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Chapter 4

Dynamical Systems

Davoud Cheraghi and Tobias Kuna

1. Introduction

Dynamical system is the branch of mathematics that studies the time evolution
of a system. The evolution is given by a law as for example a recursion relation, a
(partial) differential equation, an integral equation or even a random mechanism.
The theory of dynamical systems takes a global and more qualitative view point
trying to work out properties which are genuine and have features independent of
the details of the considered dynamics like the long time behaviour, its sensitivity
w.r.t. when the law is modified and how to module complicated system with highly
complex dynamics by simpler dynamics which have nevertheless the same complex
dynamical structure.

Mathematically, a dynamical systems often consists of a phase space (or state
space) X representing all possible states of the system, and a map from the phase
space to itself that represents the evolution law of the system, that is, if the systems
at time s is in the state x then the function Φs,t(x) gives the state the system has
evolved to at time t. Examples include the mathematical models that describe the
swinging of a clock pendulum, the temperature at each point on earth on 1st of
January each year as well complicated systems as the earth climate system as a
whole. Other examples are fluid flows, numerical algorithm, stationary processes.

A dynamical system may be based on a discrete or continuous time. In the
former case, the system is often describe as f : X → X, where the state at time
n + 1 is obtained from applying f to the state at time n. In the latter case, the
system may be described e.g. by a differential equation, where the state at time
t > s is obtained from the state at time s by running along the flow of the equation
for the time t − s. These systems are deterministic, that is, only one future state
follows from the current one, but one may consider stochastic systems as well, that
is, states are randomly selected from a collection of maps ft. In general, the law
may depend explicitly on the time itself.

Given a system f : X → X the orbit (path for continuous time) of x, is defined
as the sequence of states x, f(x), f ◦ f(x), f ◦ f ◦ f ◦ f(x), . . . , . One main goal in
dynamical system is to describe the behavior of individual orbits (or trajectories,
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respectively). While it is possible to know the orbits for some (rare) simple dy-
namical systems, most dynamical systems are too complicated to be understood in
terms of individual orbits, however one can give an effective stochastic description.

In Section 2 and Section 3 two explicit examples are studied in detail quali-
tatively and explicitly, which are diametral in their properties. In Section 2 the
”rotations of the circle” where if we understand one orbit then we understand any
other orbits and in Section 3 the doubling map, an example of a chaotic system
where nearby points move apart at an exponential rate (and come back together).
Although X is low dimensional, that is one-dimensional, the doubling map shows
surprisingly complex behaviour like sensitive dependence on initial condition, the
existence of a space filling orbit and that the periodic orbits are dense. The rest
of the section is dedicated to study the counter-intuitive properties in more details.
Such type of complicated systems are typical in the sense that randomly chosen
f will show such a complicated behaviour. In Section 4 it is shown that chaotic
systems can be completely described by simple model where the dynamic is just a
shift in an infinite word. A surprising consequence of this description is that chaotic
systems form large classes which are qualitatively similar. With qualitative simi-
lar we mean that the full dynamical picture of two dynamical systems differ only
by a coordinate transformation. More importantly, they are structurally stable, in
the sense that a small change of the dynamics will lead to a qualitatively similar
system. The latter is not true for the rotation on the circle for example, which the
paradigmatic example of an integrable system. In Section 5 the so-called topolog-
ical entropy is introduce which measure the complexity of a dynamic. Qualitative
similar dynamics have the same complexity.

The chaotic nature of a system restricts our ability to make deterministic pre-
dictions for large times into the future, like weather forecast. However, probabilistic
predictions on the contrast will get easier the further we look into the future, as for
example prediction of climate. Some basic techniques of probabilistic description of
dynamical systems are given in Section ?? and how it can be used to predict the be-
haviour in the far future of dynamical systems. In Section ?? we demonstrate that
expanding dynamical systems fulfil all the properties required in Section ?? and
even much stronger regularity results for the probabilistic description. It is shown
that time average can be effectively described by a suitable unique space average
and that the influence of the starting point decays exponentially, cf. Subsection ??.
The space average is described by a probability on the set of all possible states of
the system, this probability one would call the “statistics of the dynamical system”.
The fluctuations of the temporal average can also be related to the aforementioned
probability on states, see Subsection ??. Another aspect is that the aforementioned
probability on states is not only stable under the changes of dynamics but even
differentiable, see Subsection ??. Finally, the techniques are applied to derive the
convergence and consistency of the simple stochastic numerical algorithm. Section 6
is based on,?? and.? Section 7 follows mainly and.?
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2. Homeomorphisms of the circle

2.1. Rigid rotations

It is convenient to define the circle as a subset of the complex plane as
S1 =

{
z ∈ C | |z| = 1

}
.

For α ∈ [0,2π), the rotation of angle α is defined as
Rα : S1 → S1, Rα(z) = eiα ·z, for all z ∈ S1.

That is, the point eiθ on S1 is mapped to the point eiα ·eiθ = ei(α+θ) on S1.
However, sometimes it is convenient to use an alternative notation for the rota-

tion of the circle. We may identify S1 with the quotient space R/Z, which is the
same as the interval [0,1] with 0 and 1 identified. The identification is given by the
explicit map x ∈ [0,1] %→ e2πix ∈ S1. Then, for a ∈ [0,1), the rotation of angle 2πa
becomes

Ta : [0,1) → [0,1), Ta(x) = x+a (mod 1)
I.e.

Ta(x) =
{

x+a, if 0 ≤ x+a < 1,

x+a−1, if 1 ≤ x+a < 2.

Exercise 4.1. Show that the above definition provides a well-defined homeomor-
phism of the circle R/Z.

Recall that the orbit of a point z ∈ S1 under the rotation Rα is defined as the
sequence

z,Rα(z),Rα ◦Rα(z),Rα ◦Rα ◦Rα(z), . . . .
To simplify the notations, we use the expression f◦n to denote the map obtained
from composing f with itself n times. For example, f◦1 = f , f◦2 = f ◦ f , f◦3 =
f ◦f ◦f , etc. Following the standard conventions, f◦0 denotes the identity map.

Due to the basic algebraic form of the rigid rotations, we are able to obtain
a simple formula for the orbits. However, this is very exceptional in the study of
dynamical systems. Let us first consider the case that α = 2π · p

q , where p/q is a
rational number. We assume that q ̸= 0, p ∈Z−{0}, and p/q is in the reduced form,
that is, p and q are relatively prime. Then, the orbit of z under Rα becomes

z,e2πi p
q ·z,e2πi 2p

q ·z, . . . ,e2πi qp
q ·z, . . .

= z,e2πi p
q ·z,e2πi 2p

q ·z, . . . ,e2πi
(q−1)p

q ·z,

z,e2πi p
q ·z,e2πi 2p

q ·z, . . . ,e2πi
(q−1)p

q ·z,z, . . . .

This is a periodic sequence of q points on the circle.
In contrast, when α is irrational the situation is very different. Before we discuss

that, we recall some basic definitions. A metric on a set X is a function d : X ×X →
R such that for all x1, x2, and x3 in X we have
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(i) d(x1,x2) = d(x2,x1);
(ii) d(x1,x2) ≥ 0, where the equality occurs only if x1 = x2;
(iii) d(x1,x2) ≤ d(x1,x3)+d(x3,x2).

The Euclidean metric defined as d(x,y) = |x − y| on R (or on any Euclidean space
Rn) is a prominent example of a metric. On S1 (and any n-dimensional sphere) we
may defined the function d(x,y) as the length of the shortest arc on S1 connecting
x to y.

The notion of metric allows one to talk about convergence of sequences on X.
We say that a sequence xn, n ≥ 1, on X converges to some point x ∈ X with respect
to some metric d defined on X if the sequence of real numbers d(xn,x) tends to 0
as n tends to infinity. Let X be a set equipped with the metric d. An orbit xn,
n ≥ 1, is said to be dense on X if for every x in X there is a sub-sequence of the
sequence xn that converges to x. This is equivalent to saying that for every x ∈ X
and every ϵ > 0 there is n ∈ N such that d(xn,x) ≤ ϵ.

Proposition 4.1. If a is an irrational number, then for each z ∈ S1, the orbit{
R◦n

2πa(z) : n ∈ Z
}

is infinite and dense on S1.

Proof. Let z be an arbitrary point on S1, and let α = 2πa. If R◦m
α (z) = R◦n

α (z)
for some integers m and n, we must have e(m−n)αi · z = z. As z ̸= 0, and (m − n)α
cannot be an integer multiple of 2π, we must have m = n. In other words, the orbit
of z is an infinite sequence.

Fix an arbitrary w ∈ S1 and an ϵ > 0. We aim to find n ∈Z with d(R◦n
α (z),w) ≤ ϵ.

Choose n0 > 0 with (2π)/n0 < ϵ. Consider the n0 +1 points on the circle Ri
α(z),

for 0 ≤ i ≤ n0. There must be integers 0 ≤ l < k ≤ n0 such that d
(
R◦k

α (z),R◦l
α (z)

)
<

2π/n0, where d is the arc length metric on S1. Since Rα is an isometry, that is, it
preserves distances, we must have d

(
z,R◦(k−l)

α (z)
)

< ϵ.
As R◦(k−l)

α is an isometry, by the above paragraph the sequence z, R◦(k−l)
α (z),

R◦2(k−l)
α (z), R◦3(k−l)

α (z) consists of points on the circle that are at most ϵ apart.
In particular, there is j ∈ N such that d(R◦j(k−l)

α (z),w) < ϵ.

Recall that a metric space (X,d) is compact if any sequence in X has a sub-
sequence converging to some point in X. For example, the interval (0,1] is not
compact since the sequence 1/n, n ≥ 1, does not converge to some point in (0,1].
On the other hand each interval [a,b] (with respect to the Euclidean metric), the
circle S1 with respect to the arc length, and the two dimensional sphere as a subset
of R3 are compact spaces.

Definition 4.1. Let X be a compact metric space and T : X → X be a continuous
map. We say that T : X → X is topologically transitive if there exists x ∈ X such
that the orbit

{
T ◦n(x) : n ∈ Z

}
is dense in X. We say that T : X → X is minimal

if for every x ∈ X, the orbit
{

T ◦n(z),n ∈ Z
}

is dense in X.
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A topologically transitive dynamical system cannot be decomposed into two dis-
joint sets with nonempty interiors which do not interact under the transformation.

Exercise 4.2. Give an example of a metric space X and a continuous map T :
X → X that is topologically transitive, but not minimal.

2.2. Distribution of orbits

We now look at the problem of quantifying the time of visiting an interval. If α
is irrational then the proportion of the orbit z,Rα(z),R◦2

α (z), . . . which lies inside a
given arc becomes the length of the arc divided by 2π. This is made precise in the
next theorem.

Theorem 4.1. If a is irrational and φ : [0,1] → R is a continuous function with
φ(0) = φ(1), then for any x ∈ [0,1),

lim
n→∞

( 1
n

n−1∑

k=0
φ

(
T ◦k

a (x)
))

=
∫

[0,1]
φ(y)dy.

Proof. Let us first consider the functions
em(x) = e2πimx = cos(2πmx)+ isin(2πmx),m ∈ Z.

We have em(T ◦k
a (x)) = e2πim(x+ka) = e2πimkaem(x). Thus, for m ̸= 0,

∣∣∣∣∣
1
n

n−1∑

k=0
em

(
T ◦k

a (x)
)
∣∣∣∣∣ = 1

n
· |e2πimx| ·

∣∣∣∣∣

n−1∑

k=0
e2πimka

∣∣∣∣∣

= 1
n

·1 ·
∣∣∣∣
1−e2πinma

1−e2πima

∣∣∣∣ ≤ 1
n

· 2
|1−e2πima| → 0

as n tends to infinity. Thus, if φ(x) =
∑N

m=−N amem(x), with a−N ,a−N+1, ...,aN ∈
C, then

lim
n→∞

1
n

n−1∑

k=0
φ

(
T ◦k

a (x)
)

= a0 =
∫

φ(y)dy.

Since trigonometric polynomials are dense in the space of all periodic continuous
functions, we obtain the result in the theorem.

Exercise 4.3. By an example show that the continuity assumption in Theorem 4.1
is necessary.

As an application of the above theorem, we look at the distribution of the first
digits of 2n, n ≥ 1.

Proposition 4.2. Fix p ∈
{

1,2, ...,9
}

. The frequency of those n for which the first
digit of 2n is equal to p, that is,

lim
N→∞

{
1 ≤ n ≤ N : first digit of 2n is equal to p

}

N
= log10

(
1+ 1

p

)
.
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Proof. The first digit of 2n is equal to p if and only if for some k ≥ 1,
p×10k ≤ 2n < (p+1)10k.

This is equivalent to log10 p+k ≤ n log10 2 < log10(p+1)+k, which is also equivalent
to

n log10 2 (mod 1) ∈ [log10 p, log10(p+1)).
Let us define

χ(x) =
{

1, if x ∈ [log10 p, log10(p+1)]
0, otherwise.

Let a = log10 2 ∈ R\Q, and x = log10 2. We claim that

lim
N→∞

1
N

N−1∑

n=0
χ

(
T ◦n

a (x)
)

=
∫

[0,1]
χ(y)dy = log10

(
1+ 1

p

)
. (1)

If χ was continuous, this would directly follows from the theorem. However, we
need a bit more work. Given δ > 0, there are continuous functions χ1 ≤ χ ≤ χ2
defined on [0,1] such that

∫
[0,1]|χ1 −χ2|dy < δ. Then,

∫
χ2 dy = lim

N→∞

1
N

N−1∑

n=0
χ2

(
T ◦n

a (x)
)

≥ lim
N→∞

1
N

N−1∑

n=0
χ

(
T ◦n

a (x)
)

≥ lim
N→∞

1
N

N−1∑

n=0
χ

(
T ◦n

a (x)
)

≥ lim
N→∞

1
N

N−1∑

n=0
χ1

(
T ◦n

a (x)
)

=
∫

χ1 dy.

The notation lim denotes the limsup (supremum limit) of a given sequence.
When a sequence is convergent, lim gives the same limit, but when there are many
convergent sub-sequences, it gives the maximum of all the limits of all convergent
sub-sequences. The advantage is that lim always exists, although it may be infinite.

Since δ > 0 was arbitrary, the above inequalities imply that the limit in Eq. (1)
exists. On the other hand, as δ → 0,

∫
χ2 dy →

∫
χdy and

∫
χ1 dy →

∫
χdy. Hence,

the limit must be equal to
∫

χ(y)dy.
It is clear that Eq. (1) implies the equality in the theorem.

2.3. Homeomorphisms of the circle

Consider the natural projection
π : R → R/Z, π(x) = x (mod 1).

For all i ∈ Z and x ∈ R, π(x+ i) = π(x).

Proposition 4.3. Let f : S1 → S1 be a homeomorphism of the circle. Then there
exists a homeomorphism F : R → R, called a lift of f , such that f ◦π = π ◦F on R.

Moreover, F is unique up to adding an integer. That is, if F and G are lifts of
f then there is n ∈ Z such that for all x ∈ R, F (x) = G(x)+n .
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R R

S1 S1

F

f

π π

Fig. 1. Illustration of the maps in Proposition 4.3.

Proof. Given x and y = f(x) ∈ S1, choose x′, and y′ ∈ R with π(x′) = x, π(y′) = y.
Define F (x′) = y′. Now one can use the functional equation f ◦π = π ◦F to extend
F to a continuous map from R to R.

If G is another lift, we must have G(x′) = y′ + n′, for some integer n′. This
implies that for all x ∈ R, G(x) = F (x)+n′.

Exercise 4.4. Show that any lift F of a circle homeomorphism under π satisfies
F (x + i) = F (x) + i, for all i in Z and x ∈ R. On the other hand, prove that any
homeomorphism F : R → R that satisfies F (x + c) = F (x) + c, for some positive
constant c, induces a homeomorphism of the circle.

Example 4.1. Let f : S1 → S1 be a rotation by α = 2πa. The lifts of f are given
by the formulas

F : R → R, F (x) = x+a+n,

where n ∈ Z.

Exercise 4.5. Let fϵ : R/Z → R/Z be defined as fϵ(x) = x + ϵsin(2πx) (mod 1),
for |ϵ| < 1

2π . Then, the lifts of fϵ are defined by

Fϵ(x) = x+ ϵsin(2πx)+n,

for n ∈ Z. Show that if fϵ is a homeomorphism, we must have |ϵ| < 1
2π .

Exercise 4.6. Is F (x) = x + 1
2sin(x) the lift of a circle homeomorphism? How

about F (x) = x+ 1
4xsin(2πx)?

Remark 4.1. We always assume that f : S1 → S1 is orientation preserving, that
is, the graph of f is strictly increasing.

It is possible to assign a rotation number to a homeomorphism of the circle that
records the “combinatorial rotation” of the map on the circle. Note that individual
points may be rotated by different values.
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Fig. 2. The graph of the function fϵ for three different values of ϵ.

Proposition 4.4. Let f : S1 → S1 be an orientation preserving homeomorphism,
and let F : R → R be a lift of F . Then, for each x ∈ R, the limit

ρ(f) = lim
n→∞

F n(x)
n

(mod 1)

exists. Moreover, the limit is independent of x ∈ R and the choice of the lift F .

Proof. We present the proof of the above proposition in several steps.
Step 1. If the limit exists, it is independent of the choice of the lift.
If G is another lift of f , by Proposition 4.3, there is k ∈ Z such that G(x) =

F (x)+k. By Ex. 4.4, for all x ∈ R and all i ∈ Z we have G(x+ i) = G(x)+ i. Hence,

G◦2(x) = G(G(x)) = G(F (x)+k) = G(F (x))+k = F (F (x))+k +k = F ◦2(x)+2k.

In general, one can see that for all n ∈ N, G◦n(x) = F ◦n(x)+nk. Therefore,

lim
n→∞

G◦n(x)
n

= lim
n→∞

F ◦n(x)+nk

n
= lim

n→∞
F ◦n(x)

n
+k.

Therefore, if the limit exists, we obtain the same values modulo 1.

Step 2. The limit is independent of the choice of x ∈ R.

Let y ∈ R be another choice that satisfies |x−y| < 1. Note that by the definition
of the lift, for each x and y in R with |x−y| < 1 we have |F (x)−F (y)| < 1. Repeating
this property inductively, we conclude that for all n ≥ 1, |F ◦n(x) − F ◦n(y)| < 1.
Hence, |F ◦n(x)/n−F ◦n(y)/n| < 1

n → 0, as n → ∞.
By the above paragraph, when |x − y| < 1, limn→∞ F ◦n(x)/n is the same as

limn→∞ F ◦n(y)/n, provided they exist. For arbitrary x and y in R, there is a finite
sequence of points x = t0 < t1 < t2, ..., tn = y with all |ti+1 − ti| < 1. Then, provided
the limits exist, we must have

lim
n→∞

F ◦n(x)
n

= lim
n→∞

F ◦n(t1)
n

= ... = lim
n→∞

F ◦n(y)
n

.

Step 3. The limit exists.
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For each n ≥ 1, there is an integer kn with kn ≤ F ◦n(0) < kn +1. Then,∣∣∣∣
F ◦n(0)

n
− kn

n

∣∣∣∣ ≤ 1
n

.

Since each iterate F ◦n is a monotone map, t1 ≤ t2 implies F ◦n(t1) ≤ F ◦n(t2). Thus,
2kn ≤ kn +F ◦n(0) ≤ F ◦n(kn) ≤ F ◦n(F ◦n(0)) = F ◦2n(0),

and
F ◦2n(0) = F ◦n(F ◦n(0)) ≤ F ◦n(kn +1) = kn +1+F ◦n(0) ≤ 2(kn +1).

In general, repeating the above argument several times one concludes that for m ≥ 1,
mkn ≤ F ◦(nm)(0) ≤ m(kn +1).

Thus, ∣∣∣∣∣
F ◦(nm)(0)

nm
− kn

n

∣∣∣∣∣ ≤ 1
n

,

and so∣∣∣∣
F ◦m(0)

m
− F ◦n(0)

n

∣∣∣∣

≤
∣∣∣∣
F ◦m(0)

m
− km

m

∣∣∣∣+
∣∣∣∣∣
km

m
− F ◦(nm)(0)

nm

∣∣∣∣∣+
∣∣∣∣∣
F ◦(nm)(0)

nm
− kn

n

∣∣∣∣∣+
∣∣∣∣
kn

n
− F ◦n(0)

n

∣∣∣∣

≤ 1
m

+ 1
m

+ 1
n

+ 1
n

.

In particular, F ◦n(0)/n forms a Cauchy sequence, and hence it converges.

Exercise 4.7. Let f : S1 → S1 be a homeomorphism of S1. Show that ρ(f◦m) =
mρ(f) mod 1, where ρ(f) denotes the rotation number of f .

Exercise 4.8. Let f and g be orientation preserving homeomorphisms of S1. Prove
that ρ(f) = ρ(g−1fg), where ρ denotes the rotation number.

The notion of rotation number defined in Proposition 4.4 is quite informative,
as illustrated in the next two lemmas.

Lemma 4.1. If a homeomorphism f : S1 → S1 has a periodic point f◦N (z) = z ∈ S1,
then, ρ(f) is a rational number.

Proof. Let F be a lift of f and choose x with π(x) = z. By the definition of the
lift, we have π ◦ F ◦N (x) = f◦N ◦ π(x) = f◦N (z) = z. Thus, there is l ∈ Z such that
F ◦N (x) = x+ l.

For each n ≥ 1 there are k ≥ 0 and r with 0 ≤ r ≤ N − 1 such that n = kN + r.
Then,

lim
n→∞

F ◦n(x)
n

= lim
n→∞

F ◦(kN+r)(x)
n

= lim
n→∞

F ◦r
(
F ◦(kN)(x)

)

n

= lim
n→∞

F ◦r
(
x+kl

)

n
= lim

n→∞
F ◦r(x)+kl

n
= lim

n→∞
kl

kN + r
= l

N
.
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Exercise 4.9. Let F (x) = x+ c+ bsin(2πx). Show that if |2πb| < 1 then this is an
orientation preserving homeomorphism from R to R. If |c| < |b| show that ρ(f) = 0
for the induced map f : S1 → S1.

Lemma 4.2. If f : S1 → S1 is a homeomorphism of the circle with a rational
rotation number, then f has a periodic point.

Proof. Let F be a lift of f with limn→∞
F ◦n(x)

n (mod 1) = p
q ∈ Q. Note that F ◦q

is a lift of f◦q, and we have

lim
n→∞

(F ◦q)◦n(x)
n

= lim
n→∞

F ◦qn(x)
n

= q lim
n→∞

F ◦qn(x)
qn

= q
p

q
= p = 0 mod 1.

Thus, ρ(f◦q) = 0. The map G = F −p is also a lift of f◦q and we have

lim
n→∞

G◦n(x)
n

= 0. (2)

We claim that G : R → R must have a fixed point. Assuming this for a moment, the
fixed point projects to a fixed point for f◦q, which must be a periodic point for f .

If in the contrary G has no fixed point, then either (i) for all y ∈ R we have
G(y) > y, or (ii) for all y ∈ R we have G(y) < y. If (i) occurs, since G(y) − y is
continuous on the closed interval [0,1], and strictly positive, there is δ > 0 such
that G(y) − y ≥ δ. As G : R → R is a lift, for all x ∈ R and all i ∈ Z, we have
G(x+ i) = G(x)+ i. These imply that for all y ∈R, we have G(y)−y ≥ δ. Repeating
this inequality inductively, we have G◦n(0) ≥ 0+nδ = nδ. Thus,

lim
n→∞

G◦n(0)
n

≥ nδ

n
= δ.

This contradicts Eq. (2).
The proof in case (ii) is similar to the above one where one shows that

limn→∞ G◦n(0)/n ≤ −δ.

The following is a classical result on the homeomorphisms of the circle. See [?,
Thm 11.2.7] for a proof.

Theorem 4.2 (Poincaré). Assume that f : S1 → S1 is a homeomorphism that is
minimal and ρ(f) is irrational. Then there is a homeomorphism φ : S1 → S1 such
that, R2πρ(f) ◦φ = φ◦f .

The statement of the above theorem may be illustrated by the commutative
diagram

S1 f−−−−→ S1
⏐⏐.φ

⏐⏐.φ

S1 R2πρ(f)−−−−−→ S1

The homeomorphism φ in the above proposition is called topological conjugacy.
It motivates the following definition.
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Definition 4.2. Let f : X → X and g : Y → Y be continuous maps. We say that
f is topologically conjugate to g if there is a homeomorphism φ : X → Y such that
g ◦ φ = φ ◦ f holds on X. The conjugacy is called C1, or smooth, or analytic, if we
further require that φ is C1, or C∞, or analytic, respectively.

Exercise 4.10. Let Qc(x) = x2 + c. Prove that if c < 1
4 there is a unique µ > 1

such that Qc is topologically conjugate to fµ(x) = µx(1 − x) via a map of the form
h(x) = αx+β.

When two dynamical systems are topologically conjugate, the two systems be-
have the same in terms of topological properties. For example, if some sub-sequence
f◦nk (x) converges to some point x′ ∈ X the corresponding sub-sequence g◦nk (φ(x))
converges to φ(x′). However, f◦nk (x) may converge to x′ exponentially fast, but the
latter convergence may be very slow. In general higher regularity of the conjugacy
is required to have similar fine properties for the two systems.

Exercise 4.11. Let f : R → R be a C1 map, and x ∈ R be a periodic point of f of
minimal period q. That is, q is the smallest positive integer with f◦q(x) = x. The
quantity (f◦q)′(x) is called the multiplier of f at x. Show that all points in the
orbit of x have the same multipliers, i.e. the notion of multiplier is well-defined for
a periodic orbit.

Definition 4.3. We say that a continuous function w : [0,1] → R has bounded vari-
ation if

sup
{n−1∑

i=0
|w(xi+1)−w(xi)| : 0 ≤ x1 < x2 < ... < xn = 1

}
< ∞.

Exercise 4.12. For n = 1,2, define the function wn : [0,1] → R as
{

0, if x = 0,

xnsin( 1
x ), if x ̸= 0.

Show that w1 is not a function of bounded variation, but w2 is a function of bounded
variation.

Theorem 4.3 (Denjoy). Let f : S1 → S1 be an orientation-preserving homeo-
morphism of the circle with irrational rotation ρ(f) = ρ. Moreover, assume that
f : S1 → S1 is continuously differentiable and that w(x) = log|f ′(x)| has bounded
variation. Then f : S1 → S1 is minimal.

Exercise 4.13. Assume f : R → R and g : R → R be smooth maps that are con-
jugate by a C1 map φ. Prove that the map φ preserve the multipliers of periodic
points. That is, if x is a periodic point of f , then x and φ(x) have the same multi-
pliers. By giving an example, show that if the conjugacy is not smooth but only a
homeomorphism, the multipliers are not necessarily preserved.
[hint: build topologically conjugate maps that have fixed points with distinct multi-
pliers.]
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We do not give a proof of the above theorem in these notes, see for instance
[?, thm 12.1.1], but instead we present an example that shows the necessity of
the assumption. This construction is known as “surgery”, and is widely used in
constructions of examples in dynamics and other areas of mathematics.

Example 4.2 (Denjoy’s Example). For each irrational ρ, there is a C1 diffeomor-
phism f : S1 → S1 with rotation number ρ(f) = ρ, which is not minimal.

Let us introduce the positive numbers

ln = 1
(|n|+3)2 , n ∈ Z.

We have
∑

n∈Z
ln ≤ 2

∞∑

n=3

1
n2 ≤ 2

∫ ∞

2

1
x2 dx = 1.

Fix x ∈ [0,1), and note that since ρ is irrational, the points in the orbit xn = T ◦n
ρ (x),

n ∈ Z, are distinct. For each n ∈ Z, we remove the point xn from the segment [0,1)
and replace it by a closed interval In of length ln. After repeating this process for
all points, we end up with an interval of length 1+

∑
n∈Z ln.

xn−1 xn xn+1

In−1 In In+1

On the complement of the intervals ∪nIn, we define f as the map induced
from the rotation Tρ. On the intervals In we want to arrange the map so that
f(In) = In+1, for each n ∈ Z. It is enough to specify f ′ in the intervals In so that
f ′ is equal to 0 at the end of the intervals. Let In = [an,an + ln] and set

f ′(x) =
{

1, x /∈
⋃

n∈Z In

1+ cn − cn
ln

|2(x−an)− ln|, x ∈ In, for some n ∈ Z

where cn = 2
( ln+1

ln
−1

)
. We have chosen cn such that

∫

In

f ′(x) =
∫ an+ln

an

(
1+ cn − cn

ln
|2(x−an)− ln|

)
dx = ln + cnln − cn

ln

l2n
2 = ln+1.

Exercise 4.14. Show that the map f introduced above is not transitive. [hint: look
at the orbit of x when x ∈ ∪nIn and when x ∈ S1 \∪nIn.]
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3. Expanding Maps of the Circle

In this section we consider a different class of dynamical systems on the unit
circle S1.

Definition 4.4 (Expanding). A C1 map f : S1 → S1 is called expanding if for all
x ∈ S1, |f ′(x)| > 1 .

0 1

1

Fig. 3. The graph of an expanding degree two map of the circle.

An expanding map f : S1 → S1 cannot be a homeomorphism. Also, since f ′ is
continuous and S1 is compact, there is β > 1 such that for all x ∈ S1, |f ′(x)| ≥ β.

Example 4.3. Let m ≥ 2 be an integer, and define f : [0,1) → [0,1) as f(x) = mx
(mod 1). If we regard the circle as S1 = {z ∈ C : |z| = 1}, then f can be written as
f(z) = zm. Each of these maps is expanding.

Definition 4.5. The degree of an expanding map f : S1 → S1, denoted by deg(f),
is defined as the number of points in the set f−1(x), for x ∈ S1. One can see that
the notion of degree is independent of the choice of x.

Lemma 4.3. If f and g : S1 → S1 are expanding maps, then we have deg(f ◦g) =
deg(f) ·deg(g). In particular, deg(f◦n) = (deg(f))n, for n ≥ 1.

Proof. Since for each y ∈ f−1(x) the set g−1(y) has deg(g) elements, (f ◦ g)−1(x)
has deg(g)deg(f) elements.

Proposition 4.5. If f : S1 → S1 is an expanding map with deg(f) = d ≥ 2, the
number of periodic points of period n is (dn −1).

Proof. First assume n = 1, the number of fixed points of f is equal to the number
of points on the intersection of the diagonal with the graph of f , which is d − 1.
For arbitrary n ≥ 2, we consider f◦n with deg(f◦n) = dn. Note that the number of
periodic points of period n is equal to the number of the fixed points of f◦n, that
is, dn −1.
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Proposition 4.6. Let X be a compact metric space, f : X → X be continuous. The
following are equivalent

(i) f is topologically transitive;
(ii) for all non-empty and open sets U and V in X, there is n ∈ N, with

f−n(V )
⋂

U ̸= ∅.

Proof. First we prove that (i) implies (ii). Let {f◦n(x)}∞
n=1 be a dense orbit in X.

Choose integers m > n with f◦n(x) ∈ U and f◦m(x) ∈ V . Then,
f◦n(x) ∈ U ∩f−(m−n)(V ).

Thus, the intersection is non-empty.
Now we prove that (ii) implies (i). Let Y =

{
yi

}∞
i=1 be a countable dense set

in X. Any compact metric space has a countable dense set. (For instance, when
X = S1, one can take all the points with rational angles.) Let Ui denoted the ball
of radius 1/i about yi. We aim to find a point x ∈ X whose orbit visits every Ui.

Choose N1 ≥ 0 such that f−N1(U2) ∩ U1 ̸= ∅. Then choose an open disk V1 of
radius less than 1/2 such that

V1 ⊆ V 1 ⊆ U1
⋂

f−N1(U2).

Above, V 1 denotes the closed disk obtained from adding the boundary of V1 to V1.
Then choose N2 such that f−N2(U3) ∩ V1 ̸= ∅. Choose an open disk V2 of radius
less than 1/22 such that

V2 ⊆ V 2 ⊆ V1 ∩f−N2(U3).
Inductively repeating the above process, we obtain disks V1 ⊇ V2 ⊇ V3 ⊇ ... with
radius Vn ≤ 1

2n and
V n+1 ⊆ Vn ∩f−Nn+1(Un+2).

Now we define x as the unique point in the intersection
⋂∞

n=1 V n. It easily follows
that f◦Nn−1(x) ∈ Un, for n ≥ 1. This implies that {f◦n(x)

}∞
n=1 is dense in X.

Exercise 4.15. Let f : X → X be a continuous map of a compact metric space.
A point p ∈ X is called topologically recurrent if for any open set V containing p,
there exists n ≥ 1 with f◦n(p) ∈ V . Clearly every periodic point is recurrent.

(i) Give an example of a map f : X → X with a non-periodic recurrent point.
(ii) Give an example of a map f : X → X with a non-periodic recurrent point p

whose orbit is not dense in X. [hint: look at the map in Example 4.2.]

Definition 4.6. Let X be a compact metric space, and f : X → X be continuous.
We say that f is topologically mixing if for any two non-empty open sets U and V
in X, there exists N ≥ 0 such that for all n ≥ N , U ∩f−n(V ) ̸= ∅.

By Proposition 4.6, any mixing transformation is topologically transitive. But,
the notion of topological mixing is stronger than the notion of topological transi-
tivity.
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Exercise 4.16. Show that an irrational rotation Rα : S1 → S1 is transitive, but is
not topologically mixing.

Exercise 4.17. Let X be a compact metric space with more than one point and
f : X → X be an isometry. Show that f cannot be topologically mixing.

Exercise 4.18. Let X be a compact metric space with at least three distinct points
and let f : X → X be an isometry.

(i) Show that f is not mixing.
(ii) What if X has only two points?

Proposition 4.7. An expanding map f : S1 → S1 is mixing.

Proof. Because f is expanding, there is β > 1 such that for all z ∈ S1, |f ′(z)| ≥ β.
Let d = deg(f) ≥ 2. There is a lift of f to a homeomorphisms F :R→R that satisfies
π◦F (x) = f ◦π(x) and F (x+1) = F (x)+d, for all x ∈R. The proof of this is similar
to the one for Proposition 4.3.

It follows that ∀x ∈ R, |F ′(x)| ≥ β. For an open set U in R, choose an interval
(a,b) ⊆ U . Since F is C1 and one-to-one,

|F (b)−F (a)| =
∫ b

a
F ′(t)dt ≥ β(b−a).

That is, F increases the length of intervals by a factor of β. Similarly, F ◦n increases
the length of intervals by a factor of at least βn. Choose N large enough so that
βN > 1

b−a . Then for n ≥ N , the length of F ◦n(a,b) is at least 1.

R
( ) ( ) ( )
a b

F F
. . .

F

π

( )
0 1

( )
0 1

f

Fig. 4. The iterates of the maps F and f on an open set.

On the other hand, the relation π ◦ F = f ◦ π implies that for all n ≥ N , π ◦
F ◦N (a,b) = S1, and hence f◦n(U) ⊇ f◦n(a,b) = S1. In particular, for all open sets
V , and all n ≥ N , f◦N (U)∩V ̸= ∅, which implies,

U ∩f−n(V ) ̸= ∅.

As a corollary of the above proof, any expanding map of the circle is topologically
transitive.
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Definition 4.7 (Choatic). A continuous map f : X → X of a compact metric space
is called chaotic if,

(i) f is topologically transitive; and
(ii) the set of periodic points of f is dense in X.

The notion of chaotic behavior is invariant under topological conjugacy. That
is, if two maps are topologically conjugate and one of them is chaotic, the other one
is also chaotic.

Example 4.4. Consider the linear expanding map f : S1 → S1, defined as f(x) =
mx (mod 1), m ≥ 2. The periodic points of f take the form x = j

mn−1 , 0 ≤ j <
mn −1. That is because

f◦n(x) = mn
( j

mn −1
)

= j
(mn −1

mn −1
)

+ j

mn −1 = x (mod 1).

Such points form a dense subset of [0,1). In Theorem 4.4 we shall show that any
C1 expanding map of the circle is chaotic.

Exercise 4.19. Consider the linear map A :Rn →Rn defined as A(x) = 2x, observe
that A induces a map f : T n → T n, where T n = S1 × S1 × ... × S1 (n times) is the
n-dimensional torus.

(i) Prove that the periodic points of f are dense in T n.
(ii) Prove that eventual fixed points, i.e. the points x ∈ T n with f

(
f◦m(x)

)
=

f◦m(x), for some m, are dense in T n.
(iii) Prove that f : T n → T n is chaotic.

Definition 4.8. A continuous map f : X → X on a compact metric space is said
to have sensitive dependence on initial conditions if there is δ > 0 such that for all
x ∈ X and all ϵ > 0, there are y ∈ X and a positive integer n ≥ 0 with d(x,y) < ϵ
and d(f◦n(x),f◦n(y)) ≥ δ.

Proposition 4.8. Expanding circle maps have sensitive dependence on initial con-
dition.

Proof. By the expansion property, continuity of f ′, and the compactness of S1,
there is β > 0 such that |f ′(z)| ≥ β, for all z ∈ S1. For the same reason, there is
α > 0 such that |f ′(z)| ≤ α, for all z ∈ S1. Note that α ≥ deg(f).

For x and y in S1 with d(x,y) < 1/2, let Ix,y denote the arc of smallest length
connecting x to y. By the above paragraph, if d(x,y) < 1/(2α), then f is monotone
on Ix,y and d(f(x),f(y)) < 1/2. In particular, d(f(x),f(y)) ≥ βd(x,y). We claim
that δ = 1/(2α) satisfies the definition of sensitive dependence on initial condition.

Let x and ϵ > 0 be given. If ϵ > δ we choose y ∈ S1 with d(x,y) = δ and n = 0.
If ϵ < δ, we may choose any y ∈ S1 with 0 < d(x,y) < ϵ. By the expansion of f and
the above paragraph, there is an integer n such that d(f◦n(x),f◦n(y)) ≥ δ.
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Proposition 4.9. A chaotic map f : X → X of a compact metric space X is either
a single periodic orbit, or has sensitive dependence on initial conditions.

Proof. Since the set of periodic points of f are dense, if X is not a single periodic
set, we must have two distinct sets

A = {x,f(x),f◦2(x), ...,f◦n−1(x) = x}, B = {y,f(y),f◦2(y), ...,f◦m−1(y) = y}.

Let

δ = 1
8 min

{
d(f◦i(x),f◦j(y)) : 0 ≤ i ≤ n−1,0 ≤ j ≤ (m−1)

}
> 0.

We aim to show that f satisfies the sensitive dependence on initial condition with
respect to the constant δ. Fix an arbitrary z ∈ X, and ϵ > 0. We may assume that
ϵ < δ, otherwise, we may make ϵ smaller so that this condition holds.

We must have one of the following:

(i) d(z,A) = min{d(z,w) : w ∈ A} ≥ 4δ;
(ii) d(z,B) = min{d(z,w) : w ∈ B} ≥ 4δ.

We write the proof when (i) occurs. For (ii), one only needs to replace A with B
in the following argument. Since periodic points are dense in X, there is a periodic
point p with d(p,z) ≤ ϵ. Let N be the smallest positive integer with p = f◦N (p).

Define

V = {w ∈ X : d(f◦i(w),f◦i(x)) < δ, for 0 ≤ i ≤ N}.

Since f has a dense orbit, there is a ∈ X with d(z,a) < ϵ and f◦k(a) ∈ V . There
exists an integer k′ with 0 ≤ k′ ≤ N − 1 and k + k′ = jN , for some j ∈ N. Now
f◦jN (p) = p, and

d(f◦jN (p),f◦jN (a)) = d(p,f◦jN (a))
≥ d(z,f◦jN (a))−d(p,z)

≥ d(z,f◦k′(x)
)

−d(f◦k′(x),f◦jN (a))−d(p,z)
≥ 4δ − δ − δ = 2δ.

However, a and p belong to B(z,ϵ) and d(f◦jN (p),f◦jN (a)) ≥ 2δ. Therefore, by
the triangle inequality, at least one of d(f◦jN (p),f◦jN (z)) and d(f◦jN (a),f◦jN (z))
must be bigger than δ. This finishes the proof of the proposition.

4. Symbolic dynamics

In this section we introduce an approach to build a symbolic model for a dy-
namical system. We shall focus on two examples, but the method is far reaching.
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4.1. Coding expanding maps of the circle

For an integer n ≥ 2, define the set

Σn = {(w0,w1,w2, . . .) | ∀i ≥ 0,wi ∈ {1,2, . . . ,n}}.

We define a metric on Σn as

d((wi)∞
i=0,(w′

i)∞
i=0) =

∞∑

i=0

|wi −w′
i|

2i
.

The shift map σ : Σn → Σn is defined as

σ(w0,w1,w2, . . .) = (w1,w2,w3, . . .).

Let f : S1 → S1 be an expanding map of degree 2, where S1 denotes the unit
circle. There is a unique fixed point p ∈ S1. Let q ̸= p be the other pre-image of p,
i.e. f(q) = p. Let ∆1 and ∆2 denote the closed arcs on S1 bounded by p and q, so
that S1 = ∆1

⋃
∆2.

Given x ∈ S1, we want to associate a w = (wi)∞
i=0 ∈ Σ2 such that,

f◦n(x) ∈ ∆wn ,∀n ≥ 0.

However, if f◦n(x) ∈ ∆1 ∩ ∆2 =
{

p,q
}

then there are ambiguities. In this case,
we can finish the sequence wn,wn+1, ... = with either, 1,1,1,1, ... or 2,2,2,2, ... if
f◦n(x) = p, and either 2,1,1,1, ... or 1,2,2,2, ... if f◦n(x) = q. To illustrate the
situation we look at a familiar example.

Example 4.5. Let T : S1 → S1 be defined as T (x) = 2x (mod 1). Then p = 0 and
q = 1/2, ∆1 = [0,1/2], ∆2 = [1/2,1]. Here, the sequence w = (wn)∞

n=0 associated to
x corresponds to a dyadic expansion

x =
∞∑

n=0

wn −1
2n+1 .

The coding is similar to the decimal expansion, with similar ambiguities.

Definition 4.9. Let X and Y be metric spaces, and f : X → X and g : Y → Y . We
say that g is a factor of f if there is a continuous and surjective map π : X → Y
such that g ◦π = π ◦f on X.

Proposition 4.10. If f : S1 → S1 is an expanding map of degree 2, then f is a
factor of σ : Σ2 → Σ2.

Proof. We define the map π : Σ2 → S1 as follows. For w0, w1, . . . , wn−1 ∈ {1,2},
define

∆w0,...,wn−1 = ∆w0

⋂
f−1(∆w1)

⋂
f−2(∆w2)

⋂
· · ·

⋂
f−(n−1)(∆wn−1).

Given w = (wn)∞
n=0 we obtain a nest of closed intervals

∆w0 ⊃ ∆w0w1 ⊃ ∆w0w1w2 ⊃ . . . .
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∆11 ∆12 ∆21 ∆22

p q 1

1

∆1 ∆2

Fig. 5. The first two generations of the partitions.

That is because, f◦n : ∆w0...wn−1 → S1 is monotone and

2π =
∫

∆w0w1...wn−1

∣∣(f◦n)′(x)
∣∣|dx| ≥ βn · length(∆w0w1...wn−1)

where β is the expansion constant of f . This implies that length(∆w0w1...wn−1)
tends to 0 as n tends to infinity. In particular, the nest

⋂∞
n=1 ∆w0w1...wn−1 shrinks

to a single point, which we defined it as π(w).
The map π is surjective. That is because, for x ∈ S1 define w = (wn)∞

n=0 ac-
cording to f◦n(x) ∈ ∆wn . This gives us π(w) = x.

The map π is continuous. That is because, if w = (wi)∞
i=0 is close to w′ = (w′

i)∞
i=0,

then there is a large N such that wn = w′
n for all n ≥ N . Then π(w) and π(w′)

belong to ∆w0...wN−1 and we have
∣∣π(w)−π(w′)

∣∣ ≤ length(∆w0...wN−1) ≤ 2π

βN
.

Finally, the relation f ◦π = π ◦σ follows immediately from the definition. That is,

π(σ(w)) =
∞⋂

n=1
∆w1...wn = f

( ∞⋂

n=0
∆w0...wn−1

)
= f(π(w)).

Exercise 4.20. If distinct points w and w′ in Σ2 satisfy π(w) = π(w′) = x. Then,
there is n ≥ 0 such that f◦n(x) = p.

Exercise 4.21. Show that π : Σ2 → S1 cannot be a homeomorphism. [Hint: Σ2 is
a union of two disjoint and closed sets, but S1 may not be decomposed as a union
of two non-empty, disjoint, and closed sets.

Corollary 4.1. Let f : S1 → S1 be an expanding map of the unit circle. We have,

(i) the periodic points of f are dense in S1,
(ii) the map f : S1 → S1 is topologically mixing.
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Proof. Let d = deg(f) ≥ 2. Part (i) follows from the corresponding statement for
σ : Σd → Σd. Since, if σ◦p(w) = w then π(σ◦p(w)) = f◦p(π(w)) = π(w). That is, the
image of a σ- periodic point is an f -periodic point. As σ-periodic points are dense
in Σd, and π is continuous and surjective, the result follows.

For part (ii) we already proved that every expanding map of the circle is mixing
(and hence is transitive). Here we give an alternative proof.

For nonempty and open sets U and V in S1 we can choose w0,w1, ...,wm−1 and
w′

0,w′
1, ...,w′

m−1 in Σd such that
∆w0w1....wm−1 ⊆ U, ∆w′

0w′
1,...w′

m−1
⊆ V.

Let [a0,a1, . . . ,ak] = {(wi)∞
i=0 ∈ Σd | ∀i = 0,1, . . . ,k,wi = ai}. Then, for all n ≥ m,

[w0,w1, ...,wm−1]
⋂

σ−n[w′
0,w′

1, ...,w′
m−1] ̸= ∅.

For w in the above intersection,
x = π(w) ∈ ∆w0...wm−1

⋂
f−n∆w′

0...w′
m−1

.

This finishes the proof of Part (ii).

We now come to the main classification result for expanding maps f : S1 → S1

of degree 2.

Theorem 4.4. If f : S1 → S1 and g : S1 → S1 are two expanding maps of degree
2, then f and g are topologically conjugate. That is, there exists a homeomorphism
π : S1 → S1 such that f ◦π = π ◦g.

By the above theorem, every expanding map of the circle of degree 2 is topolog-
ically conjugate to the linear one in Example 4.4.

Proof. Consider the conjugacies πf : Σ2 → S1 and πg : Σ2 → S1 associated to the
two expanding maps f and g in Proposition 4.10. We claim that π(x) = πg(π−1

f (x))
induces a well-defined map from S1 to S1. That is because,

(i) if π−1
f (x) is a single point then π(x) is well defined;

(ii) if π−1
f (x) is two points, then the sequences end with infinitely many 1’s or

2’s. But, then πg ◦
(
π−1

f (x)
)

is again a single point.

It easily follows that the map x %→ πg
(
π−1

f (x)
)

is one-to-one and onto.
The map π is continuous, since

π :
n−1⋂

k=0
f−k∆wk →

n−1⋂

k=0
g−k∆wk .

Finally,
g(π(x)) = g(πg(π−1

f (x))) = πg(σ(π−1
f (x))) = πg(π−1

f (f(x))) = π(f(x)).
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Exercise 4.22. Show that in the above theorem, even if f : S1 → S1 and g : S1 → S1

are real analytic, π may not even be C1. [Hint, give examples of f and g whose
fixed points have different multipliers.]

Theorem 4.4 extends in an obvious manner to expanding maps of degree n.

4.2. Coding horseshoe maps

For an integer n ≥ 2, define the set

Σ′
n = {(. . . ,w−2,w−1,w0,w1,w2, . . .) | ∀i ∈ Z,wi ∈ {1,2, . . . ,n}}.

We define a metric on Σ′
n as

d((wi)i∈Z,(w′
i)i∈Z) =

∑

i∈Z

|wi −w′
i|

2|i| .

The shift map σ : Σ′
n → Σ′

n is defined as σ(. . . ,w−2,w−1,w0,w1,w2, . . .) = w′ ∈ Σ′
n,

where the entry in the i-th coordinate of w is wi+1. Note that σ : Σ′
n → Σ′

n is
continuous, one-to-one, and onto.

Definition 4.10 (Linear Horseshoes). Let ∆ = [0,1] × [0,1] ⊂ R2 be a rectangle.
Assume f : ∆ → f(∆) ⊂ R2 is a diffeomorphism onto its image such that

(i) ∆∩f(∆) is a disjoint union of two (horizontal) sub-rectangles ∆1 and ∆2
with heights ≤ 1/2;

(ii) the restriction of f to the components of ∆∩f−1(∆) are linear maps.

∆1 ∆2

0 1

1

f
∆1

∆2

0 1

1

Fig. 6. A schematic presentation of the horseshoe map. The gray rectangles are mapped to the
gray rectangles by some linear maps.

One can write ∆ ∩ f−1(∆) = ∆1 ∪ ∆2, where ∆1 and ∆2 are (vertical) sub-
rectangles of width ≤ 1

2 .
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The set of points in ∆ that can be iterated infinitely many times forward and
backward under f is

Λ =
⋂

n∈Z
f−n(∆).

Proposition 4.11. The map f : Λ → Λ is topologically conjugate to σ : Σ′
2 → Σ′

2.

Proof. Observe that ∆ ∩f(∆)∩f◦2(∆) consists of four thin rectangles denoted by
∆i,j = ∆i ∩f(∆j), for i, j ∈ {1,2}.

Continuing inductively, for each n ≥ 1, the intersection
n−1⋂

i=0
f◦i(∆) =

n−1⋂

i=0
f◦i(∆1 ∪∆2)

consists of 2n thin and disjoint horizontal rectangles. For w0,w1, ...,wn−1 ∈
{

1,2
}

,
let

∆w0w1,...,wn−1 =
n−1⋂

i=0
f◦i(∆wi).

On the other hand, for each n ≥ 1,
⋂n−1

i=0 f−i(∆) consists of 2n thin and disjoint
vertical rectangles. For every finite sequence w−(n−1), . . . , w−1, w0 in {1,2}, we
let ∆w0w1,...,wn−1 =

⋂n−1
i=0 f−i(∆w−i).

For w = (wn)n∈Z, we define π(w) as

π(w) =
( ∞⋂

n=0
∆w0w1...wn−1

)⋂( ∞⋂

n=0
∆w0w−1...w−n+1

)
.

The image of a cylinder
{(w′

i)i∈Z | w′
i = wi,∀i with − (n−1) ≤ i ≤ n−1}

under π is a square ∆w0...wn−1
⋂

∆w0...w−(n−1) of size bounded by 1/2n−1 ×1/2n−1.
It follows that

(i) π is continuous;
(ii) π is invertible (and a homeromorphism);
(iii) Λ is a cantor set (that is, Λ is compact, totally disconnected, and every

point in Λ is a limit of a sequence of points in Λ);
(iv) π ◦σ = f ◦π.

By Proposition 4.11, f : Λ → Λ inherits some dynamical features of σ : Σ′
2 → Σ′

2.

Exercise 4.23. Let f : ∆ → R2 be a linear horseshoe map. We have,

(i) The periodic points of f : Λ → Λ are dense in Λ;
(ii) The number of periodic points of f : Λ → Λ is 2n;

(iii) f : Λ → Λ is topologically mixing.
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5. Topological Entropy

We have seen qualitative indications of chaos: transitivity, density of periodic
orbits, sensitive dependence on initial conditions. Now, we would like to quantify
the complexity of f , to obtain a finer invariant under topological conjugacy.

Let X be a compact set equipped with a metric d, and f : X → X be a continuous
map. For each n ≥ 1, we define a metric

dn(x,y) = max{d(f◦i(x),f◦i(y)) : 0 ≤ i ≤ n−1}. (3)

Then, define

B(x,n,ϵ) = {y ∈ X : dn(x,y) < ϵ}.

A finite set E ⊆ X is called an (n,ϵ)-dense set if X ⊆
⋃

x∈E B(x,n,ϵ). This is also
called (n,ϵ)-spanning set. Note that since X is compact and f is continuous, there
is always an (n,ϵ)-dense set with a finite number of elements.

Let S(n,ϵ) be the minimum cardinality of all (n,ϵ)-dense sets. In other words,
this is the list of information needed to keep track of all orbits up to time n and
ϵ-error. One can ask how fast does the sequence S(n,ϵ) grow as n tends to infinity.
It turns out that it is suitable to look at the exponential growth rate

h(f,ϵ) = lim
n→∞

1
n

logS(n,ϵ).

By definition, if ϵ < ϵ′, then S(n,ϵ) ≥ S(n,ϵ′), and hence,

h(f,ϵ) ≥ h(f,ϵ′).

This implies that as ϵ tends to 0 from the right-hand side, the sequence h(f,ϵ)
increases. Recall that any increasing sequence has a limit (potentially infinite).
Thus, we define

h(f) = lim
ϵ→0

h(f,ϵ) ≥ 0.

The above quantity is called the topological entropy of f . This notion is to some
extent independent of the choice of the metric on X. Two metrics d and d′ on
a space X are called equivalent, if the convergence with respect to any of these
metrics implies the convergence with respect to the other one.

Lemma 4.4. Let d and d′ be two equivalent metrics on X that make it a compact
space, and let f : X → X be a continuous map. The topological entropy of f with
respect to the metrics d and d′ are the same.

Proof. Consider the identity map I : (X,d) → (X,d′). By the equivalence of the
metrics d and d′, I is a homeomorphisms (it is one-to-one, onto, continuous, and
its inverse is also continuous). Moreover, since X is compact, I is indeed uniformly
continuous. This implies that, given ϵ > 0, there is δ > 0 such that d(x,y) < δ
implies d′(x,y) < ϵ. In particular, dn(x,y) < δ implies that d′

n(x,y) < ϵ. Therefore,
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any (n,δ)-dense set with respect to d is also (n,ϵ)-dense set with respect to d′.
Hence,

Sd(n,δ) ≥ Sd′(n,ϵ), ∀n ≥ 1.

Taking limits as n tends to infinity, we obtain hd(f,δ) ≥ hd′(f,ϵ). Therefore,

hd′(f) = lim
ϵ→0

hd′(f,ϵ) ≤ lim
δ→0

hd(f,δ) = hd(f).

Repeating the above argument for the map I : (X,d′) → (X,d), we also obtain
hd(f) ≤ hd′(f). Therefore, the two quantities must be equal.

Corollary 4.2. Topologically conjugate maps have the same topological entropy.

Proof. Let π : X → Y be a conjugacy between f : X → X and g : Y → Y , i.e. π ◦f =
g ◦π. If dX is a metric on X, then define dY on Y by

dY (y,y′) = dX
(
π−1(y),π−1(y′)

)
.

Thus π : (X,dX) → (Y,dY ) is an isometry. This implies that hdX
(f) = hdY

(g), and
then by Lemma 4.4, h(f) = h(g).

Example 4.6. Consider the expanding map f : S1 → S1, f(x) = dx (mod 1), d ≥ 2.
Observe that for any n ≥ 1, a dn-ball B(x,n,ϵ) has diameter (2ϵ)/dn. Thus, we need
at least dn/(2ϵ) balls to cover [0,1), and dn/(2ϵ) + 1 balls is enough to cover this
set. That is,

S(n,ϵ) ≤
(

dn

2ϵ

)
+1, and S(n,ϵ) ≥

(
dn

2ϵ

)
.

In particular,

h(T ) = lim
ϵ→0

lim
n→∞

1
n

log(S(n,ϵ)) = logd.

By Theorem 4.4, any expanding map f : S1 → S1 of degree d ≥ 2 is topologically
conjugate to the linear expanding map of degree d. Hence, such maps have the
same topological entropy logd.

Proposition 4.12. If f : X → X is an isometry, then h(f) = 0.

Proof. By definition, for all n ≥ 1, dn(x,y) = d(x,y). In particular, S(n,ϵ) is inde-
pendent of n, and thus, h(f) = 0.

The rigid rotations f : S1 → S1 are isometries, so h(f) = 0. Then, by Theo-
rem 4.3, certain homeomorphisms of S1 are conjugate to a rotation, and must have
zero entropy.

Exercise 4.24. Prove that the topological entropy of any C1 (continuously differ-
entiable) map of S1 × S1 (torus) is finite. [hint: consider the maximum size of its
derivatives.]
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Due to the definition of S(n,ϵ), we often obtain an upper bound on this quantity.
That is because, an example of (n,ϵ)-dense set provides an upper bound for S(n,ϵ).
This leads to an upper bound on h(f). Below we give an alternative definition of
the topological entropy that is conveniently used to give a lower bound on h(f).
The combination of the two methods is often used to calculate h(f).

Given a compact metric space (X,d) and a continuous map f : X → X, consider
the metrics dn defined in Eq. (3). Let N(n,ϵ) be the maximal number of points in
X whose pairwise dn distances are at least ϵ > 0. A set of such points is called an
(n,ϵ)-separated set.

Lemma 4.5. We have,

(i) N(n,ϵ) ≥ S(n,ϵ);
(ii) S(n,ϵ) ≥ N(n,2ϵ).

Proof. (i). Let En be an (n,ϵ)-separated set with N(n,ϵ) elements. Then, En must
also be an (n,ϵ)-spanning set, since otherwise, we could enlarge the separating set
by adding a point not already covered. Thus N(n,ϵ) ≥ S(n,ϵ).

(ii). Let En be an arbitrary (n,2ϵ)-separated set, and Fn be an arbitrary (n,ϵ)-
dense set. We define a map φn : En → Fn as follows. By the definition of (n,ϵ)-dense
set, the set ∪x∈FnB(x,n,ϵ) covers X. Then, for any x ∈ En, there is φn(x) ∈ Fn

such that dn(x,φn(x)) < ϵ. The map φ is well-defined and one-to-one. That is
because, if φ(x) = φ(y), then

dn(x,y) ≤ dn(x,φn(x))+dn(φn(y),y) < ϵ+ ϵ = 2ϵ.

However, since En is (n,2ϵ)-separated, we must have x = y.
The injectivity of φn : En → Fn implies that the number of elements in En is

bigger than the number of elements in Fn. Since En and Fn where arbitrary, we
must have S(n,ϵ) ≥ N(n,2ϵ). This finishes the proof of the proposition by taking
limits as ϵ → 0.

Proposition 4.13.

h(f) = lim
ϵ→0

lim
n→∞

1
n

logN(n,ϵ).

Proof. By Part (i) of Lemma 4.5,

lim
n→∞

1
n

logN(n,ϵ) ≥ lim
n→∞

1
n

logS(n,ϵ) = h(f,ϵ).

By Part (ii) of Lemma 4.5,

lim
n→∞

1
n

logN(n,2ϵ) ≤ lim
n→∞

1
n

logS(n,ϵ) = h(f,ϵ).

Letting ϵ → 0 we obtain the desired formula in the proposition.

Proposition 4.14. Let g : Y → Y be a factor of f : X → X, that is, there is a
continuous surjective map π : X → Y with g ◦π = π ◦f . Then h(g) ≤ h(f).
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Proof. Let dX and dY denote the metrics on X and Y respectively. For ϵ > 0,
choose δ > 0 such that if dX(x1,x2) < δ then dY (π(x1),π(x2)) < ϵ. Thus, a δ-ball
with respect to dX

n , B(x,n,δ), is mapped under π into B(π(x),n,ϵ). In particular,

SdX (n,δ) ≥ SdY (n,ϵ).

This implies the inequality in the proposition.

Exercise 4.25. Let f : S1 ×S1 ×S1 → S1 ×S1 ×S1 be defined as,

f(x,y,z) = (x,x+y,y +z) (mod 1).

Find htop(f).

Exercise 4.26. Let D =
{

z ∈ C : |z| ≤ 1
}

and for each λ ∈ [0,1] define fλ : D → D
as fλ(z) = λz2.

(i) Show that htop(fλ) ≥ log2, when λ = 1.
(ii) Show that htop(fλ) = 0, when 0 ≤ λ < 1.

Therefore, topological entropy does not depend continuously on the map.


