Let Ω be an open set in C and Ei, for i ∈ N, be an exhaustion of Ω with compact sets.

Let C0(Ω) be the set of continuous functions on Ω with values in C. Define the function

d′′ : C0(Ω)× C0(Ω) → [0,∞) as

d′′(f, g) =
∞∑
i=1

1

2i
·

supz∈Ei
|f(z)− g(z)|

1 + supz∈Ei
|f(z)− g(z)|

. (5.4)

In an exercise you will show that d′′ is a metric on the class F .

Theorem 5.19. A class of holomorphic maps F defined on an open set Ω is compact with

respect to d′′ if and only if the family F is normal and the limiting functions are contained

in F .

See Exercise 5.7 for the proof.
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5.3 General form of Cauchy integral formula

Definition 5.20. Let Ω be an open set in C, and γ1, γ2 : [0, 1] → Ω be continuous maps

with γ1(0) = γ2(0) and γ1(1) = γ2(1). We say that γ1 is homotopic to γ2 in Ω if there is

a continuous map

F : [0, 1]× [0, 1] → Ω,

such that

(i) for all t ∈ [0, 1], F (t, 0) = γ1(t);

(ii) for all t ∈ [0, 1], F (t, 1) = γ2(t);

(iii) for all s ∈ [0, 1], F (0, s) = γ1(0) and F (1, s) = γ1(1).

In other words, the curves γ1 and γ2 with the same end points are homotopic in Ω if

one can continuously move one of them to the other one without moving the end points.

Definition 5.21. Let Ω be a path connected subset of C. We say that Ω is simply

connected if every continuous closed curve γ1 : [0, 1] → Ω is homotopic to the constant

curve γ2(t) ≡ γ(0), t ∈ [0, 1] in Ω.

Note that any connected open set in C is path connected.

Example 5.22. The open unit disk D is simply connected. To see this, let γ : [0, 1] → D
be a closed curve. We define F : [0, 1]× [0, 1] → D as F (t, s) = (1 − s)γ(t) + sγ(0). This

is clearly a continuous map satisfying the three conditions for being a homotopy from γ

to the constant curve γ(0).

The above example shows that any convex set in C is simply connected. But this

condition is far from necessary as we see in the next example.

Example 5.23. The set Ω = C \ [0,∞) is simply connected. Let γ[0, 1] → Ω be an

arbitrary continuous map. First we move the curve γ continuously to the constant curve

γ1 ≡ −1, by the homotopy F : [0, 1]× [0, 1] → Ω defined as F (t, s) = (1− s)γ(t)− s. This

we move the constant curve γ1 to the constant curve γ(0).

Recall that a curve γ : [a, b] → C is called a simple closed curve if γ is continuous,

one-to-one, and γ(a) = γ(b). It is a non-trivial theorem due to Jordan that every simple

closed curve in C divides the complex plane into two connected components. That is, C\γ
has two connected components.
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Intuitively, Ω is simply connected if for every simple closed curve γ in Ω, the bounded

connected component of C \ γ is contained in Ω.

One can show that the set Ω = {z ∈ C | 1 < |z| < 2} is not simply connected. In

general, any open set with “holes” is not simply connected.

The above definition allows us to generalize a number of theorems you have already seen

in complex analysis. We state these below without proof. The proof of these statements

can be found in any standard book on complex analysis.

Theorem 5.24 (Cauchy-Goursat-theorem-general-form). Assume that Ω is a simply con-

nected open set in C and f is an analytic map defined on Ω. Let γ be a simple closed

curve in Ω which is piece-wise C1. Then,∫
γ
f(z) dz = 0.

The inverse of the above theorem is also true and is known as the Morera Theorem.

That is, if f(z) is defined and continuous in a region Ω, and for all closed curves γ in Ω

we have
∫
γ f(z) dz = 0, then f is holomorphic on Ω. We shall not use this theorem in this

course.

Theorem 5.25 (Cauchy Integral Formula-general version). Assume that Ω is a simply

connected open set in C and f : Ω → C is holomorphic. Let γ be a piece-wise C1 simple

closed curve in Ω. Then, for every z0 in the bounded connected component of C \ γ,

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz.

Proposition 5.26. Assume that Ω is a simply connected domain in C and f : Ω → C is

a holomorphic function such that for all z ∈ Ω, f(z) ̸= 0. Then, there is a well-defined

continuous branch of log f(z) defined on Ω.

In particular, there are well-defined continuous branches of n
√
f(z) defined on Ω, for

each n ≥ 1.

Proof. Fix a point z0 in Ω. By the assumptions, f(z0) ̸= 0. So, log(f(z0)) is defined up

to an additive constant in 2πiZ. Let us fix a value for log(f(z0)).

By the assumption, the function f ′(z)/f(z) is defined and holomorphic on Ω. We define

a new function g(z) on Ω as follows. For z in Ω choose a continuous curve γz : [0, 1] → Ω

with γz(0) = z0 and γz(1) = z. Then define the integral

g(z) =

∫
γz

f ′(ζ)

f(ζ)
dζ + log(f(z0)). (5.5)

54



The above integral is independent of the choice of γz. To see this let γ : [0, 1] → Ω be

another continuous curve with γ(0) = z0 and γ(1) = z. The curve γz followed by the

curve γ(1− t), for t ∈ [0, 1], is a closed curve in Ω. Then, since Ω is simply connected, by

Theorem 5.24, ∫
γz(t)∪γ(1−t)

f ′(ζ)

f(ζ)
dζ = 0.

This implies that ∫
γz

f ′(ζ)

f(ζ)
dζ =

∫
γ

f ′(ζ)

f(ζ)
dζ.

Therefore, g(z) is a well-defined function on Ω.

Since f ′(ζ)/f(ζ) is continuous on Ω, g(z) is differentiable on Ω with derivative

g′(z) =
f ′(z)

f(z)
.

This yields
d

dz
(f(z) · e−g(z)) = 0.

As Ω is connected, f(z)e−g(z) must be a constant. Evaluating this function at z0 we obtain

the value of the constant f(z0)e
− log(f(z0)) = 1. Hence, for all z ∈ Ω we have f(z) = eg(z).

This finishes the proof of the first part.

In the last part of the corollary we define n
√
f(z) = e

1
n
log f(z), where log f(z) is a

continuous branch defined on Ω.

5.4 Riemann mapping theorem

There are some obvious restrictions on a subsets Ω of C that is biholomorphic to D. If

there is a biholomorphic map ϕ : D → Ω, then Ω must be connected, since the image of any

connected set under a continuous map is connected. Also, Ω cannot be equal to C, since
the inverse map ϕ−1 : C → D is bounded and must be constant by Liouville’s theorem.

Also, Ω must be simply connected, since D is simply connected, and homeomorphisms

map homotopic curves to homotopic curves. It turns out that these three conditions on Ω

are enough to guarantee the existence of a biholomorphic map from D to Ω.

Bernhard Riemann was the first person to state the following important theorem for

domains Ω with piece-wise smooth boundaries (1851). However, the proof he presented

contained a gap. The first proof of the theorem for arbitrary domains is due to William

Osgood (1900), but it did not attract the attention it deserved. The proof we present here

is mostly due to Carathéordory with some simplifications due to Paul Koebe.
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Theorem 5.27. Let Ω be a non-empty, connected, and simply connected open subset of

C which is different from C. Then, there is a biholomorphic map f : D → Ω.

Proof. Fix a point z0 ∈ Ω. We shall prove that there is a biholomorphic map f : Ω → D
with f(z0) = 0 and f ′(z0) ∈ (0,∞). To this end we define the class of maps

F =
{
h : Ω → D | h is holomorphic, one to one, h(z0) = 0, and h′(z0) ∈ (0,∞)

}
.

We break the proof into several steps.

Step 1. The class F is not empty.

If the set Ω is bounded in C, we may translate and re-scale the set Ω to find a map

in F . That is, there is a ∈ (0,∞) such that the map f(z) = a(z − z0) maps Ω into D.
Clearly f is holomorphic, one-to-one, and f ′(z0) = a ∈ (0,∞).

If there is w0 ∈ C and r > 0 such that B(w0, r) ∩ Ω = ∅, then g(z) = 1/(z − w0) is

holomorphic and one-to-one on Ω and maps Ω to a bounded region in C. Then, there is

a linear map f as in the above paragraph such that f ◦ g belongs to F .

In general, first we note that since Ω is not equal to C there is w0 ∈ C \Ω. Hence the

function z 7→ z − w0 never vanishes on the simply connected set Ω. By Proposition 5.26,

there is a continuous (and holomorphic) branch

f(z) = log(z − w0)

defined on Ω. As a consequence, we have ef(z) = z−w0. This implies that f is one-to-one

on Ω. Fix a point a ∈ Ω, and observe that for all z ∈ Ω we have f(z) ̸= f(a) + 2πi. That

is because, otherwise z−w0 = ef(z) = ef(a)+2πi = ef(a) = a−w0. This implies that z = a,

and hence f(z) = f(a), which is a contradiction.

We claim that there is r > 0 such that f(Ω) ∩ B(f(a) + 2πi, r) = ∅. If this is not the

case, there is a sequence of points zi ∈ Ω such that f(zi) converges to f(a)+2πi. Since the

exponential map is continuous, we conclude that zi − w0 = ef(zi) → ef(a)+2πi = ef(a) =

a− w0. This implies that zi → a, and hence f(zi) → f(a). This is a contradiction.

The map

I(z) =
1

f(z)− (f(a) + 2πi)

is holomorphic and one-to-one on Ω and I(Ω) ⊆ B(0, 1/r). As in the first paragraph, we

may compose I with a linear transformation to obtain a map of the from k(z) = a(I(z)−
I(z0)) that is holomorphic, one-to-one, and k(Ω) ⊂ D. Finally, the map h(z) = k(z)/k′(z0)

is holomorphic, one-to-one, k(z0) = 0, and k′(z0) ∈ (0,∞).

56



Step 2. There is f ∈ F such that

f ′(z0) = sup{h′(z0) : h ∈ F}.

Let A = {h′(z0) : h ∈ F}. This is a subset of (0,∞), and by step 1, A is a non-empty

set.

As Ω is open, there is r > 0 such that B(z0, r) ⊂ Ω. Let γ denote the circle |z−z0| = r.

By the Cauchy integral formula for the derivative, for every h ∈ F , we have

|h′(z0)| =
∣∣∣ 1

2πi

∫
γ

h(ζ)

(ζ − z0)2
dζ
∣∣∣ ≤ 1

2π

2πr

r2
· sup
ζ∈γ

|h(ζ)| ≤ 1

r
.

This proves that A is bounded from above. In particular, supA exists and is finite.

By the definition of supremum, there is a sequence of maps fn ∈ F , for n ≥ 1, such

f ′n(0) → supA.

Every map in F maps Ω into the bounded set D. In particular, the family F is uni-

formly bounded on compact sets. By Montel’s theorem, F is a normal family. Therefore,

{fn} has a sub-sequence converging uniformly on compact sets to some map f : Ω → C.
By Theorem 5.10, f is holomorphic. In particular, f ′(z0) exists, and f

′(z0) = supA is

non-zero. This implies that f is not a constant function.

Each map fn is one-to-one. Since f is not a constant function, it follows from Corol-

lary 5.12 that f is one-to-one. For each z ∈ Ω, |fn(z)| < 1. Hence, taking limit along

the convergent sub-sequence, we conclude that |f(z)| ≤ 1. As f is not constant, by the

maximum principle, for all z ∈ Ω, |f(z)| < 1, that is, f maps Ω into D.
By the above paragraph f ∈ F . This finishes the proof of Step 2.

Step 3. The map f obtained in Step 2 is onto.

We shall prove that if f is not onto, there is h ∈ F with h′(z0) > f ′(z0), contradicting

the extremality of f in Step 2.

Assume that there is a ∈ D \ f(Ω). Consider the automorphism of D that maps a to 0

and 0 to a, that is,

ψa(z) =
a− z

1− az
.

Since Ω is simply connected, the set U = ψa ◦ f(Ω) is simply connected, and since f(Ω)

does not contain a, U does not contain 0. Then, by Proposition 5.26, there is a continuous

branch of the square root function defined on U , that is,

g(w) = e
1
2
logw, w ∈ U.

Consider the function

h = ψg(a) ◦ g ◦ ψa ◦ f.
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The map h is holomorphic on Ω and maps Ω into D. The latter is because, f maps Ω

into D, all of the other functions in the composition map D into D.
As each of the maps f , ψa, ψg(a) and g are one-to-one, h is also one-to-one. We also

have h(z0) = 0.

Let p2(z) = z2 denoted the square function. Define the map I : D → D as

I = ψ−1
a ◦ p2 ◦ ψ−1

g(a).

The function I maps 0 to 0, since g(a) is the square root of a.

We have

I ◦ h =
(
ψ−1
a ◦ p2 ◦ ψ−1

g(a)

)
◦
(
ψg(a) ◦ g ◦ ψa ◦ f

)
= f.

In particular, we have

I ′(0) · h′(z0) = f ′(z0).

On the other hand, by the Schwarz lemma |I ′(0)| < 1, unless I is a rotation of the

circle. However, since, p2 : D → D is not one-to-one, I : D → D is not one-to-one. In

particular, I may not be a rotation of the circle, and we have |I ′(0)| < 1. This implies

that h′(z0) > f ′(z0). This finishes the proof of Step 3.

All together we have proved that f : Ω → D is holomorphic, one-to-one, and onto.

Thus, f is biholomorphic.

5.5 Exercises

Exercise 5.1. Prove that the function z 7→ z + 1/z maps the circle |z| = r > 1 to the

ellipse
x2

(r + 1/r)2
+

y2

(r − 1/r)2
= 1.

Exercise 5.2. Show that

tan z =
1

i

(eiz − e−iz

eiz + e−iz

)
= i(

1− e2iz

1 + e2iz

)
Write tan as a composition of the mapG in Equation (2.1) and the map z 7→ e2iz. Conclude

that

tan : {z ∈ C : −π/4 < Re z < π/4, Im z > 0} → H

is biholomorphic.

Exercise 5.3. Let Ω = D \ (1/2, 1). Find a biholomorphic map from Ω to D as a compo-

sition of some elementary maps.
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Exercise 5.4. Prove that if a family of holomorphic maps defined on the same domain Ω

is normal then the family is uniformly bounded on compact sets.

Exercise 5.5. Prove that the function d′ defined in Equation (5.3) defines a metric on C.

Exercise 5.6. Prove that the function d′′ in Equation (5.4) defines a metric on the space

C0(Ω).

Exercise 5.7. Let Ω, F , and d′′ be as in Equation 5.4. Prove that a sequence of functions

fn ∈ F , n ≥ 1, converges to some function f : Ω → C uniformly on compact sets if and

only if d′′(fn, f) → 0. In particular, the statement of Theorem 5.19 is independent of the

choice of the exhaustion Ei in the definition of the metric d′′.

Exercise 5.8. Let Hol(Ω) denote the space of all holomorphic maps from Ω to C. Define

the map D : Hol(Ω) → Hol(Ω) as D(f) = f ′, that is, D(f)(z) = f ′(z). Prove that D is

continuous from Hol(Ω) to Hol(Ω) with respect to the metric d′′.

Exercise 5.9. Let F denote the space of all analytic functions f : D → C of the from

f(z) = z + a2z
2 + a3z

3 + . . . ,

such that for all n ≥ 2 we have |an| ≤ n. Prove that the family F is normal.

Exercise 5.10. Let fn : Ω → C, n ≥ 1, be a sequence of holomorphic functions that

is uniformly bounded on compact sets. Assume that for every z ∈ Ω the sequence fn(z)

converges in C. Prove that the sequence fn converges uniformly on compact sets.
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Chapter 6

Growth and Distortion estimates

6.1 The classes of maps S and Σ

Definition 6.1. Let U be an open subset of C. A holomorphic map f : U → C that is

one to one is called a univalent map. These are also called schlicht maps.

In this section we are concerned with the class of maps

S = {f : D → C : f is univalent on D, f(0) = 0, f ′(0) = 1}. (6.1)

That is, holomorphic and univalent maps defined on D that are normalized by the condition

f(0) = 0 and f ′(0) = 1. Each member of S has a Taylor series expansion about 0

f(z) = z + a2z
2 + a3z

3 + . . . , (6.2)

which is convergent for |z| < 1.

By virtue of the Riemann mapping theorem, elements of S correspond to simply con-

nected regions in C, distinct from C itself, modulo some translations and re-scaling. The

translations and re-scalings allows us to imposed the two conditions f(0) = 0 and f ′(0) = 1.

Thus, theorems about elements of S often translate to geometric features of the simply

connected domains obtain as the images of such elements. Before we discuss such results

we give some simple, but key, examples of maps in S.

(i) The identity map f(z) = z is univalent on D. Hence, S is not empty.

(ii) The Koebe function we discussed in Example 5.5

f(z) =
z

(1− z)2
= z + 2z2 + 3z3 + 4z4 + . . . .

The map f is univalent from D onto C \ (−∞,−1/4]. In many ways, as we shall see

in this section, f is a leading example in the class S.
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(iii) The map

f(z) =
z

1− z2
= z + z3 + z5 + z7 + . . .

which maps D onto C \ (−∞,−1/2] ∪ [1/2,∞). This is obtained from the map in

Example 5.4 using the transformation z 7→ −if(iz).

(iv) The map

f(z) =
1

2
log

1 + z

1− z
,

which maps D onto the strip −π/4 < Imw < π/4.

(v) The map

f(z) = z − 1

2
z2 =

1

2
(1− (1− z)2),

which maps D onto a cardioid.

Note that the class of maps S is not closed under addition and multiplication. For

example, the maps z 7→ z
1−z and z 7→ z

1+iz are in class S, but their sum is not univalent

as it has a critical point at (1 + i)/2.

However, the class of maps S is preserved under a number of transformations. We list

these below.

Let f(z) = z + a2z
2 + a3z

3 + . . . be an arbitrary element of S.

(i) Conjugation: The map

g(z) = f(z) = z + a2z
2 + a3z

3 + . . .

belongs to S. This property implies that for every integer k ≥ 1 the set

{f (k)(0) : f ∈ S}

is invariant under the complex conjugation. That is, symmetric with respect to the

real axis.

(ii) Rotation: For every θ ∈ R, the map

g(z) = e−iθf(eiθz) = z + eiθa2z
2 + ei2θa3z

3 + . . .

belongs to S. This property implies that for every integer k ≥ 1 the set

{f (k)(0) : f ∈ S}

is invariant under the rotations about 0.
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(iii) Dilation: For every r ∈ (0, 1), the map

g(z) = r−1f(rz) = z + ra2z
2 + r2a3z

3 + . . .

belongs to S.

(iv) Disk automorphism: For every fixed α ∈ D, the map

g(z) =
f
( z + α

1 + αz

)
− f(α)

(1− |α|2)f ′(α)

belongs to S.

(v) Range transformation: If ψ is a function that is analytic and univalent on the range

of f with ψ(0) = 0 and ψ′(0) = 1 then the map g = ψ ◦ f belongs to S.

(vi) Omitted value transformation: If w does not belong to the range of f then the map

g(z) =
wf(z)

w − f(z)

belongs to S. This is a special case of the transformation in (v), where we have post

composed the map f with the transformation z 7→ (wz)/(w − z).

(vi) Square-root transformation: There is a well-defined and continuous branch of the

map

g(z) =
√
f(z2)

that belongs to S. To see this first note that f(z) has a unique zero at 0 which

implies that f(z2) has a unique zero at 0 and this zero is of order 2. Thus, if we

expand the map

f(z2) = z2 + a2z
4 + a3z

6 + a4z
8 + · · · = z2(1 + a2z

2 + a3z
4 + a4z

6 + . . . ).

In particular, the expression in the above parenthesis never becomes zero on D. By
Proposition 5.26, there is a continuous branch of the square root of (1+a2z

2+a3z
4+

a4z
6+ . . . ) defined on D. There are two such branches, with values equal to +1 and

−1 at 0. We choose the branch with value +1 at 0, and denote it by h(z). Then

g(z) =
√
f(z2) = z · h(z).

We have g(0) = 0 and g′(0) = 1 · h(z) + z · h′(z)|z=0 = 1. It remains to show that g

is univalent on D.
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The map h is an even functions, as h(z) = h(−z). Hence, g is an odd function, that

is g(−z) = −g(z), for all z ∈ D. Let z1 and z2 be two points in D with g(z1) = g(z2).

Thus, f(z21) = f(z22). As f is one-to-one, we must have z21 = z22 . This implies that

z1 = ±z2. However, if z1 = −z2, then g(z2) = g(−z1) = −g(z1). Hence, combining

with g(z1) = g(z2), we must have g(z1) = 0, which is only possible if z1 = 0.

Using (1 + x)1/2 = 1 + x/2− x2/4 + . . . , we can see that

h(z) = 1 +
a2
2
z2 + . . . .

This implies that

g(z) =
√
f(z2) = z +

a2
2
z3 + . . . .

The symmetrization of f into g leads to eliminating the second derivative at 0.

Define

∆ = {w ∈ C : |w| > 1}.

A closely related class of maps to S is the class of maps

Σ =
{
g : ∆ → C : g is univalent on ∆, lim

z→∞
g(z) = ∞, g′(∞) = 1

}
.

Recall that the condition limz→∞ g(z) = ∞ implies that g is holomorphic from a neigh-

borhood of ∞ to a neighborhood of infinity. The derivative of g at ∞ is calculated by

looking at the derivative of the map f(z) = 1/g(1/z) at 0. That is,

g′(∞) = f ′(0).

An element of Σ has a series expansion

g(z) = z + b0 +
b1
z

+
b2
z2

+ . . . (6.3)

that is convergent for |z| > 1. Each g ∈ Σ maps ∆ onto the complement of some compact

and connected set in C. It is useful to consider the subclass of maps

Σ′ = {f : ∆ → C : f ∈ Σ, 0 /∈ f(∆)}.

Note that every element of Σ can be adjusted by adding a constant term to make it

an element of Σ′. Such a transformation only translates the image of the element by a

constant, and does not change the shape of the image.

There is a one-to-one correspondence between S and Σ′ obtained by inversion. That

is, for each f ∈ S the map

g(z) =
1

f(1/z)
, |z| > 1,
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belongs to Σ′. One can see that if f has the series expansion given in Equation (6.2), then

g(z) = z − a2 +
a22 − a3

z
+ . . . .

In particular the class of maps Σ′ is invariant under the square-root transformation,

G(z) =
√
g(z2) = z(1 + b0z

−2 + b1z
−4 + . . . )1/2.

Note that the square-root transformation may not be applied to elements of Σ. That is

because if g(z2) has a zero at some point in ∆, then G will necessary have a singularity

at that point.

Recall that a set E ⊂ C is said to have Lebesgue measure zero, or of zero area, if for

every ε > 0 there are zi ∈ C and ri > 0 such that E ⊆ ∪B(zi, ri) and
∑

i πr
2
i ≤ ε.

A relevant subclass of Σ is

Σ̃ = {f : ∆ → C : f ∈ Σ,C \ f(∆) has zero Lebegue measure.}

The functions in the above class are sometimes referred to as full mappings.

6.2 Area theorem

Gronwall in 1914 discovered the following restriction on the coefficients of the functions

in class Σ.

Theorem 6.2 (Area theorem). If

g(z) = z + b0 +
b1
z

+
b2
z2

+ . . .

belongs to Σ, then
∞∑
n=1

n|bn|2 ≤ 1, (6.4)

with the equality if and only if g ∈ Σ̃.

The above theorem is the basis of a theory of univalent functions, parts of which we

shall present in this section. The reason for the name area theorem comes from the proof.

Proof. For r > 1, let Cr denote the image of the circle |z| = r under g. Each Cr is a

simple, closed, and smooth curve. Let Er denote the bounded connected component of
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C \ Cr. Let w = x + iy be the coordinate in the image of g. Then, by Green’s theorem,

for every r > 1,

area(Er) =

∫
Cr

x dy =
1

2i

∫
Cr

w dw

=
1

2i

∫
|z|=r

g(z)g′(z) dz

=
1

2

∫ 2π

0

(
re−iθ +

∞∑
n=0

bnr
−neinθ

)(
1−

∞∑
ν=1

νbνr
−ν−1e−i(ν+1)θ

)
reiθ dθ

= π
(
r2 −

∞∑
n=1

n|bn|2r−2n
)
.

Taking limits as r tends to 1 from above in the above equation, we conclude that

area(C \ g(∆)) = π
(
1−

∞∑
n=1

n|bn|2
)
.

(Note that we are allows to take limit of the infinite sum, since the infinite sum is a decreas-

ing function of r and is uniformly bounded from above. See the dominated convergence

theorem.) Since the left-hand side of the above equation is ≥ 0, we obtain the inequality

in the theorem.

As each term in the sum in Equation (6.4) is positive, we conclude that for every n ≥ 1

we must have

|bn| ≤
1√
n
.

However, these bounds are not sharp for values of n ≥ 2. For example, for n ≥ 2, the

function

gn(z) = z + n−1/2z−n

is not univalent on ∆. That is because,

g′n(z) = 1− n1/2z−n−1

vanishes at some points in ∆. The inequality for n = 1 is sharp, as stated below.

Corollary 6.3. If g ∈ Σ, then |b1| ≤ 1, with equality if and only if g has the form

g(z) = z + b0 + b1/z, |b1| = 1.

The above map g is a conformal mapping of ∆ onto the complement of a line segment of

length 4.

65



Proof. By Theorem 6.2, we must have |b1| ≤ 1.

If the equality |b1| = 1 occurs, we must have bn = 0 for all n ≥ 2. Thus, g has the

desired form in the corollary.

Indeed, we can show that for any b0 and b1 with |b1| = 1, the map g belongs to Σ. Given

b0 and b1, let a1 =
√
b1, for some choice of the square root, and then let a2 = 1/a1. Define

the maps h1(z) = a1z and h2(z) = a2z − a2b0. The maps h1 and h2 are automorphisms

of C. The map f = h2 ◦ g ◦ h1 is defined and univalent on ∆. A simple calculation shows

that f(z) = z + 1/z, for z ∈ ∆. In Example 5.4 we have seen that f is univalent on ∆

with image equal to C \ [−2, 2]. This implies that g is univalent on ∆ and its image is

equal to some line segment of length 4.

It is also clear that g(∞) = ∞, and g′(∞) = 1.

As a consequence of Corollary 6.3, we obtain a short proof of the Bieberbach estimate

on the second coefficient.

Theorem 6.4 (Bieberbach’s Theorem). If f ∈ S, then |a2| ≤ 2, with equality if and only

if f is a rotation of the Koebe function.

Proof. Let f(z) = z + a2z
2 + a3z

3 + . . . . We apply the square root transformation to

obtain

h(z) =
√
f(z2) = z +

a2
2
z3 + . . . .

We saw in Section 6.1 that this is an element of S. Applying an inversion to the map h

we obtain

g(z) =
1

h(1/z)
=

1

f(1/z2)1/2
=

1

1/z +
a2
2z3

+ . . .
= z
( 1

1 + a2
2z2

+ . . .

)
= z − a2

2

1

z
+ . . . .

The map g belongs to Σ. Thus by Corollary 6.3, |a2| ≤ 2.

If |a2| = 2, then g reduces to the form

g(z) = z − eiθ/z,

which is equivalent to

f(1/z2) =
z2

z4 − 2eiθz2 + e2iθ
.

Using the coordinate w = 1/z2 on D we conclude that

f(w) =
w

(1− eiθw)2
= e−iθ eiθw

(1− eiθw)2
= e−iθk(eiθw),

where k is the Koebe function.
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Recall that any holomorphic map is an open mapping. That is, the image of every

open set under a holomorphic map is open. In particular, this implies that for every f ∈ S,
f(D) contains some disk of positive radius centered at 0. Around 1907, Koebe discovered

that there is a uniform constant ρ such that the image of every map in S contains the

open disk B(0, ρ). The Koebe map suggests that ρ must be less than or equal to 1/4.

Koebe conjectured that ρ = 1/4. Bieberbach later established this conjecture.

Theorem 6.5 (Koebe 1/4-Theorem). For every f ∈ S, f(D) contains the ball |w| < 1/4.

Proof. Let f(z) = z + a2z
2 + . . . be a function in S that omits a value w ∈ C. Using the

omitted value transformation, we build the map

h(z) =
wf(z)

w − f(z)
= z +

(
a2 +

1

w

)
z2 + . . .

in class S. By Theorem 6.4, we must have∣∣∣a2 + 1

w

∣∣∣ ≤ 2.

Combining with the estimate |a2| ≤ 2, we conclude that |1/w| ≤ 4. That is, |w| ≥ 1/4.

This finishes the proof of the theorem.

The above proof shows that the Koebe function, and its rotations, are the only func-

tions omitting a w with |w| = 1/4. Thus, any other function in S covers a larger disk.

6.3 Growth and Distortion theorems

Shapes in D are distorted under a map f ∈ S according to the changes in f ′(z). For

instance, fast changes in the size of |f ′(z)| cause nearby curves of the same length to be

mapped to curves of very different length, or fast changes in arg f ′(z) make straight line

segments to be mapped to curves with sharp bends. The upper bound on the size of the

second derivative at 0, that is |a2| ≤ 2, leads to a collection of uniform bounds on the

changes of f ′(z) as z varies in D. Here uniform means that estimates that are independent

of the map in S. The bounds we discuss in this section are known as the Koebe distortion

theorems.

We first formulate a basic theorem that leads to the distortion estimates and related

results.

Theorem 6.6. For each f ∈ S, we have∣∣∣zf ′′(z)
f ′(z)

− 2r2

1− r2

∣∣∣ ≤ 4r

1− r2
, r = |z| < 1. (6.5)
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Proof. Given f ∈ S and z ∈ D, we use the disk automorphism transformation to build the

map

F (w) =
f
( w + z

1 + zw

)
− f(z)

(1− |z|2)f ′(z)
= w +

1

2

(
(1− |z|2)f

′′(z)

f ′(z)
− 2z

)
w2 + . . . .

Since the map F ∈ S, by Theorem 6.4, the absolute value of the coefficient of w2 in the

above expansion is bounded from above by 2. Thus,∣∣∣(1− |z|2)f
′′(z)

f ′(z)
− 2z

∣∣∣ ≤ 4,

which implies the desired inequality in the theorem.

Theorem 6.7 (Distortion Theorem). For each f ∈ S, we have

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
, r = |z| < 1. (6.6)

Moreover, one of the equalities hold at some z ̸= 0, if and only if f is a suitable rotation

of the Koebe function.

In order to prove the above theorem we need a lemma on calculating derivatives with

respect to the polar coordinates.

Lemma 6.8. There is a continuous branch of log f ′(z) defined on D that maps 0 to 0.

Moreover, for all z = reiθ in D we have

zf ′′(z)

f ′(z)
= r

∂

∂r
(log |f ′(z)|) + ir

∂

∂r
(arg f ′(z)).

Proof. Recall that f ′(0) = 1, and since f is univalent on D, for all z ∈ D, f ′(z) ̸= 0. Thus,

by Proposition 5.26, there is a continuous branch of log f ′(z) defined on D which maps 0

to 0.

Let u(z) = u(reiθ) be an arbitrary holomorphic function defined on some open set

U ⊂ C. Using the relation z = r cos θ + ir sin θ we have

r
∂u

∂r
= r

∂u

∂z
· ∂z
∂r

= r
∂u

∂z
· (cos θ + i sin θ) = z · ∂u

∂z
.

Applying the above formula to the function log f ′(z), and using log z = log |z|+ i arg z,
we obtain the desired relation

zf ′′(z)

f ′(z)
= z · ∂

∂z
(log f ′(z)) = r

∂

∂r
(log f ′(z)) = r

∂

∂r
(log |f ′(z)|) + ir

∂

∂r
(arg f ′(z)).

68



Proof of Theorem 6.7. Note that inequality |w− c| < R implies c−R ≤ Rew ≤ c+R. In

particular, by Equation (6.5), for |z| = r, we have

2r2

1− r2
− 4r

1− r2
≤ Re

(zf ′′(z)
f ′(z)

)
≤ 2r2

1− r2
+

4r

1− r2
,

which simplifies to
2r2 − 4r

1− r2
≤ Re

(zf ′′(z)
f ′(z)

)
≤ 2r2 + 4r

1− r2
. (6.7)

By Lemma 6.8, there is a continuous branch of log f ′(z) defined on D that maps 0 to

0. Moreover, the relation in the lemma, and the above inequality implies that

2r − 4

1− r2
≤ ∂

∂r
log |f ′(reiθ)| ≤ 2r + 4

1− r2
. (6.8)

Now we fix θ and integrate the above equation from 0 to R to obtain

log
1−R

(1 +R)3
≤ log |f ′(Reiθ)| ≤ log

1 +R

(1−R)3
. (6.9)

Above we have used the explicit calculation∫ R

0

2r + 4

1− r2
dr =

∫ R

0

3

1− r
+

2

1 + r
dr = −3 log(1− r) + log(1 + r)

∣∣∣r=R

r=0
= log

1 +R

(1−R)3
.

As the map x 7→ ex is monotone, Equation (6.9) implies the desired inequality in the

theorem.

Assume that for some z = Reiθ ∈ D, z ̸= 0, we have an equality in Equation 6.6. Then,

we must have the corresponding equality in Equation (6.9) for R. The latter condition

implies the corresponding equality in Equation (6.8) and then in Equation (6.7), for all

r ∈ (0, R). Now let r tend to 0 from above, to obtain one of the equalities

Re
(
eiθf ′′(0)

)
= +4, or Re

(
eiθf ′′(0)

)
= −4.

Recall that since f ∈ S, by Theorem 6.4, |f ′′(0)| ≤ 4. Therefore, by the above equation

we must have |f ′′(0)| = 4. By the same theorem, we conclude that f must be a rotation

of the Koebe function.

For the Koebe function k(z) = z/(1− z)2, we have

k′(z) =
1 + z

(1− z)3
,

so we have the right-hand equality at every z = r ∈ (0, 1).

On the other hand, for the function h(z) = eiπk(e−iπz), where k is the Koebe function

we have

h′(z) = k′(e−iπz) =
1− z

(1 + z)3
,
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so we have the left-hand equality at any z ∈ (0, 1). This finishes the proof of the if and

only if statement.

Theorem 6.9 (Growth Theorem). For each f ∈ S,
r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
, |z| = r. (6.10)

Moreover, for each z ∈ D with z ̸= 0, equality occurs if and only if f is a suitable rotation

of the Koebe function.

Proof. An upper bound on |f ′(z)| as in Theorem 6.7 gives an upper bound on |f(z)|. That
is, fix z = reiθ ∈ D. Observe that

f(z) =

∫ r

0
f ′(ρeiθ)dρ.

Then,

|f(z)| =≤
∫ r

0
|f ′(ρeiθ)| dρ ≤

∫ r

0

1 + ρ

(1− ρ)3
dρ =

r

(1− r2)
.

However, since we are working in dimension 2, a lower bound on |f ′| does not give a

lower bound |f |. Let z be an arbitrary point in D. We consider two possibilities:

(i) |f(z)| ≥ 1/4,

(ii) |f(z)| < 1/4.

Assume that (i) occurs. Since for all r ∈ (0, 1), r/(1 + r)2 ≤ 1/4, we trivially have

r/(1 + r2) ≤ |f(z)|.
Now assume that (ii) occurs. By the Koebe 1/4-Theorem, the radial line rz, for

r ∈ [0, 1] is contained in the image of of f . As f is one-to-one, the pre-image of this radial

line, is a simple smooth curve in D connecting 0 to z. Let C denoted this curve. We have

f(z) =

∫
C
f ′(w) dw.

By the definition of C, for any point w on C, f ′(w)dw has the same argument as the

argument of z. Thus,

|f(z)| =
∣∣∣ ∫

C
f ′(w) dw

∣∣∣ = ∫
C
|f ′(w)| |dw| ≥

∫ r

0

1− ρ

(1 + ρ)3
dρ =

r

(1 + r)2
.

It follows from the above arguments that an inequality in either side of Equation (6.10)

implies the equality in the corresponding side of Equation (6.6), which by Theorem 6.7

implies that f is a suitable rotation of the Koebe function.

Also, as in the proof of the previous theorem, suitable rotations of the Koebe function

lead to the equality on either side of Equation (6.10). Thus, the bounds in the theorem

are sharp.
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It is possible to prove a distortion estimate involving both of |f(z)| and |f ′(z)|.

Theorem 6.10 (combined growth-distortion Theorem). For each f ∈ S,

1− r

1 + r
≤
∣∣∣zf ′(z)
f(z)

∣∣∣ ≤ 1 + r

1− r
, |z| = r. (6.11)

Moreover, for each z ∈ D with z ̸= 0, equality occurs if and only if f is a suitable rotation

of the Koebe function.

It is not possible to conclude the above theorem as a combination of the bounds in The-

orems 6.7 and 6.9. But the proof is obtained from applying the Beiberbach Theorem 6.4

to a suitable disk automorphism applied to f . As we have already seen this technique we

skip the proof of the above theorem.

Theorem 6.11 (Radial distortion Theorem). For each f ∈ S,

| arg f ′(z)| ≤ 2 log
1 + r

1− r
, |z| = r. (6.12)

Proof. By considering the imaginary part of the inequality in Theorem 6.7, we obtain

− 4r

1− r2
≤ Im

(zf ′′(z)
f ′(z)

)
≤ 4r

1− r2
.

By Lemma 6.8, this implies that

− 4

1− r2
≤ ∂

∂r
arg f ′(reiθ) ≤ 4

1− r2
.

Integrating the above equation from r = 0 to r = |z| we obtain

| arg f ′(z)| ≤
∫ r=|z|

r=0

4

1− r2
dr = 2 log

1 + r

1− r
.

This finishes the proof of the theorem.

The quantity arg f ′(z) has a geometric interpretation as the “local rotation” factor of

f at z. Unfortunately, in contrast to the other bounds we proved in this section, the upper

bound in Theorem 6.11 is not optimal. The optimal bound is

| arg f ′(z)| ≤

4 sin−1 r r ≤ 1/
√
2,

π + log r2

1−r2
r ≥ 1/

√
2.

This lies much deeper than the arguments we have seen so far. The proof relies on a more

powerful method known as Loewner evolution.
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We have seen so far that for every f ∈ S we have |a2| ≤ 2. This naturally raises the

question of finding the quantities

An = sup
f∈S

|an|.

In Exercise 6.3 you will show that these are finite numbers. The Koebe function has

coefficients

K(z) =

∞∑
n=1

nzn,

as the Koebe function is the extreme example in the distortion theorems, Bieberbach in

1916 conjectured that An = n, for all n. This conjecture motivated the development of

many techniques in complex analysis and eventually settled by Louis de Branges in 1985.

6.4 Exercises

Exercise 6.1. Show that the class of maps S forms a normal family.

Exercise 6.2. Let f : D → C \ {c} be a one-to-one and holomorphic map. Prove that for

every z ∈ D we have

|f(z)| ≤ 4|cz|
(1− |z|)2

.

Exercise 6.3. Let k ≥ 2 be an integer and define

Λk = {f (k)(0) : f ∈ S}.

Prove that

(i) for every k ≥ 2, there is rk > 0 such that Λk = {w ∈ C : |w| ≤ rk};

(ii) there is a constant C > 0 such that for all n ≥ 1 we have rn ≤ Cn2n!.

Exercise 6.4. Show that for every integer n ≥ 1, the function

hn(z) =
1

n
(enz − 1),

satisfies fn(0) = 0, and f ′n(0) = 1, but fn omits value −1/n.

Exercise 6.5. Let Ω be a non-empty simply connected subset of C that is not equal to

C. For z ∈ Ω, the conformal radius of Ω at z is defined as

radconf(Ω, z) = |φ′(0)|,

where φ : D → Ω is the Riemann mapping with φ(0) = z.
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(i) Prove that the quantity radconf(Ω, z) is independent of the choice of the Riemann

map φ.

(ii) Define

rz = sup{r > 0 : B(z, r) ⊂ Ω}.

Prove that

rz ≤ radconf(Ω, z) ≤ 4rz.

(iii) Let Ω′ ⊂ Ω be a simply connected set that contains z. Prove that

radconf(Ω
′, z) < radconf(Ω, z).

Exercise 6.6. Prove that there is r > 0 such that for every one-to-one and holomorphic

map f : D → C, the set f(B(0, r)) is a convex subset of C.
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Chapter 7

Quasi-conformal maps and Beltrami equation

7.1 Linear distortion

Assume that f(x + iy) = u(x + iy) + iv(x + iy) be a (real) linear map from C → C that

is orientation preserving. Let z = x+ iy and w = u+ iv. The map z 7→ w = f(z) can be

expressed by a matrix [
x

y

]
7→

[
u

v

]
= T

[
x

y

]
, (7.1)

where T is the 2× 2 matrix

T = Df(z) =

[
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

]
=

[
a b

c d

]

for some real constants a, b, c, and d. As f is orientation preserving, the determinant of

the matrix T is positive, that is, ad− bc > 0.

The circle |z|2 = x2 + y2 = 1 is mapped by f to an ellipse with equation |T−1w|2 = 1.

The distortion of f , denoted by Kf , is defined as the eccentricity of this ellipse, that is,

Kf is the ratio of the length of the major axis of the ellipse to the length of its minor axis

of the ellipse. Since f is a linear map, the distortion of f is independent of the radius of

the circle |z| = 1 we choose to define the ellipse.

A basic calculation leads to the equation

Kf + 1/Kf =
a2 + b2 + c2 + d2

ad− bc
.

for Kf in terms of a, b, c, and d. The above simple quantity and the forthcoming relations

are rather complicated when viewed in real coordinates, but find simple forms in complex

notations.

Any real-linear map T : C → C can be expressed in the form

w = T (z) = Az +Bz, (7.2)
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for some complex constants A and B. If T is orientation preserving, we have detT =

|A|2 − |B|2 > 0. Then, T can be also represented as

T (z) = A(z + µz),

where

µ = B/A, and |µ| < 1.

That is, T may be decomposed as the stretch map S(z) = z + µz post-composed with

the multiplication by A. The multiplication consists of rotation by the angle arg(A) and

magnification by |A|. Thus, all of the distortion caused by T is expressed in terms of µ.

From µ one can find the angles of the major axis and minor axis of the image ellipse. The

number µ is called the complex dilatation of T .

The maximal magnification occurs in the direction (arg µ)/2 and the magnification

factor is 1+|µ|. The minimal magnification occurs in the orthogonal direction (argµ−π)/2
and the magnification factor is 1− |µ|. Thus, the distortion of T , which only depends on

µ, is given by the formula

KT =
1 + |µ|
1− |µ|

.

A basic calculation implies

|µ| = KT − 1

KT + 1
.

If T1 and T2 are real-linear maps from C to C one can see that

KT2◦T1 ≤ KT2 ·KT1 . (7.3)

The equality in the above equation may occur when the major axis of T1(∂D) is equal to
the direction in which the maximal magnification of T2 occurs and the minor axis of T1(∂D)
is equal to the direction at which the minimal magnification of T2 occurs. Otherwise, one

obtains strict inequality.

7.2 Dilatation quotient

Assume that f : Ω → C is an orientation preserving diffeomorphism. That is, f is

homeomorphism, and both f and f−1 have continuous derivatives. Let z = x + iy and

f(x+ iy) = u(x, y) + iv(x, y). At z0 = x0 + iy0 ∈ Ω and z = x+ iy close to zero we have

f(z0 + z) = f(z0) +

[
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

][
x

y

]
+ o(z). (7.4)
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In the above equation, the little o notation means any function g(z) which satisfies

limz→0 g(z)/z = 0.

We may write Equation (7.4) in the complex notation

f(z0 + z) = f(z0) +Az +Bz + o(z),

where A and B are complex numbers (which depend on z0). Comparing the above two

equations we may determine A and B in terms of the partial derivatives of f . That is,

setting z = 1 and z = i we obtain (respectively)

A+B =
∂u

∂x
+ i

∂v

∂x
, Ai−Bi =

∂u

∂y
+ i

∂v

∂y
.

These imply that

A =
1

2

(∂u
∂x

+ i
∂v

∂x
− i
(∂u
∂y

+ i
∂v

∂y

))
, B =

1

2

(∂u
∂x

+ i
∂v

∂x
+ i
(∂u
∂y

+ i
∂v

∂y

))
.

If we introduce the notation

∂

∂z
=

1

2
(
∂

∂x
− i

∂

∂y
),

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
), (7.5)

then the diffeomorphism f may be written in the complex notation as

f(z0 + z) = f(z0) +
∂f

∂z
(z0) · z +

∂f

∂z
(z0) · z + o(z).

In this notation, the Cauchy-Riemann condition we saw in Equation (1.4) is equivalent

to
∂

∂z
f(z) = 0,∀z ∈ Ω, (7.6)

and when f is holomorphic,

f ′(z) =
∂

∂z
f(z).

Fix θ ∈ [0, 2π], and define

Dθf(z0) = lim
r→0

f(z0 + reiθ)− f(z)

reiθ
.

This is the partial derivative of f at z0 in the direction eiθ. By comparing to the distortion

of real-linear maps we see that

max
θ∈[0,2π]

|Dθf(z))| = |A|
(
1 +

∣∣∣B
A

∣∣∣) =
∣∣∣∂f
∂z

(z0)
∣∣∣+ ∣∣∣∂f

∂z
(z0)

∣∣∣
and

min
θ∈[0,2π]

|Dθf(z))| = |A|
(
1−

∣∣∣B
A

∣∣∣) =
∣∣∣∂f
∂z

(z0)
∣∣∣− ∣∣∣∂f

∂z
(z0)

∣∣∣
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The quantity µ that determines the local distortion of f at z0 is

µ = µf (z0) =
∂f/∂z(z0)

∂f/∂z(z0)
.

Here, µ is a continuous function of z0 defined on Ω and maps into D. The function µf is

called the complex dilatation of f . The dilatation quotient of f at z0 is defined as

Kf (z0) =
1 + |µf (z0)|
1− |µf (z0)|

=
maxθ∈[0,2π] |Dθf(z0)|
minθ∈[0,2π] |Dθf(z0)|

. (7.7)

7.3 Absolute continuity on lines

Definition 7.1. A function g : R → C is called absolutely continuous if for every ε > 0

there is δ > 0 such that for every finite collection of intervals (a1, b1), (a2, b2), . . . , (an, bn)

in R we have
n∑

i=1

|bi − ai| < δ =⇒
n∑

i=1

|g(bi)− g(ai)| < ε.

A function g : [a, b] → C is called absolutely continuous, if the above condition is satisfied

when all the intervals lie in [a, b].

For example, any C1 function g : [a, b] → C is absolutely continuous. In general,

if g : R → C is differentiable at every x ∈ R and |g′| is uniformly bounded, then g is

absolutely continuous.

On the other hand, any absolutely continuous function is uniformly continuous (use

with n = 1). But, there are uniformly continuous functions that are not absolutely

continuous (for example Cantor’s function).

Definition 7.2. Let A ⊂ Rn, n ≥ 1. We say that a property holds at almost every point

in A if the set of points where the property does not hold forms a set of measure zero. For

example, when we say that a function f : A → R is continuous at almost every point in

A it means that there is a set B ⊂ A of measure zero such that for every x ∈ A \ B the

function f is continuous at x.

Definition 7.3. Let Ω be an open set in C and f : Ω → C be a continuous map. We

say that f : Ω → C is absolutely continuous on lines (ACL) if for each closed rectangle

{z ∈ C : a ≤ Re z ≤ b, c ≤ Im z ≤ d} contained in Ω we have the following two properties:

(i) for almost all y ∈ [c, d], the function x 7→ f(x+ iy) is absolutely continuous on [a, b],

(ii) for almost all x ∈ [a, b], the function y 7→ f(x+ iy) is absolutely continuous on [c, d].
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For example, if g : Ω → C is C1, then it is ACL. If g is C1 at all points except at a

discrete set of points, it is ACL.

It is clear form the above definitions that a complex valued function is absolutely

continuous iff its real and imaginary parts are absolutely continuous functions. The same

statement is true for ACL property.

It follows from the standard results in real analysis that if g : [a, b] → R is absolutely

continuous, then it (has bounded variation and hence) is differentiable at almost every

point. That is, at almost every t ∈ [a, b], g′(t) exists and is finite.

Proposition 7.4. If f : Ω → C is ACL, then the partial derivatives ∂f/∂x and ∂f/∂y

exist (and are finite) at almost every x+ iy ∈ Ω.

In particular, by the above proposition, at almost every z ∈ Ω, the partial derivatives

∂f/∂z and ∂f/∂z exist and are finite.

The proof of the above proposition may be found in any standard book on real analysis,

see for example, the nice book by G. Folland [Fol99].

7.4 Quasi-conformal mappings

Definition 7.5 (Analytic quasi-conformality). Let Ω be an open set in C and f : Ω → C be

an orientation preserving homeomorphism. We say that f : Ω → C is K-quasi-conformal

if we have

(i) f is absolutely continuous on lines,

(ii) for almost every z ∈ Ω we have Kf (z) ≤ K.

An orientation preserving homeomorphism f : Ω → C is called quasi-conformal, if it

is K-quasi-conformal for some K ≥ 1.

Note that the condition (i) in the above definition guarantees that the partial deriva-

tives ∂f/∂z and ∂f/∂z are defined at almost every point in Ω. Hence, µf (z) is defined at

almost every point and the condition (ii) is meaningful.

Definition 7.6. Let f : Ω → C be a quasi-conformal mapping. The quantity

Kf (z) =
1 + |µf (z)|
1− |µf (z)|

is called the dilatation quotient of f at z. The function

µf (z) =
∂f/∂z

∂f/∂z
(7.8)
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is called the complex dilatation of f . Both of these functions are defined at almost every

point in Ω.

Recall that for a function f : Ω → C, the supremum norm of f is defined as

∥f∥∞ = inf
{
sup
z∈A

|f(z)| | A ⊆ Ω, and Ω \A has zero measure
}
.

This is also called the essential supremum of f on Ω.

Note that the inequality Kf (z) ≤ K corresponds to

|µf (z)| ≤
K − 1

K + 1
.

Thus, for a quasi-conformal map f : Ω → C, we have

∥µf∥∞ < 1.

Theorem 7.7 (Pompeiu formula). Let Ω be a simply connected domain in C and f : Ω →
C be a C1 map which is quasi-conformal. Let γ be a piece-wise C1 simple closed curve in

Ω and B denote the bounded connected component of C \ γ. For every z0 ∈ B we have

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz − 1

2πi

∫∫
B

∂f(z)/∂z

z − z0
dzdz.

Proof. Let D be a bounded domain with a piece-wise C1 boundary, and g be a complex

valued C1 function defined on D ∪ ∂D. With notation z = x+ iy we have∫
∂D

g(z) dz =

∫
∂D

g(z) dx+

∫
∂D

ig(z)dy

=

∫∫
D

(
i
∂g

∂x
− ∂g

∂y

)
dxdy = 2i

∫∫
D

∂g

∂z
dxdy =

∫∫
D

∂g

∂z
dzdz.

Using dz = dx + idy, we have dzdz = (dx − idy)(dx + idy) = idxdy − idydx = 2idxdy.

This gives us the complex version of the Green’s integral formula∫
∂D

g(z) dz =

∫∫
D

∂g

∂z
dzdz. (7.9)

Let z0 be an arbitrary point in Ω and δ > 0 small enough so that the closed ball

|z − z0| ≤ δ is contained in Ω. Define the open set

Bδ = B \ {z ∈ B : |z − z0| ≤ δ}.

The function g(z) = f(z)/(z − z0) is C
1 on B ∪ ∂B, and at every z ∈ Bδ we have

∂

∂z

( f(z)

z − z0

)
=
∂f

∂z
· 1

z − z0
+ f(z) · ∂

∂z

1

z − z0
=
∂f

∂z
· 1

z − z0
.
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In the above equation we have used the complex version of the Cauchy-Riemann condition

in Equation (7.6).

We applying the complex Green’s formula to g on Bα to obtain∫
∂Bδ

f(z)

z − z0
dz =

∫∫
Bδ

∂f

∂z
· 1

z − z0
dzdz. (7.10)

Now we want to take limits of the above equation as δ tends to 0 from above.

lim
δ→0

∫
∂Bδ

f(z)

z − z0
dz = lim

δ→0

(∫
γ

f(z)

z − z0
dz −

∫
|z−z0|=δ

f(z)

z − z0
dz
)

=

∫
γ

f(z)

z − z0
dz − lim

δ→0

∫
|z−z0|=δ

f(z)− f(z0) + f(z0)

z − z0
dz

=

∫
γ

f(z)

z − z0
dz − lim

δ→0

∫
|z−z0|=δ

f(z)− f(z0)

z − z0
dz − 2πif(z0)

=

∫
γ

f(z)

z − z0
dz − 2πif(z0).

(7.11)

In the last line of the above equation we have used that |f(z)−f(z0)/(z−z0)| is uniformly

bounded from above.

On the other hand,∫∫
Bδ

∂f

∂z
· 1

z − z0
dzdz =

(∫∫
B

∂f

∂z
· 1

z − z0
dzdz −

∫∫
|z−z0|≤δ

∂f

∂z
· 1

z − z0
dzdz

)
and since f is C1, and |z − z0| ≤ δ is compact, there is a constant C > 0 such that∣∣∣ ∫∫

|z−z0|≤δ

∂f

∂z
· 1

z − z0
dzdz

∣∣∣ ≤ C

∫∫
|z−z0|≤δ

∣∣∣ 1

z − z0

∣∣∣|dzdz|
We can calculate the integral on the right hand side as in∫∫

|z−z0|≤δ

∣∣∣ 1

z − z0

∣∣∣ |dzdz| = 2

∫∫
|z−z0|≤δ

∣∣∣ 1

z − z0

∣∣∣ dxdy
= 2

∫ 2π

0

∫ δ

0

∣∣∣ 1

z − z0

∣∣∣ rdrdθ = 4πδ.

The above relations imply that

lim
δ→0

∫∫
Bδ

∂f

∂z
· 1

z − z0
dzdz =

∫∫
B

∂f

∂z
· 1

z − z0
dzdz. (7.12)

Combining Equations 7.10, (7.11), and (7.12), we obtain the formula in the theorem.
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Remark 7.8. In Theorem 7.7 it is not required to assume that f is C1. This has an

important consequence we state in Lemma 7.10. Below we give a brief argument how the

statement is proved without assuming C1 condition.

As we saw in Proposition 7.4, the ACL condition in quasi-conformality implies that

the first partial derivatives of f exist and are finite at almost every point. If the first order

partial derivatives are defined almost everywhere, the Jacobian of f , detDf , is defined

almost everywhere. Then, as f maps bounded sets to bounded set (that have bounded

area), we conclude that detDf is locally in L1. On the other hand,

|∂f/∂x|2 ≤ max
θ∈[0,2π]

|Dαf |2 ≤ (Kminθ∈[0,2π]|Dθf |) ·maxθ∈[0,2π]|Dθf | ≤ K detDf(z).

As detDf(z) belongs to L1 locally, we conclude that |∂f/∂x| belongs to L2 locally. By

a similar argument we conclude that |∂f/∂y| also belongs to L2. These imply that the

derivatives ∂f/∂z and ∂f/∂z exist at almost every point and are integrable. So, the

integrals in Theorem 7.7 are meaningful.

Corollary 7.9. Let f : Ω → C be a C1 map which is 1-quasi-conformal. Then, f : Ω → C
is a conformal map.

Proof. The condition 1-quasi-conformal implies that µf (z) = 0 at almost every point in

Ω. Hence, ∂f/∂z = 0 at almost every point. It follows from the formula in Theorem 7.7

that f satisfies the Cauchy integral formula, and therefore it is holomorphic.

As we remarked in Remark 7.8, the C1 condition is not required in Theorem 7.7. This

stronger statement has an important consequence known as the Weyl’s lemma. But the

proof requires some standard real analysis that is not the prerequisite for this course!

Lemma 7.10 (Weyl’s lemma). Any 1-quasi-conformal map f : Ω → C is conformal.

Proposition 7.11. If f : Ω1 → Ω2 is K-quasi-conformal, g : Ω0 → Ω1 is conformal, and

h : Ω2 → Ω3 is conformal, then h ◦ f ◦ g : Ω0 → Ω3 is K-quasi-conformal.

Proof. For the first part of the theorem we need to verify the two condition in Definition 7.5

for the map h◦f ◦g. Let A1 ⊂ Ω1 be the set of points where Kf (z) is defined and bounded

by K. As f is K-quasi-conformal, Ω1 \A1 has zero area. Define A0 = g−1(A1). It is easy

to show that A0 has zero area (use exhaustion of Ω1 by compact sets, and use that |g′| is
bounded from above and below on each compact set).

Note that since g and h are holomorphic functions, by Equation (7.7), Kg ≡ 1 and

Kh ≡ 1. Then, for every w ∈ A0, by the inequality in Equation (7.3), we have

Kh◦f◦g(w) ≤ Kg(w) ·Kf (g(w)) ·Kh(f ◦ g(w)) = Kf (g(w)) ≤ K.
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This proves condition (ii) in the definition of quasi-conformality.

We need to prove that h ◦ f ◦ g is ACL on Ω0. Since g and h are C1, they are ACL.

In fact, for every rectangle bounded by horizontal and vertical sides, in their domain of

definition, these maps are absolutely continuous on every horizontal and every vertical line.

In fact, g and h are absolutely continuous on every piece-wise C1 curves in their domain

of definition. We also know that for every rectangle R ⊂ Ω1 bounded by horizontal and

vertical sides, f is absolutely continuous on almost every horizontal and almost every

every vertical line in R. With these properties, it is easy to see that h ◦ f is ACL. But the

problem with f ◦ g is that g does not map horizontal lines to horizontal or vertical lines.

And we do not a priori know that f is absolutely continuous on almost every analytic

curves (these are images of a horizontal and vertical lines by g). As in Remark 7.8 we

need to use some standard results from real analysis. That is, a homeomorphism f is

ACL iff the first partial derivatives of f exist at almost every point in the domain of f

and are locally in L1. From this criterion it is easy to see that the composition of ACL

homeomorphisms is ACL. (We skip the details as this requires material that are not the

prerequisite for this course.)

Proposition 7.12. If f : Ω1 → Ω2 is K-quasi-conformal, g : Ω0 → Ω1 is conformal, and

h : Ω2 → Ω3 is conformal, then for almost every z ∈ Ω1 and almost every w ∈ Ω0 we have

µh◦f (z) = µf (z), µf◦g(w) =
( |g′(z)|
g′(z)

)2
· µf (g(w)).

Proof. This is easy to see from the definition of µ in terms of the length of major and

minor axis, and their direction. See Exercise 7.1

Remark 7.13. Many theorems in complex analysis are valid, with some modifications, for

quasi-conformal mappings. The Pompeiu formula is an example of such statements. In

general, it is possible to show that the composition of quasi-conformal maps are quasi-

conformal. If a sequence of K-quasi-conformal maps converges uniformly on compact sets

to some function, then the limiting function is either constant or quasi-conformal. The

class of K-quasi-conformal maps f : C → C normalized with f(0) = 0 and f(1) = 1 forms

a normal family.

Quasi-conformal maps, in contrast to conformal maps, enjoy the flexibility that allows

one to build such maps by hand. This makes them a powerful tool in complex analysis.
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7.5 Beltrami equation

Given a diffeomorphism f : Ω → C with µf : Ω → D one may look at f in Equation (7.8)

as the solution of the differential equation

∂f

∂z
(z) = µ(z)

∂f

∂z
(z),∀z ∈ Ω. (7.13)

That is, given a function µ : Ω → D, is there a diffeomorphism f : Ω → C such that

the above equation holds. The above equation is called the Beltrami equation, and the

function µ is called the Beltrami coefficient of f .

There is a geometric interpretation of the Beltrami equation similar to the solutions

of vector fields in the plane. The function µ specifies a field of ellipses in Ω where at each

z ∈ Ω the major axis of the ellipse has angle (argµ(z) + π)/2 and size 1/(1− |µ(z)|). The
minor axis of the ellipse at z has angle µ(z)/2 and has size 1/(1 + |µ(z)|). The solution f

of the above equation is a diffeomorphism that infinitesimally maps the field of ellipses to

the field of round circles.

The Beltrami equation has a long history. It was already considered by Gauss in 1820’s

in connection with a seemingly different problem of finding isothermal coordinates on a

surface for real analytic maps. Most of the developments in the study of the Beltrami

equation took place in 1950′s. These mainly focused on reducing the regularity condition

required for f ; see Remark 7.15.

Theorem 7.14. [Measurable Riemann mapping theorem-continuous version] Let µ : C →
D be a continuous map with supz∈C |µ(z)| < 1. Then, there is a quasi-conformal map

f : C → C such that the Beltrami equation (7.13) holds on C.
Moreover, the solution f is unique if we assume that f(0) = 0 and f(1) = 1.

Remark 7.15. The condition of continuity of µ in the above theorem is not necessary. The

sufficient condition is that µ is measurable and ∥µ∥∞ < 1. This result is known as the

measurable Riemann mapping theorem, and has many important consequences.

The relation between the regularity of the solution and the regularity of µ is not simple.

For example, if µ is Hölder continuous, then the solution becomes a diffeomorphism. But,

this condition is far from necessary. There are discontinuous functions µ where the solution

is diffeomorphism.
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7.6 An application of MRMT

In the theory of dynamical systems one wishes to understand the behavior of the sequences

of points generated by consecutively applying a map at a given point. That is, if g : X →
X, and x0 ∈ X, one studies the sequence {xn} defined as xn+1 = g(xn). This is called the

orbit of x0 under g. We shall look at the special case when g : Ĉ → Ĉ.
Recall the homeomorphism π from the unit sphere S ⊂ R3 to the Riemann sphere Ĉ

we discussed in Section 3.1. There is a spherical metric d′ on S which is defined as the

Euclidean length of the shortest curve on S. We may use π and d′ to define a metric on

Ĉ as d(z, w) = d′(π−1(z), π−1(w)).

We may naturally extend the notion of normal families for holomorphic maps of C
we presented in Definition 5.9 to holomorphic maps of Ĉ. Let Ω be an open set in Ĉ
and fn : Ω → Ĉ be a sequence of maps. We say that fn converges uniformly on E to

g : E → Ĉ, if for every ε > 0 there is n0 ≥ 1 such that for all n ≥ n0 and all z ∈ E we

have d(fn(z), g(z)) < ε.

Definition 7.16. Let Ω be an open set in Ĉ and F be a family (set) of maps f : Ω → Ĉ.
We say that the family F is normal, if every sequence of maps in F has a sub-sequence

which converges uniformly on compact subset of Ω to some g : Ω → Ĉ.

Given a holomorphic map R : Ĉ → Ĉ and any integer n ≥ 1 we may compose the map

R with itself n times to obtain a map from Ĉ to Ĉ. We use the notation R◦n to denote

this n-fold composition.

Definition 7.17. Let R : Ĉ → Ĉ be a holomorphic map. We say that z ∈ Ĉ is stable for

the iterates R◦n, n ≥ 1, if there is an open set U ⊂ Ĉ containing z such that the family

{R◦n}∞n=0 restricted to U forms a normal family.

By the above definition, the set of stable points of a rational function forms an open

subset of Ĉ. The set of all stable points of a rational function R is called the Fatou set

of R, and denoted here by F(R). The complement of the Fatou set, Ĉ \ F(R), which is a

closed subset of Ĉ, is called the Julia set of R. This is denoted by J (R). These are named

after the pioneering works of P. Fatou and G. Julia in 1920’s on properties of these sets.

Lemma 7.18. Let R(z) = zd, for some integer d ≥ 2. Then J (R) = ∂D.

Proof. First we show that the open disk D is contained in F(R). To see this, let E be

an arbitrary compact set in D. There is r ∈ (0, 1) such that E ⊂ B(0, r). Then, for
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every w ∈ E we have |R◦n(w)| = |wdn | ≤ rd
n → 0, as n tends to infinity. That is, the

iterates R◦n converges uniformly on E to the constant function 0. As E was an arbitrary

compact set in D, we conclude that R◦n converges uniformly on compact subsets of D to

the constant function 0.

By a similar argument, the iterates R◦n converges uniformly on compact subsets of

Ĉ \ (D ∪ ∂D) to the constant function ∞.

By the above two paragraphs, Ĉ \ ∂D is contained in F(R). On the other hand, let

z ∈ ∂D and U be an arbitrary neighborhood of z. For w in U with |w| > 1 we have

R◦n(w) → ∞ and for w ∈ U with |w| < 1 we have R◦n(w) → 0. Thus, there is no sub-

sequence of R◦n that converges to some continuous function on U . As U was arbitrary,

we conclude that z /∈ F(R). Then, z ∈ J (F ).

The above example is a very special case where the Julia set has a simple structure (is

smooth). For a typical rational map the Julia set has a rather complicated structure, see

some examples of Julia sets in Figure 7.6. The self-similarity of the figures is due to the

invariance of J (R) under R we state below.

Figure 7.1: Two examples of Julia sets.

Lemma 7.19. Let R : Ĉ → Ĉ be a rational map. Then, z ∈ F(R) if and only if

R(z) ∈ F(R).

Proof. See Exercise 7.5.
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By the above lemma R−1(F(R)) = F(R), which implies R−1(J (R)) = J (R).

Assume that the Fatou set of some R : Ĉ → Ĉ is not empty. Let U0 be a connected

component of F(R). There is a sequence Rnk , k ≥ 1, that converges to some g : U0 →
Ĉ. Then the function g describes the limiting behavior of the orbit R◦nk(z). But, to

understand the behavior of the orbit of z one needs to know all limiting functions of

convergent sub-sequences of R◦n.

Let U be a connected components of F(R). It follows from Lemma 7.19 that R(U) is

a components of F(R) which may or may not be distinct from U .

Definition 7.20. A component U of F(R) is called wandering, if R◦i(U) ∩ R◦j(U) = ∅,
for distinct integers i and j. A component U of F(R) is called eventually periodic, if there

are positive integers i ≥ 0 and p ≥ 1 such that R◦(i+p)(U) = R◦i(U).

By definition, if a Fatou component is not wandering, then it is eventually periodic. In

1985, D. Sullivan established the following remarkable property that settled a conjecture

of Fatou from 1920’s.

Theorem 7.21 (No wandering domain). Let U be a connected component of the Fatou

set of a rational function R : Ĉ → Ĉ. Then, U is eventually periodic.

Remark 7.22. Theorem 7.21 is a major step towards characterizing the limiting functions

of the iterates R◦n. When, R◦(i+p)(U) = R◦i(U). The map h = R◦p is a holomorphic map

from V = R◦i(U) to V . This allows one to study all possible limits of the iterates R◦n on

U . For example when V is a simply connected subset of Ĉ one has Exercise 3.6.

The complete proof requires some advanced knowledge of quasi-conformal mappings.

However, we present an sketch of the argument in the class, only emphasizing the use of

the measurable Riemann mapping theorem.

7.7 Exercises

Exercise 7.1. Prove Proposition 7.12.

Exercise 7.2. Let Ω1, Ω2, and Ω3 be open sets in C. Assume that f : Ω1 → Ω2 and

g : Ω2 → Ω3 are C1 maps. With the notations z ∈ Ω1 and w = f(z) ∈ Ω2, prove the

complex chain rules,

∂(g ◦ f)
∂z

= (
∂g

∂w
◦ f) · ∂f

∂z
+ (

∂g

∂w
◦ f) · ∂f

∂z
,

and
∂(g ◦ f)
∂z

= (
∂g

∂w
◦ f) · ∂f

∂z
+ (

∂g

∂w
◦ f) · ∂f

∂z
.
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Exercise 7.3. Assume that µ : C → D is a continuous map with supz∈C |µ(z)| < 1, and

f, g : C → C are diffeomorphisms with f(0) = g(0) = 0 and f(1) = g(1) = 1 that satisfying

the Beltrami equation. Prove that f(z) = g(z) for all z ∈ C. [This is a special case of the

uniqueness part in Theorem 7.14.]

Exercise 7.4. We say that a function f : [a, b] → C has bounded variation, if

sup
{ N∑

i=1

|f(xi+1)− f(xi)|
∣∣∣ a = x1 < x2 < x3 < · · · < xN+1 = b,N ∈ N

}
<∞.

Prove that if f : [a, b] → C is absolutely continuous, then f has bounded variation on

[a, b].

Exercise 7.5. Let R : Ĉ → Ĉ be a ration map. Prove that R−1(F(R)) = F(R). Then,

conclude that R−1(J (R)) = J (R).

Exercise 7.6. Let R : Ĉ → Ĉ be a holomorphic map. Assume that there is n ∈ N and

z ∈ Ĉ such that R◦n(z) = z. Prove that

(i) if |(R◦n)′(z)| < 1, then z belongs to F(R);

(ii) if |(R◦n)′(z)| > 1, then z belongs to J (R);

(iii) if |(R◦n)′(z)| = e2πip/q for some p/q ∈ Q, then z belongs to J (R). [hint: first

consider the case n = 1 and look at (R◦n)′′(z) as n tends to infinity.
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Chapter 8

Appendix

8.1 Hints to exercises

In this appendix we provide hints to the exercises. Please note that these will be brief and

do not suggest a suitable style of writing proofs in mathematics. The complete solutions

to the difficult exercises are given. These have been indicated by [complete solution] at

the beginning of the solution, and suggest a proper way of writing solutions.

Chapter 2

2.1: Let φ1(z) = rz+ a and φ2(z) = sz+ b. Then, φ1 : D → B(a, r) and φ2 : D → B(b, s)

are biholomorphisms. It follows that φ−1
2 ◦f ◦φ1 : D → D is defined and holomorphic, and

maps 0 to 0. By Lemma 2.1, we have |(φ−1
2 ◦ f ◦ φ1)

′(0)| ≤ 1. This implies |f ′(a)| ≤ s/r.

2.2: We have seen that φa(z) = (a− z)/(1− az) belongs to Aut(D). Recall that φa is the

inverse of φa.

(i) Apply Lemma 2.1-(ii) to the map φ−1
f(a)◦f◦φa, and explicitly calculate the derivatives

of φa and φf(a).

(ii) Apply Lemma 2.1-(i) to the map φ−1
f(a) ◦ f ◦ φa at φ−1

a (b).

2.3: The map φ(z) = Im a
Imh(a)z + (Re a− Im a

Imh(a) Re a) is an automorphism of H that maps

h(a) to a. Let ψ : D → H be a biholomorphic map with ψ(0) = a. Then, apply Lemma 2.1-

(ii) to the map ψ−1 ◦ φ ◦ h ◦ ψ. Note that (ψ−1)′(a) = 1/ψ′(0), so |(φ ◦ h)′(a)| ≤ 1. You

need to calculate φ′(h(a)).

2.4: First note that it is enough to show that every point in D can be mapped to 0. Then

compose such maps to obtain an automorphism that maps z to w.

Chapter 3

3.1: (i) Solve for A and B in f(z) = Az +B.
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(ii) First note that it is enough to show that any three distinct points can be mapped

to 0, 1, and ∞. Then, compose such maps and their inverses to get the desired map.

3.2: Apply the removable singularity theorem to the map z 7→ 1/f(1/z).

3.3: [Complete solution]

(i) Since Ω is an opens set, there is r > 0 such that B(z0, r) ⊂ Ω. Then, f has a

convergent power series expansion on B(z0, r), say

f(z) = f(z0) + a1(z − z0) + a2(z − z0)
2 + . . . .

As z0 is a zero of order k, we must have ai = 0 for all 1 ≤ i ≤ k − 1, and ak ̸= 0. Then,

f(z) = ak(z − z0)
k + ak+1(z − z0)

k+1 + · · · = (z − z0)
k
(
ak + ak+1(z − z0) + . . .

)
.

The function h(z) = ak + ak+1(z − z0) + . . . is holomorphic on B(z0, r), and in particular

it is continuous. Then, for ε = |ak|/2 > 0 there is δ > 0 such that if |z − z0| < δ then

|h(z)− h(z0)| < ε. Here we may assume that δ < r, as otherwise we may take min{δ, r}.
The inequality means that h maps B(z0, δ) into B(ak, |ak|/2)). On the other hand, since

B(ak, |ak|/2) does not meet the line segment −akr, for r ∈ [0,∞), there is a holomorphic

branch of the k-th-root function defined on this ball. That is, k
√
h(z) is defined and

holomorphic on B(z0, δ).

We have

f(z) = (z − z0)
k
(
ak + ak+1(z − z0) + . . .

)
=
(
(z − z0)

k
√
h(z)

)k
,

that is, ψ(z) = (z − z0)
k
√
h(z).

(ii) For the map ψ obtained in part (i), we have ψ(z0) = 0, and by the product rule,

ψ′(z0) ̸= 0. By the inverse function theorem, ψ has an inverse defined on a neighborhood

of ϕ(z0) = 0. Let g be this inverse map that is defined on B(0, r), for some r > 0.

For every w ∈ B(0, rk), there are exactly k points w1, w2, . . . , wk in B(0, r) such that

wk
i = w. Then the points zi = g(wi) provide k solutions for the equation f(z) = w. To

see that there are at most k solutions, assume that f(z) = w for some w ∈ B(0, rk). Then

ψ(z)k = w, which implies that ψ(z) is a k-th root of w. Thus, zi are the only solutions.

3.4: (i) Assume that f is not constant. Let U be an open set in Ω. We need to show that

f(U) is open. Fix an arbitrary w0 ∈ f(U). There is z0 ∈ U with f(z0) = w0. Since, f is

not constant, the function z 7→ f(z)− w0 has a zero of some finite order k ≥ 1 at z0. By

the previous exercise, f(z) − w0 is locally k to 1 near z0. That is, for every w near w0,

there is z near z0 such that f(z) = w. Since U is open, the points sufficiently close to z0
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are in U . This means that a neighborhood of w0 is contained in f(U). As w0 ∈ f(U) was

arbitrary, we conclude that f(U) is open.

(ii) Assume that f is not a constant map. As f : Ω → C is an open mapping,

f(Ω) is an open set in C. Fix an arbitrary z ∈ Ω. As f(Ω) is open, there is r > 0

such that B(f(z), r) ⊂ f(Ω). Now, choose w′ ∈ B(f(z), r) with |w′| > |f(z)|. Since

B(f(z), r) ⊂ f(Ω), there is z′ ∈ Ω with f(z′) = w′. Hence, |f(z′)| > |f(z)|.
By the above argument, for every z ∈ Ω, there is z′ ∈ Ω such that |f(z′)| > |f(z)|.

This implies the maximum principle.

3.5: First show that the linear map h(z) = az + b and the inversion h(z) = 1/z map

lines and circles to lines and circles. Then show that any Mobius transformation may be

written as composition of these maps.

3.6: First show that there are at most finite number of points a1, a2, . . . ad in D with

g(ai) = 0.

Consider the function

h(z) =
d∏

j=1

z − aj
1− ajz

and show that it maps D into D and maps ∂D to ∂D.
Consider the rational function φ(z) = g(z)/h(z). Show that there are no points in

D ∪ ∂D that are mapped to 0.

Show that φ maps ∂D to ∂D. Conclude that for all z ∈ Ĉ we have φ(z) = 1/φ(1/z),

where z denotes the complex conjugate of z.

By the above two paragraphs, there are no points in Ĉ which are mapped to 0 by φ.

This implies that φ is a constant function, which must belong to ∂D.

Chapter 4

4.1: You need to verify the three conditions for being a metric.

Property (i): This is obvious from the definition of the length of a curve. That is, the

length of a curve is independent of the parametrization and the direction of the curve.

Property (ii): Since the length of any curve is non-negative, the infimum of a set of

non-negative numbers is a non-negative number.

If z = w, then the constant curve from z to w has zero length with respect to ρ. Thus,

dρ(z, z) = 0.

Now assume that z ̸= w and let r = |z − w| > 0. Since Ω is open there is r1 > 0

such that B(z, r1) ⊂ Ω. Also, as the set of zero’s of ρ is discrete, there is a positive
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ε < min{r, r1} such that ρ has at most one zero on B(z, ε) (the only possible zero is z).

Consider the compact set A = {ζ ∈ Ω | ε/4 ≤ |z − ζ| ≤ ε/2}, which is contained in Ω.

The function ρ is continuous and positive on A, and hence its minimum on A is strictly

positive, say m > 0.

Let γ : [a, b] → Ω be a piece-wise C1 curve with γ(a) = z and γ(b) = w. Then,

ℓρ(γ) =

∫
[a,b]

ρ(γ(s))|γ′(s)|ds ≥
∫
{t∈[a,b];γ(t)∈A

ρ(γ(s))|γ′(s)|ds

≥ m ·
∫
{t∈[a,b];γ(t)∈A

|γ′(s)|ds ≥ m · ε
4
.

As mε/4 does not depend on γ, by the definition of infimum, dρ(z, w) ≥ mε/4. Hence,

dρ(z, w) > 0.

By the above paragraphs, dρ(z, w) = 0 iff z = w.

Property (iii): Let η a piece-wise C1 curve connecting x to z, and ξ a piece-wise C1

curve connecting z to y. Then η followed by ξ is a piece-wise C1 curve connecting x to y.

By definition,

dρ(x, y) ≤ ℓρ(η ∪ ξ) = ℓρ(η) + ℓρ(ξ).

Now, take infimum over Γx,z, and then over Γz,y to conclude the triangle inequality.

4.2: First note that ρ ≥ 1, which implies that dρ(z, w) ≥ |z − w|. In particular, if zi

converges to z w.r.t dρ, then, |zi − z| → 0.

On the other hand, if zi converges to z w.r.t Euclidean distance, then, there is r < 1

such that zi ∈ B(0, r), for all i. Now, let M be the supremum of ρ on B(0, r). M is a

finite number. We have dρ(zi, z) ≤M |zi − z|. Hence, dρ(zi, z) → 0.

4.3: Let zi be a Cauchy sequence in (D, ρ). First show that there is r < 1 such that for

all i ≥ 1, zi ∈ B(0, r). Then conclude that zi is a Cauchy sequence w.r.t the Euclidean

distance.

4.4: Use an isometry of the dist to map z to 0. Then use that the Mobius transformations

map circles to circles in Exercise 3.5.

4.5: Show that there is a one-to-one correspondence between Γz,w and Γf(z),f(w).

4.6: By definition,

(F ∗ρ)(w) = ρ(F (w)) · |F ′(w)| = 1

1− | i−w
i+w |2

· 2

|i+ w|2
=

2

|i+ w|2 − |i− w|2
=

1

2| Imw|
.
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Chapter 5

5.1: Write the circle of radius r as reiθ, and note that

f(reiθ) = (r + 1/r) cos θ + i(r − 1/r) sin θ,

and use the identity cos2 θ + sin2 θ ≡ 1.

5.2: From Example 5.6, replace sin and cos in terms of eiz in tan z = sin z/ cos z.

5.3: On can do this by composition of a number of elementary transformations. First

apply the biholomorphism g1(z) = i1−w
1+w (see Equation 2.1) to Ω to obtain H \ [0, 1/3]i.

Then apply g2(z) = −i·z to get B = {w ∈ C | Rew > 0}\(0, 1/3). Next, apply g3(z) = z2,

to obtain C\ (−∞, 1/3), then apply g4(z) = z−1/3 to obtain C\ (−∞, 0), and then apply

g5(z) =
√
z to obtain the right half plane.

5.4: If a family of maps F is not uniformly bounded on compact sets, then there is a

compact set E ⊂ Ω such that the family is not uniformly bounded on E. This means

that for any n ∈ N there is zn ∈ E and fn ∈ F such that |fn(z)| ≥ n. Since E is

compact, {zn} has a sub-sequence, say nk, converging to some z ∈ E. It follows that

the sequence {fnk
} has no sub-sequence converging uniformly on compact subsets of Ω.

That is because, if there is a sub-sequence of {fmk
} converging to some g : Ω → C, then

g(z) = lim fmk
(zmk

) = ∞. This is a contradiction as g maps Ω to C.

5.5: Properties (i) and (ii) are easy to see. For property (iii) introduce the function

h(r) = r/(1 + r), for r ≥ 0. Prove h(a+ b) ≤ h(a) + h(b) for all a and b in (0,∞).

5.6: First show that the functions

d′′i (f, g) =
supEi

|f(z)− g(z)|
1 + supEi

|f(z)− g(z)|

satisfy the conditions for a metric on C0(Ei). Then prove that the sum of such metrics

(multiplied by 1/2i to make the sum convergent) is a metric on Ω, provided Ei form an

exhaustion of Ω.

5.8: Use Proposition 5.10. That is, if fn → f uniformly on compact subsets of Ω then

f ′n → f ′ uniformly on compact subsets of Ω.

5.9: By Theorem 5.15, it is enough to show that the family is uniformly bounded on

compact sets. Let E be a compact subsets of D. There is r < 1 such that E ⊂ B(0, r).

Then, for all z ∈ E we have

|f(z)| ≤ r +
∞∑
n=2

|anzn| ≤ r +
∞∑
i=2

nrn ≤
∞∑
i=1

nrn =Mr <∞.
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This means that the family is uniformly bounded from above on E.

5.10: See proof of Theorem 5.15

Chapter 6

6.1: [complete solution] By Montel’s theorem from the lecture notes (Theorem 5.15) it is

enough to show that the family S is uniformly bounded on compact subsets of D. Let E

be an arbitrary compact set in D. There is δ < 1 such that E ⊂ B(0, δ). By the growth

theorem, 6.9, for every z ∈ E we have

|f(z)| ≤ |z|
(1− |z|)2

≤ δ

(1− δ)2
<∞.

As the upper bound only depends on E, we conclude that the family is uniformly bounded

on E.

6.2: First show that |f ′(0)| ≤ 4c. Then apply Theorem 6.9 to an appropriately normalized

map.

6.3: [complete solution] (i) For every k ≥ 2, the set Λk is uniformly bounded in C. If this
is not true, there is a sequence of maps fn in S such that f

(k)
n (0) → ∞. By Exercise 6.1,

S is a normal family and there must be a sub-sequence of fn that converges uniformly on

compact sets to some holomorphic maps g : D → C. In particular, g(k)(0) is defined and

finite. This contradicts the convergence of f
(k)
n (0) → g(k)(0) guaranteed in Theorem 5.10.

By the above paragraph, for every k ≥ 2, the set

Ak = {|w| | w ∈ Λk}

is bounded from above. This set is also non-empty as it contains 0; the k-th derivative of

the identity map in S. It follows that the above set has a supremum which is finite. Let

rk denote the supremum of the above set. Therefore,

Λk ⊆ {w ∈ C | |w| ≤ rk}.

Fix an arbitrary k ≥ 2.

By the definition of supremum, either rk belongs to A or there is a sequence of real

numbers ai ∈ Ak, for i ≥ 1, such that ai → rk. In the former case we conclude that

there is f ∈ S such that |f (k)(0)| = rk. In the latter case, let fi ∈ S be such that

|f (k)i (0)| = ai. There is a sub-sequence of fi that converges to some map g in S. We must

have |g(k)(0)| = rk. So, there is always an f ∈ S such that |f (k)(0)| = rk.
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By the above paragraph there is a point on the circle |w| = rk that belongs to Λk.

The operations of rotation and dilatation discussed in the lecture notes show that Λk is

invariant under rotations about 0 and is invariant under multiplication by r ∈ (0, 1). We

also showed earlier that 0 belongs to Λk. This proves that the above inclusion is equality.

(ii) By the Cauchy integral formula for the derivatives, for every r ∈ (0, 1) we have

f (k)(0) =
k!

2πi

∫
|z|=r

f(z)

zk+1
dz.

Then by the growth theorem, Theorem 6.9, we obtain

|f (k)(0)| = k!

2π

∣∣∣ ∫
|z|=r

f(z)

zk+1
dz
∣∣∣ ≤ k!

2π

∫
|z|=r

|f(z)|
rk+1

|dz|

≤ k!

2π

∫ 2π

0

r

(1− r)2rk+1
rdθ ≤ k!r

(1− r)2rk
.

The above bound holds for all r ∈ (0, 1). We may find the minimum of the function
k!r

(1−r)2rk
on (0, 1), by differentiating the function. The minimum occurs at r = 1 − 1/k,

and the minimum value is
k!k2

(1− 1/k)k−1
.

The denominator of the above expression tends to the constant e as k → ∞. Hence, the

denominator is uniformly bounded away from 0, independent of k.

6.5: (i) Let φ1 and φ2 be two such maps. Apply the Schwarz lemma, 2.1, to the maps

φ−1
2 ◦ φ1 and φ−1

1 ◦ φ2.

(ii) The upper bound follows from the 1/4-theorem, the lower bound follows from the

Schwarz lemma.

6.6:[complete solution] Let γ : [0, 1] → C be a smooth simple closed curve. Then, γ

bounds a convex region if the slope of the tangent to γ is increasing. This is equivalent to

saying that
∂

∂t

(
arg γ′(t)

)
> 0, ∀t ∈ [0, 1]. (8.1)

For instance, for the curve γ0(t) = e2πit, for t ∈ [0, 1], we have γ′0(t) = 2πie2πit. Thus,

∂

∂t

(
arg γ′0(t)

)
=

∂

∂t
(π/2 + 2πt) = 2π > 0.

So, for the inequality in Equation (8.1) to hold, it is enough to have∣∣∣ ∂
∂t

(
arg γ′(t)

)
− ∂

∂t

(
arg γ′0(t)

)∣∣∣ ≤ π. (8.2)
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Next we note that ∂
∂t(arg γ

′(t) is given in terms of γ′ and γ′′. This implies that, there is

δ > 0 such that if for all t ∈ [0, 1, if we have

|γ′0(t)− γ′(t)| ≤ δ, |γ′′0 (t)− γ′′(t)| ≤ δ, (8.3)

then Equation (8.2) holds. (In other words, if a closed curve γ, is close enough to γ0 in

C0, C1, and C2 metrics, then it bounds a convex region containing 0.)

For an arbitrary f ∈ S and r ∈ (0, 1) let

fr(z) =
1

r
· f(r · z),∀z ∈ D.

We have, f(B(0, r)) = r · fr(D). In particular, f(B(0, r)) is a convex region, iff fr(D) is

a convex region. We aim to show that for small enough r, independent of f ∈ S, fr(D)
is convex. As γ0 is the image of the circle |z| = 1 under the identity map, by virtue of

Equation 8.3, it is enough to show that for all z ∈ D, we have

|f ′r(z)− 1| ≤ δ, |f ′′r (z)− 0| ≤ δ. (8.4)

However, f ′r(z) = f ′(rz), and f ′′r (z) = f ′′(rz) · r. It follows from the distortion theorems

6.7 and 6.6, that for small enough r, independent of f , one may guarantee the above

inequalities. This completes the proof.

Chapter 7

7.2: These may be reduced to the usual derivatives with respect to x and y using the

formulas in Equation (7.5).

7.3: Define the map h(z) = g−1 ◦ f from C to C. Show that ∂h/∂z ≡ 0, that is, h is 1-

quasi-conformal. Then apply Corollary 7.9 to h to conclude that h : C → C is holomorphic

and one-to-one. As h(0) = 0 and h(1) = 1, by 3.15, h must be the identity map.

7.4: Use the definition of absolute continuity with ε = 1 to obtain some δ. Then, [a, b] is

covered by at most N = ⌊|b− a|/δ⌋+ 1 number of intervals of length bounded by δ.

7.5: Assume that a sequence f◦nk converges uniformly on compact subsets of U . By

the open mapping property of f , V = f(U) is open, and one can show that the se-

quence of functions f◦nk−1 converges uniformly on compact subsets of V . This shows that

R(F(R)) ⊆ F(R). The argument in the other direction is similar, and uses the f−1(U) is

open.

7.6: [complete solution]
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(i): Let us define the function g(z) = R◦n(z). Let δ = |g′(z0)| < 1 and choose δ′ ∈ (δ, 1).

By the continuity of z 7→ g′(z) there is r > 0 such that for all z ∈ Ĉ with d(z, z0) < r we

have |g′(z)| ≤ δ′. Let U = {z ∈ Ĉ : d(z, z0) < r}. Now, for z ∈ U we have

d(g(z), z0) = d(g(z), g(z0)) ≤ sup
c∈U

|g′(c)| · d(z, z0) ≤ δ′r < r.

This implies that g maps U into U . In particular, for z ∈ U the iterates g◦n(z), for n ≥ 1,

are all defined and belong to U .

For z ∈ U we have

d(g◦k(z), z0) = d(g◦k(z), g◦k(z0)) ≤ sup
c∈U

|(g◦k)′(c)| · d(z, z0) ≤ (δ′)k · r.

Since δ′ < 1, (δ′)k · r tends to zero as n tends to infinity. Hence, the iterates g◦k converge

uniformly on U to the constant map z0. In particular, the iterates g◦k = R◦nk, for k ≥ 1,

converges uniformly on compact sets in U to the constant function z0.

(ii): Let us in the contrary assume that there is an open neighborhood U of z0 and a

sequence of iterates R◦km , for m ≥ 1, which converges on compact subsets of U to some

holomorphic map g : U → Ĉ. Consider the integers km modulo n, and observe that there

must be a sub-sequence of km, denoted by jm, that are the same modulo n. That is, there

are integers tm ∈ N, and an integer r ≥ 0 such that jm = tmn+ r. Then,

(R◦jm)′(z0) = (R◦r ◦ (R◦n)◦tm)′(z0) = (R◦r)′(z0) · δtm

As δ > 1, we conclude that (R◦jm)′(z0) tends to infinity. But, by Theorem 5.10, we

must have g′(z0) = limm→∞(R◦jm)′(z0) = ∞. This contradiction shows that there is no

convergent sub-sequence on any neighborhood of z0.

(iii): Let g = R◦qn(z). We have g(z0) = z0 and g′(z0) = 1. There is a neighborhood of

z0 on which g has a convergent power series g(z) = z0 + (z − z0) + ad(z − z0)
d + . . . with

ad ̸= 0. A basic calculation shows that g◦k(z) = z0 + (z − z0) + kad(z − z0)
d + . . . . This

implies that the d-th derivatives (g◦k)(d)(z0) tend to ∞. As in part (ii), this implies that

g◦k has no sub-sequence that converges uniformly on compact sets on a neighborhood of

z0.

Assume that there is a sub-sequence R◦km that converges on some open set U contain-

ing z0. Let km = (qn)tm + rm with integers tm and 0 ≤ rm ≤ qn − 1. There is a further

sub-sequence of km such that rm are equal for different values of m. Let r = rm be this

constant. It follows that R◦(qn)tm+1 = R◦(qn−r) ◦ R◦km converges uniformly on compact

subsets of U . This contradicts the above paragraph.
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