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1 Introduction
Q: What is a dynamical system?
It is “something” that “evolves” with time!

• It may be a solution to a differential equation, for example, w′′(x)+ cw(x) = 0.

• More generally we consider a map, T : X → X on a set X .
- For example, T (x) = solution to the above differential equation with initial condition x at
time t.
- Rotation on a unit circle. Let S1 :=

{
z ∈ C; |z|= 1

}
=
{

eiθ ;0 ≤ θ ≤ 2π
}

fix some α ∈ (0,2π) and define T : S1 → S1 as T : z → eiαz or T (eiθ ) = ei(θ+α)

• The doubling map on the unit circle T : S1 → S1. T (z) = z2, or equivalently eiθ → e2iθ . This
‘doubles’ the angle. There are higher dimensional analogues of these.
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Q: What can we say about a dynamical systems?
- The orbits: We would like to understand what happens to points as we iteratively apply the map
T : X → X :

T 0 = Id; T 2 = T ◦T : X → X ; . . . T n = T ◦T ◦ · · · ◦T︸ ︷︷ ︸
n times

: X → X .

How can we describe the behaviour of individual orbits?
x,T (x),T 2(x), ...., e.g. x → x

2

How can we describe the global behaviour of the dynamical system?
“attractors”, their “topology” and “geometry”?

Examples:
- Rotations of the circle: deterministic, if we understand one orbit then we understand

any other orbits.
- The doubling map: example of a “chaotic” system where nearby points move apart at

an exponential rate (and come back together).

Broadly speaking, there are two aims:

• To understand general features of some dynamical systems (simple ones) “qualitatively” and
“quantitatively”.

• To understand complicated systems using simple models.

Dynamical systems is one of the widest and oldest branches of mathematics. It breaks down into
many branches:

• Smooth dynamical systems: T : M → M, M is manifold and T is C∞.

• Holomorphic dynamical systems: T : Ĉ→ Ĉ or T : C→ C, T is a holomorphic map.

• Ergodic theory: T : P → P, P is a probability space, there is no metric, but can say how large
sets are.

• Group actions and number theory: G : M → M, G is a group.

• There are interactions with many other areas of mathematics.
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• There are many applications outside of mathematics.

The plan is to cover a little of each area:

- circle homeomorphisms

- expanding maps

- horseshoe maps, toral automorphisms, and other examples of hyperbolic maps

- structural stability, shadowing, closing, Markov partitions, symbolic dynamics

- conjugacy and topological entropy

Recommended books:

• R. Devancy: An introduction to chaotic dynamical systems

• B. Hasselblat and A. Katok, A first course in dynamics

• B. Hasselblat and A. Katok, Introduction to the modern theory of dynamical systems
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2 Rigid rotations on the unit circle and equidistribution
Recall that we denoted the unit circle,

S1 :=
{

z ∈ C; |z|= 1
}

Given α ∈ [0,1], let a = 2πα , and then the map T : S1 → S1 given by the formula

T (z) = eiaz

is a rotation by the angle a.
Sometimes it is convenient to use an alternative notation for this map. We may identify S1 with

the set R/Z. This is the same as the interval [0,1] with 0 and 1 identified.
In this notation we can write,

T : [0,1)→ [0,1)

T : X → X +α(mod1)

I.e.

T (x) =

{
x+α, 0 ≤ x+α < 1
x+α −1, 1 ≤ x+α < 2

Orbits:
First consider the case that α = p

q is rational. We assume that q ̸= 0, p ∈ Z∗, and p and q are
relatively prime ((p,q) = 1). Then it is clear that the orbit,

∪
n≥1

T n(z) =
{

z,T (z), ...,
}
=
{

z,ze2πi/q,ze2πi2/q, ...,ze2πi (q−1)
q

}
is finite.

In contrast, when α is irrational the situation is very different.

Proposition 1. If α is irrational then for each z ∈ S1, the orbit
{

T n(z);n ∈ Z
}

is infinite and dense
on S1.

Proof. Fix any choice of x ∈ S1, and ε > 0.
By the pigeonhole principle there exists 0 ≤ l < k ≤ 1

ε + 1 such that d
(
T k(z),T l(z)

)
< ε where d

is the natural metric on S1 and so d
(
z,T k−l(z)

)
< ε , since applying T−l preserves distances.

Denote m = k− l, clearly the orbit
{

T n(z);n ∈ Z
}
⊇

{
z,T m(z),T 2m(z), ...,

}
and this latter set is

ε-dense.

4



D
ra

ft

In particular, for x ∈ S1, and ε > 0, we have that,{
T n(z) : n ∈ Z

}∩
B(x,ε) ̸= 0

Since x and ε are arbitrary, the orbit is dense.

More generally, let T : X → X be a homeomorphism of a compact metric space X.

Definition 1. We say that T : X → X is topologically transitive if there exists x ∈ X, whose orbit{
T n(z);n ∈ Z

}
is dense in X.

Stronger still is the following.

Definition 2. We say that T : X → X is minimal if for every x ∈ X, the orbit
{

T n(z),n ∈Z
}

is dense
in X.

Remark 1. For homeomorphisms we could also consider the “one sided” and “two sided” transi-
tivity.

There are quantitative versions of the above notions. For example, one may ask for an irrational
rotation of the circle, how long might one have to wait for the orbit of a point to enter a given
interval?

Renormalizations and continued fractions:
Consider the orbit x = 0,T (x),T 2(x), ... where T := Rα : x → x+α(mod1). Here, 2πα is the length
of the arc from x to T (x).

We can partition S1 as X1
∪

X2 where X1 is the arc from x to T (x) and X2 is the remaining part.
We can also represent this using the intervals as X1 = [0,α) and X2 = [α,1−α).
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Assume that we can only “see” points when they land in the arc X1. Furthermore, assume that
the first time the orbit of x returns to X1 is at the point T s(x), (s ≥ 1). This is called the “first return
of x to X1.

Let us denote T ′ = T s. Continuing the trajectory: T s+1(x),T s+2(x),T s+3(x), ...
We might see T 2s(x) = T ′(T ′(x)

)
=

(
T ′)2

(x) ∈ X1. So this is the second return time It could
also happen that T 2s−1(x) ∈ X1, so the second return time is not always 2s. Observe that

d
(
x,T ′(x)

)
= d

(
T ′(x),T ′(T ′(x)

))
=
( 1

α
−
{ 1

α
})

α +(α −1) = α(1−
{ 1

α
}
),

where
{

y
}
= y(mod1). So, s = 1

α −
{ 1

α
}
+1.

We can sub-partition X1 = X ′
1
∪

X ′
2 such that X ′

1 is an interval of length α
{ 1

α
}

and X ′
2 has length

α(1−
{ 1

α
}
), and define, {

T ′∣∣
X ′

1
= T s

T ′∣∣
X ′

2
= T s−1

as the first return times to X1.
Thus, “up to renormalization lengths” T ′∣∣

X1
= rotation by 1−

{ 1
α
}

on X1.

Basic Algorithm:

- Restrict T s to the interval X ′
1(= rotation by 1−

{ 1
α
}

);
- replace T by T s (set s = s1) and S by X ′

1;
- repeat the operation.

We generate a sequence of “rotations” T,T s1,T s1s2,T s1s2s3, ... on decreasing intervals X1 ⊃ X ′
1 ⊃

X ′′
1 . . . . More over, α has “continued fraction”

α =
1

s1 +
1

s2+
1

s3+...

Distribution of orbits
We now go back to the problem of quantifying the time of visiting to an interval. The distribution of
the orbit is “uniform” on average. If α is irrational then the proportion of the orbit x,T (x),T 2(x), ..
for any x which lies inside a given interval comes to the length of the interval. This is made precise
in the next theorem.
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Theorem 1. If α is irrational and ϕ : S1 → C is continuous then for any x ∈ S1,

lim
n→∞

(1
n

n−1

∑
k=0

ϕ
(
Rk

α(x)
))

=
∫

S1
ϕ
(
y
)
dy

Proof. Let us consider instead,

ϕ(x) = em(x) := e2πimx = cos(2πmx)+ isin(2πmx)

Then em(Rαx) = e2πim(x+α) = e2πimαem(x). Thus for ϕ(x) = em(x) (m ̸= 0),∣∣∣∣∣1n n−1

∑
k=0

em
(
Rk

α(x)
)∣∣∣∣∣= 1

n

∣∣∣∣∣n−1

∑
k=0

e2πimkα

∣∣∣∣∣|e2πimx|

=
1
n

∣∣∣∣1− e2πinmα

1− e2πimα

∣∣∣∣
≤ 2

|1− e2πimα |
1
n
→ 0

as n → ∞.
Thus, if ϕ(x) = ∑N

m=−N amem(x), with a−N ,a−N+1, ...,aN ∈ C, then

limn→∞
1
n

n−1

∑
k=0

ϕ
(
Rk

αx
)
= a0 =

∫
ϕ
(
y
)
dy

This result extends to the uniform closure of all such trigonometric polynomials, i.e. all contin-
uous functions.

More generally,

Definition 3. Let X be a compact metric space and let T : X → X be a homeomorphism. We say T
is uniquely ergodic if for every continuous function ϕ : X → R the sequence

{1
n

n−1

∑
k=0

ϕ
(
T k(x)

)}∞
n=0

converges to a constant c independent of x ∈ X.

Application:
As an application of the above theorem we look at the distribution of first digits of 2n, n ≥ 1.

Proposition 2. Fix p ∈
{

0,1,2, ...,9
}

. The frequency of those n for which the first digit of 2n is
equal to p, that is,

lim
N→∞

{
1 ≤ n ≤ N;first digit of 2n is equal to p

}
N

= log10
(
1+

1
p

)
.
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For example, when p = 7 the frequency is log10(8/7).

Proof. 2n has first digits p iff for some k:

p×10k ≤ 2n < (p+1)10k

Equivalently, log10 p+ k ≤ n log10 2 < log10(p+1)+ k, i.e.

n log10 2(mod1) ∈ [log10 p, log10(p+1)).

Define,

χ(x) =

{
1, x ∈ [log10 p, log10(p+1)]
0, otherwise

Let α = log10 2 ∈ R\Q,

Claim 1. We claim claim that

lim
N→∞

1
N

B

∑
n=1

χ
(
Rn

αx
)
=

∫
[0,1]

χdy.

If χ was continuous, this would follow directly from the theorem. However, it suffices to
approximate χ from above and below by continuous functions, χ1 ≤ χ ≤ χ2 with

∫
|χ1 −χ2|dy< δ ,

say.
Thus, ∫

χ2dy = lim
N→∞

1
N

N

∑
n=1

χ2
(
Rn

αx
)

≥ lim
N→∞

1
N

N

∑
n=1

χ
(
Rn

αx
)

≥ lim
N→∞

1
N

N

∑
n=1

χ
(
Rn

αx
)

≥ lim
N→∞

1
N

N

∑
n=1

χ1
(
Rn

αx
)

=
∫

χ1dy

Since, |
∫

χdy−
∫

χ1dy| < δ and |
∫

χdy−
∫

χ2dy| < δ ′, and δ > 0 can be arbitrarily small, the
result follows.
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Homeomorphisms of the unit circle
Consider the natural projection,

π : R→ S1 = R/Z
π(x) = x(mod1)

It follows that for all i ∈ Z, π(x+ i) = π(x).

Proposition 3. Let f : S1 → S1 be a homeomorphism of the circle. Then there exists a homeomor-
phism F : R→ R (called a lift of f ) such that,

f ◦π = π ◦F

Moreover, F is unique up to adding an integer; if F is a lift, so is F +n, for n ∈ Z.

Proof. Given x and y= f (x)∈ S1, choose x′, and y′ ∈R with π(x′)= x, π(y′)= y. Define F(x′)= y′.
One can use the functional equation to extend this map onto R.
If G is another lift then, we must have G(x′) = y′+ n. This implies that G(t) = F(t)+ n for all
t ∈ R.
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Note that F(x+ i) = F(x)+ i, i ∈ Z, x ∈ R.

Example 1. Let f : S1 → S1 be a rotation by α . The lifts of f are given by the formulas{
F : R→ R
F(x) = x+α +n

where n ∈ Z.

Example 2. Let f : S1 → S1 be defined by f (x) = x+ εsin(2πx) for |ε| < 1
2π . Then, the lifts are

defined by {
F : R→ R
F(x) = x+ εsin(2πx)+n

for any n ∈ Z. If f is a homeomorphism then we must have |ε|< 1
2π .

Remark 2. We always assume that f : S1 → S1 is orientation preserving, that is, the graph of f is
strictly increasing.

The rotation number of f : S1 → S1 is defined in the following proposition.

Proposition 4. Let f : S1 → S1 be an orientation preserving homeomorphism with a lift F : R→R.
Then the limit,

ρ( f ) = lim
n→∞

Fn(x)
n

(mod 1)

for x ∈ R, exists, and is independent of x ∈ R and the choice of the lift F.

We present the proof of the above proposition in several steps.
Independence from the choice of the lift:

If G is another lift of f , then G(x) = F(x)+N, for some N ∈ Z. Since, G is a lift, then for all x ∈R
and all i ∈ Z we have

G(x+ i) = G(x)+ i.
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Hence,

G2(x) = G
(
G(x)

)
= G

(
F(x)+N

)
= G

(
F(x)

)
+N

= F
(
F(x)

)
+N +N

= F2(x)+2N

and in general Gn(x) = Fn(x)+nN. Therefore,

lim
n→∞

Gn(x)
n

= lim
n→∞

Fn(x)+nN
n

= lim
n→∞

Fn(x)
n

+N.

So, if the limit exists, we obtain the same values modulo 1.

Independent from the choice of x ∈ R:
Let y ∈ R be another choice.
Let us first assume that |x− y|< 1. By the definition of the lift |x− y|< 1 =⇒ |F(x)−F(y)|< 1

and therefore,

|x− y|< 1 =⇒
∣∣F2(x)−F2(y)

∣∣< 1
... =⇒ ...

... =⇒ |Fn(x)−Fn(y)|< 1

Hence,
∣∣∣Fn(x)

n − Fn(y)
n

∣∣∣< 1
n → 0, as n → ∞.

This implies that limn→∞
Fn(x)

n is the same as limn→∞
Fn(y)

n as n → ∞, provided they exist.
In general, for x and y in R there is a finite sequence of points

x = t0 < t1 < t2, ..., tn = y

with |ti+1 − ti|< 1, for i = 0, ...,n−1. By the above argument, if the limit exists, we must have

lim
n→∞

Fn(x)
n

= lim
n→∞

Fn(t1)
n

= ...= lim
n→∞

Fn(y)
n

.

The limit in Proposition 4 exists:
For each n ≥ 1, choose kn ∈ Z, with kn ≤ Fn(0)≤ kn +1. Then,∣∣∣∣Fn(0)

n
− kn

n

∣∣∣∣≤ 1
n

Let n ≥ 1,
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By the monotonicity of Fn, F2n(0) ∈ [2kn,2(kn +1)]. That is because,

kn ≤ Fn(0)≤ kn +1 =⇒ Fn(kn)≤ (F2n(0))≤ Fn(kn +1)

=⇒ 2kn ≤ Fn(kn) and Fn(kn +1)≤ kn +1+ kn +1

In general, for m ≥ 1, the above argument implies that mkn ≤ Fnm(0)≤ m(kn +1). Thus,

Fnm(0)
nm

∈ [
kn

n
,
kn +1

n
]

or, ∣∣∣∣Fnm(0)
nm

− kn

n

∣∣∣∣≤ 1
n

and so,∣∣∣∣Fm(0)
m

− Fn(0)
n

∣∣∣∣≤ ∣∣∣∣Fm(0)
m

− km

m

∣∣∣∣+ ∣∣∣∣km

m
− Fnm(0)

nm

∣∣∣∣+ ∣∣∣∣Fnm(0)
nm

− kn

n

∣∣∣∣+ ∣∣∣∣kn

n
− Fn(0)

n

∣∣∣∣
≤ 1

m
+

1
m
+

1
n
+

1
n

In particular Fn(0)
n is a Cauchy sequence (and so convergent).

In the next two lemmas we show that the notion of rotation defined in Proposition 4 is “infor-
mative”.

Lemma 1. If a homeomorphism f : S1 → S1 has a periodic point f N(x) = x ∈ S1, then, ρ( f ) is a
rational number.

Proof. For every such lift F and every x′ with π(x′) = x we have FN(x′) = x′+ l, for some l ∈ Z.
That is because π(FN(x′)) = π(x′).

Let n = kN + r for k ≥ 0 and 0 ≤ r ≤ N −1, then,

lim
n→∞

Fn(x′)
n

= lim
n→∞

FkN+r(x′)
n

= lim
n→∞

Fr(FkN(x′)
)

n

= lim
n→∞

Fr(x′+ kl
)

n
= lim

n→∞

Fr(x′)+ kl
n

= lim
n→∞

kl
kN + r

=
l
N

Lemma 2. If f has no periodic points, then limn→∞
Fn(x)

n is an irrational number.

Proof. Assume that limn→∞
Fn(x)

n = p
q , then,

lim
n→∞

Fqn(x′)
n

= q lim
n→∞

Fqn(x′)
qn

= q
p
q
= p
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Thus,

lim
n→∞

(Fq)n(x′)
n

= p

Note that since f has no periodic points, f q has no fixed points.
We may choose a lift G : R→ R for f q, such that,

lim
n→∞

Gn(x′)
n

= 0

The map G : R → R cannot have a fixed point as otherwise the fixed point projects under π to a
fixed point for f q. In particular, either,

i) G(y)> y, ∀y ∈ R,

ii) G(y)< y, ∀y ∈ R.

Assume we are in case i). There are two possibilities

A) ∃k > 0 such that Gk(0)> 1,

B) ∀k ≥ 0 we have Gk(0)≤ 1.

If A) occurs, then

Gkn(0)> n,∀n ≥ 1 =⇒ lim
n→+∞

Gkn(0)
kn

≥ n
kn

>
1
k

This contradicts the choice of G such that the limit is equal to 0.
If B) occurs, as the sequence Gn(0)∈ [0,1] is monotone, the limit z′ = limn→+∞ Gn(0) is a fixed

point of G. This fixed point projects to a fixed point for f q.
These contradictions prove that item i) may not occur. The same contradiction may be obtained

in case ii) along the above lines. Details are left to the reader.

We would like to see how a homeomorphism f : S1 → S1 with rotation number ρ( f ) can be
related to a rotation by ρ , i.e. Rρ : S1 → S1, Rρ(x) = x+ ρ(mod1). In particular we have the
following classical result.

Proposition 5. (Poincare.) Assume that f : S1 → S1 is a minimal homeomorphism with an irra-
tional rotation number ρ( f ). Then there is a homeomorphism π : S1 → S1 such that, Rρ ◦π = π ◦ f .
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The homeomorphism π in the above proposition is called “topological conjugacy”. The map
π preserves the order of points in an orbit and the topological properties are preserved. However,
metric properties are not preserved under π . For instance, f nk(1) may converge to a point x on S1

exponentially fast, but the corresponding sequence Rnk
ρ (π(1)) may converge to π(x) very slowly.

Variation: We say that a continuous function w : S1 → R has bounded variation if,

Var(w) = sup
{n−1

∑
i=0

|w(xi+1)−w(xi)|;0 ≤ x1 < x2 < ... < xn = 1
}

is finite.

Theorem 2. (Denjoy). Let f : S1 → S1 be an orientation-preserving homeomorphism of the circle
with irrational rotation ρ( f ) = ρ . Moreover, assume that f : S1 → S1 is continuously differentiable
and that w(x) = log| f ′(w)| has bounded variation. Then f : S1 → S1 is minimal, and hence, it is
topologically conjugate to Rρ : S1 → S1.

Example 3. (Denjoy’s Example.) For each irrational ρ , there is a C1, diffeomorphism f : S1 → S1

with rotation number ρ( f ) = ρ , which is not transitive.

Let us define ln = 1
(|n|+3)2 ,n ∈ Z.

In particular ∑n∈Z ln ≤ 2∑∞
n=3

1
n2 ≤ 2

∫ ∞
2

1
x2 dx = 1.

We can ”blow-up” the orbit xn = Rn
ρ(x),n ∈ Z, to insert intervals In of length ln.

We want to arrange f (In) = In+1,n ∈ Z.

It is enough to specify f ′. Let In = [an,an + ln] and h(a, l,x) = 1− 1
l |2(x−a)− l|.

Set,

f ′(x) =

{
1, x /∈

∪
n∈Z In

1+ cnh(an, ln,x), x ∈
∪

n∈Z In

14
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where cn = 2
( ln+1

ln
−1

)
. Thus,∫
In

f ′(x) =
∫ (

1+ cnh(an, ln,x)
)
dx = ln + cn

ln
2
= ln+1

15
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3 Expanding Maps of the Circle
Let S1 be the unit circle again. We now consider a different class of dynamical systems on S1.

Definition 4. (Expanding.) A continuously differentiable map f : S1 → S1 is called expanding if
| f ′(x)|> 1 for all x ∈ S1.

Here, f cannnot be a homeomorphism; since f ′ : S1 → R is continuous and S1 is compact,
∃β > 1 such that infx∈S1 | f ′(x)| ≥ β > 1.

Definition 5. (Degree.) We can define the degree of f , deg( f ) to be the number of preimages
f−1(x), for any x ∈ S1 (independent of X).

Example 4. Let m ∈ N, m ≥ 2, define f : S1 → S1 as f (x) = mx(mod1).
If we regard S1 ⊆

{
z ∈ C; |z|= 1

}
, then f can be written as f (z) = zm.

Lemma 3. If f ,g : S1 → S1 are expanding maps, then deg( f ◦ g) = deg( f )deg(g). In particular,
deg( f n) =

(
deg( f )

)n.

Proof. Since for each y∈ f−1(x) we have deg(g) preimages g−1(y). Thus ( f ◦g)−1(x) has deg(g)deg( f )
elements.

Proposition 6. If f : S1 → S1 is an expanding map of degree deg( f )= d ≥ 2, the number of periodic
points of period n is (dn −1).

Proof. First assume n = 1, the number of fixed points of f is equal to the number of points on the
intersection of the diagonal with the graph of of f , that is d − 1. For arbitrary n ≥ 2, consider f n

with deg( f n) = dn. Note that the number of periodic points of period n is equal to the number of
fixed points of f n, dn −1.

Proposition 7. Let f : X → X be a continuous map of a compact metric space X. The following
are equivalent:

i) f is topologically transitive, that is, there exists x ∈ X such that
{

f n(x);n ≥ 0
}

is dense;

ii) if U,V ⊆ X are non-empty open sets, there exists N ∈ Z such that f−N(V )
∩

U ̸= ϕ .
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In the following proof one may think of continuous maps of the circle S1, sphere S2, or the torus
S1 ×S1.

Proof. i). =⇒ ii).
Let

{
f n(x)

}∞
n=1 be dense, choose f n(x) ∈U and m > n with f m(x) ∈V . Then,

f n(x) ∈U
∩

f−(m−n)V (̸= ϕ)

ii). =⇒ i).
Let y ⊆ X be a countable dense set Y =

{
yi
}∞

i=1. For, instance, when X = S1, one can take all
the points with rational coordinate. Let Ui, i = 1,2,3 be an open disk centered at yi, with diameter
1/i.

Now choose N1 ≥ 0 such that f−N1(U2)
∩

U1 ̸= ϕ . Then choose an open disk V1 of radius ≤ 1
2

such that,
V1 ⊆V 1 ⊆U1

∩
f−N1(U2)

Choose N2 such that f−N2(U3)
∩

V1 ̸= ϕ . Choose an open disk V2 of radius ≤ 1
4 such that,

V2 ⊆V 2 ⊆V1
∩

f−N2(U3)

By induction, V1 ⊇V2 ⊇V3 ⊇ ... with radius Vn ≤ 1
2n .

V n+1 ⊆Vn
∩

f−Nn+1(Un+2)

If we let
{

x
}
=

∩∞
n V n, then f Nn−1(x) ∈Un, for n ≥ 1.

Therefore
{

f n(x)
}∞

n=1 is dense in X .

Definition 6. We say that f : X → X, X compact metric space, is topologically mixing if for any
two non-empty sets U,V ⊆ X, there exists N ≥ 0 such that U

∩
f−n(V ) ̸= ϕ for all n ≥ N.

Example 5. For an irrational rotation Rα : S1 → S1, (α /∈Q), we have proved that Rα is transitive,
but one easily sees that it is not mixing.

Example 6. By the above proposition, any mixing transformation is automatically transitive.

Proposition 8. An expanding map f : S1 → S1 is mixing.
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Proof. By definition, there exists a β > 1 such that | f ′(x)| ≥ β for all x ∈ S1.
Assume deg( f ) = d ≥ 2. Let F : R→R be a lift of f . That is, F : R→R is a homeomorphism

such that π ◦F(x) = f ◦π(x) and F(x+1) = F(x)+d, for all x ∈ R.
One can see that |F ′(x)| ≥ β , ∀x ∈ R. Given open sets U in R, choose an interval (a,b)⊆U .

|F(b)−F(a)|=
∣∣F ′(c)(b−a)

∣∣≥ β (b−a)

for some c ∈ (a,b) by mean value property. That is, F increases the length by a factor of β .
Similarly, Fn increases the length by a factor of at least β n. For N sufficiently large so that β N > 1

b−a
we have that FN(a,b) has length at least 1.

Thus, πFN(a,b) = S1 and since π ◦F = f ◦π , we have that f N(u)⊇ f n(a,b) = S1. Given V,

U
∩

f−N(V ) ̸= ϕ

for any n ≥ N.

As a corollary of the above proof, any expanding map of the circle is topologically transitive.

Definition 7. (Choatic.) A continuous map f : X → X of a compact metric space is chaotic if:

a) f is topologically transitive; and

b) the periodic points are dense in X.

Example 7. Consider the linear expanding map f : S1 → S1, defined as f (x) =mx (mod 1), m≥ 2.
The periodic points take the form x = j

mn−1 , 0 ≤ j < mn −1. Since,

Fn(x) = mn( j
mn −1

)
= j

(mn −1
mn −1

)
+

j
mn −1

= x (mod Z)

These are dense in [0,1] Later, we shall show that any expanding map of the circle is chaotic.

Definition 8. A continuous map f : X → X on a compact metric space is said to have a sensitive
dependence on initial conditions if ∃δ > 0 such that ∀x ∈ X ,∀ε > 0,∃y ∈ X with, d

(
x,y

)
< ε and

for some n ≥ 0, d
(

f n(x), f n(y)
)
≥ δ .
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Proposition 9. Expanding maps from S1 → S1 have sensitive dependence on initial condition.

Proof. By the definition of expansion, there is β > 0 such that | f ′(x)| ≥ β for all x ∈ S1. On the
other hand, by the continuity of f ′ and the compactness of S1, there is α > 0 such that
| f ′(x)| ≤ α , for all x ∈ S1. Let x and y be two arbitrary distinct points on S1. It follows that as long
as the distance between the points f n(x) and f n(y), for n = 0,1,2,3, . . . remains small compared to
1/2, we have the length of the arc f n(x,y) is at atleast β n|x−y| and at most αn|x−y|. In particular,
there is n ∈ N such that the distance between f n(x) and f n(y) lies between 1/(2α) and 1/2. This
implies that we can define δ = 1/(2α).

Proposition 10. A chaotic map f : X → X is either a single periodic orbit or has sensitive depen-
dence on initial conditions.

Proof. Let A :=
{

x, f (x), f 2(x), ..., f n−1(x) = x
}

and B :=
{

y, f (y), f 2(y), ..., f m−1(y) = y
}

be two
distinct periodic points. Let

δ :=
1
8

min
(

d(
(

f i(x), f j(y)
)
;0 ≤ i ≤ n−1,0 ≤ j ≤ (m−1)

)
Given arbitrary z ∈ X , either, {

minξ∈A d
(
z,ξ

)
≥ 4δ , or

minη∈B d
(
x,η

)
≥ 4δ ,

Assume that minξ∈A d
(
z,ξ

)
≥ 4δ , (the other case is similar), and for 0 < ε < δ . Since periodic

points are dense, there is w = f N(w) ∈ B(z,ε).
Let V =

∩N
i=0 f−iB

(
f i(x),δ

)
̸= ϕ . By transitivity of f , ∃k ∈ N, such that f k(B(z,ε)

)∩
V ̸= ϕ .

That is ∃ξ ∈ B(z,ε) with f k(ξ ) ∈ V . Choose j such that k+N ≥ jN ≥ k. Since f jN(w) = w we
have,

d
(

f jN(w), f jN(ξ )
)
= d

(
w, f jN(ξ )

)
≥ d

(
z, f jN(ξ )

)
−d(w,z)

≥ d
(
z, f jN−k(x)

)
−d

(
f jN−k(x), f jN(ξ )

)
= d(w,z)

≥ 4δ −δ −δ = 2δ

but ξ ,w∈B(z,w) where d
(

f jN(w), f jN(ξ )
)
≥ 2δ . Therefore, either d

(
f jN(w), f jN(z)

)
or d

(
f jN(ξ ), f jN(z)

)
is bigger than δ .
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4 Symbolic dynamics

Coding expanding maps of the circle
Let f : S1 → S1 be an expanding map of degree 2, where S1 denotes the unit circle.
We know there exists a unique fixed point p ∈ S1. Let q ̸= p be the other preimage of p, i.e.
f (q) = p.

Recall the sets
Σd = {(x0,x1,x2, . . .) | ∀i ≥ 0,xi ∈ {1,2, . . . ,d}}.

The shift map σ : Σd → Σd is defined as σ(x0,x1,x2, . . .) = (x1,x2,x3, . . .).
Let S1 = ∆1

∪
∆2, where ∆1 and ∆2 are closed arcs with end points p and q.

Given x ∈ S1, we want to associate a w = (wi)
∞
i=0 ∈ Σ2 such that,

f n(x) ∈ ∆wn,∀n ≥ 0.

However, if f n(x) ∈ ∆1
∩

∆2 =
{

p,q
}

then there are ambiguities. In this case we can finish the
sequence wn,wn+1, ... = with either, 1,1,1,1, ... or 2,2,2,2, ... if f n(x) = p and either 2,1,1,1, ...
or 1,2,2,2, ... if f n(x) = q.

Example 8. Let T : S1 → S1 be defined as T (x) = 2x (mod 1). Then p = 0 and q = 1
2 , ∆1 = [0, 1

2 ],
∆2 = [1

2 ,1]. Here, the sequence w = (wn)
∞
n=0 associated to x corresponds to a dyadic expansion

x =
∞

∑
n=0

wn −1
2n+1 .

The coding is similar to the decimal expansion, with similar ambiguities.
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Proposition 11. If f : S1 → S1 is an expanding map of degree 2, then f is a factor of σ : Σ2 → Σ2.
That is, there exists a continuous surjective map π : Σ2 → S1 such that π ◦σ = f ◦π .

Proof. For w0,w1, ...,wn−1 ∈
{

1,2
}

, we define,

∆w0,...,wn−1 = ∆w0

∩
f−1∆w1

∩
f−2∆w2

∩
...

∩
f−(n−1)∆wn−1

Thus ∆w0 ⊇ ∆w0w1 ⊇ ∆w0w1w2 ⊇ ... ⊇ ... are a nested sequence of closed intervals for every
w = (wn)

∞
n=0. Also,

1 =
∫

∆w0w1...wn−1

∣∣( f n)′(x)
∣∣dx =

∣∣( f n)′(ζ )
∣∣ · length(∆w0w1...wn−1)

for some ζ ∈ ∆w0...wn−1 (by the intermediate value theorem). Moreover, as f : S1 → S1 is expanding,
we have |( f n)′(ζ )| ≥ β n for n ≥ 0.

Therefore, length(∆w0w1...wn−1)→ 0 as n → ∞ and
∩∞

n=1 ∆w0w1...wn−1 is a single point which we
denote by π(w).

π is surjective: Given x ∈ S1, define w = (wn)
∞
n=0 such that f n(x) ∈ ∆wn . Therefore π(w) = x.

π is continuous: If w is close to w′, then wn = w′
n for n = 0,1, ...,N for large N. This implies

that, ∣∣π(w)−π(w′)
∣∣≤ length(∆w0...wN−1)≤

1
β N

π is semi-conjugacy: This follows immediately from definition;

π(σw) =
∞∩

n=1

∆w1...wn = f
( ∞∩

n=0

∆w0...wn−1

)
= f (πw).

The map π : Σ2 → S1 cannot be a homeomorphism. That is because one of them is connected and
the other one is not.

Proposition 12. If w and w′ ∈Σ2 (w ̸=w′) satisfy π(w)= π(w′)= x then there exists n≥ 0 such that
f n(x) = p. (In particular there are at most countably many points where π fails to be one-to-one.

We now come to the main classification result for expanding maps f : S1 → S1 of degree 2.

Theorem 3. If f : S1 → S1 and g : S1 → S1 are two expanding maps of degree 2 then f and g are
topologically conjugate. That is there exists a homeomorphism π : S1 → S1 such that f ◦π = π ◦g.
In particular every expanding map of the circle (of degree 2) is conjugate to the linear one.
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Proof. Consider the conjugates π f : Σ2 → S1 and πg : Σ2 → S1 associated to the two expanding
maps. For x ∈ S1 let π(x) = πg

(
π−1

f (x)
)
.

- if π−1
f (x) is a single point then π(x) is well defined.

- if π−1
f (x) is two points, then the sequences end with infinitely many 1’s or 2’s. But, then

πg
(
π−1

f (x)
)

is again a single point.
Either way, πg

(
π−1

f (x)
)

is a bijection.
Also, it follows from definitions that π ◦ f = g◦π , π is continuous as,

π :
n−1∩
k=0

f−k∆wk →
n−1∩
k=0

g−k∆wk

Exercise 1. Show that in the above theorem, even if f : S1 → S1 and g : S1 → S1 are real analytic,
π need not even be C1. (Hint, show that a C1 conjugacy preserves the derivatives at fixed points.)

Remark 3. This theorem extends in an obvious way to expanding maps of degree d, where one
projects onto Σd .

Corollary 1. Let f : S1 → S1 be an expanding map of the unit circle. We have,

i) The periodic points of f are dense in S1,

ii) f : S1 → S1 is mixing.

Proof. i). This follows from the corresponding statement for σ : Σd → Σd . Since, if σ p(w) = w
then π(σ p(w)) = f p(π(w)) = π(w). That is, the image of a σ - periodic point is a f -periodic point.
As σ -periodic points are dense in Σd , and π is continuous and surjective, the result follows.

ii). We already proved that every expanding map of the circle is mixing (and hence is transitive).
Here is a different proof.

Let U,V ⊆ S1 be non-empty open sets. We can choose w0,w1, ...,wm−1 and w′
0,w

′
1, ...,w

′
m−1

such that,
∆w0w1....wm−1 ⊆U

and
∆w′

0w′
1,...w

′
m−1

⊆V

Since σ : Σd → Σd is mixing, we can choose n0 > 0 such that,

[w0,w1, ...,wm−1]
∩

σ−n[w′
0,w

′
1, ...,w

′
m−1] ̸= ϕ
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for all n ≥ n0. Hence, ∀n ≥ n0 there is a w ∈ Σd in this intersection. Let x = π(w). One can observe
that,

x = π(w) ∈ ∆w0...wm−1

∩
f−n∆w′

0...w
′
m−1

In particular f : S1 → S1 is chaotic and has sensitive dependence on initial conditions.

Coding horseshoe maps
Definition 9. (Linear Horseshoes.) Let ∆= [0,1]×[0,1]⊂R2 be a rectangle. Assume f : ∆→ f (∆)
is a diffeomorphism onto its image so that ∆

∩
f (∆) = ∆1

∪
∆2 such that

i) ∆0 and ∆1 are (horizontal) sub-rectangles of height λ ≤ 1
2 ,

ii) the restriction of f on the components of ∆∩ f−1(∆) are linear maps.

One can write ∆
∩

f−1(∆) = ∆1∪∆2 where ∆1 and ∆2 are vertical sub-rectangles of width
λ ≤ 1

2 . Define,
Λ :=

∩
n∈Z

f−n∆.

In other words, Λ is the set of points that can be iterated infinitely many times forward and backward
under the map f .

Proposition 13. f : Λ → Λ is topologically conjugate to σ : Σ → Σ where Σ =
{

1,2
}Z. That is, ∃

a homeomorphism π : Σ → Λ such that f ◦π = π ◦σ

Proof. Observe that ∆
∩

f (∆)
∩

f 2(∆) consists of four thin rectangles:

∆i, j = ∆i
∩

f (∆ j)

for i, j ∈
{

1,2
}

.
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Continuing inductively, for each n ≥ 1:

n−1∩
i=0

f i(∆) =
n−1∩
i=0

f i(∆1
∪

∆2)

is 2n thin and disjoint horizontal rectangles. For w0,w1, ...,wn−1 ∈
{

1,2
}

, let

∆w0w1,...,wn−1 :=
n−1∩
i=0

f i(∆wi)

be one of these rectangles.
Similarly for each n ≥ 1:

∩n−1
i=0 f−i(∆) is 2n thin and disjoint vertical rectangles. For every

finite sequence w0,w−1, ...,w−(n−1) ∈
{

1,2
}

, we let ∆w0w1,...,wn−1 =
∩n−1

i=0 f−i(∆w−i) be one of these
rectangles.

We define,

π(w) =
( ∞∩

n=0

∆w0w1...wn−1

)∩( ∞∩
n=0

∆w0w1...wn−1
)

with π : Σ → Λ and w = (wn)n∈Z. The image of a cylinder [w−(n−1), ...,w0,w1, ...,wn−1] is a square
∆w0...wn−1

∩
∆w0...w−(n−1) of size λ n−1 ×λ n−1. In particular,

1. π is continuous,

2. π is invertible (and a homeromorphism),

3. Λ is a cantor set: perfect, compact, totally disconnected,

4. π ◦σ = f ◦π .

By the above proposition, f : Λ → Λ inherits properties of σ : Σ → Σ. In particular, we obtain
the following corollary.

Corollary 2. Let f : ∆ → R2 be a linear horseshoe map. We have,

i) The periodic points of f : Λ → Λ are dense in Λ.

ii) The number of periodic points of f : Λ → Λ is 2n.

iii) f : Λ → Λ is topologically mixing.
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5 Topological Entropy
We have seen qualitative indications of chaos: transitivity, density of periodic orbits, sensitive
dependence on initial conditions. Now,

- We would like to quantify the complexity of f ,
- We would like an invariant for (topological) conjugacy between maps f : X → X and g : Y →Y

(We have seen simple invariants for conjugacy, e.g. the number of periodic points, pn, n ≥ 1).

Let d(x,y) be a metric on a compact set X and f : X → X be continuous. For each n ≥ 1, we can
define new metrics,

dn(x,y) = max
0≤i≤n−1

d
(

f i(x), f i(y)
)

Let
B(x,n,ε) =

{
y;dn(x,y)< ε

}
.

A finite set E ⊆ X is an (n,ε)-dense set if X ⊆
∪

x∈E B(x,ε,n). This is also called (n,ε)-spanning
set. Let S(n,ε) be the minimum cardinality of any (n,ε)-dense set. (In other words, this is the list
of information needed to keep track of all orbits up to ε-error.) We can consider the exponential
growth rate,

h( f ,ε) = lim
n→∞

1
n

logS(n,ε).

By the definition, for ε < ε ′ we have

h( f ,ε)≥ h( f ,ε ′).

We define the topological entropy,

h( f ) = lim
ε→0

h( f ,ε)≥ 0

Let X be a compact topological space. Two metrics d and d′ on X are equivalent, if the con-
vergence with respect to any of these metrics implies the convergence with respect to the other
one.

Lemma 4. Let X be a compact metric space and f : X → X be a continuous map. The definition
of entropy given above is independent of the (equivalence class of the) metric.

Proof. By the compactness of X , the identity map I : (X ,d)→ (X ,d′) is a (uniformly) continuous
homeomorphism. This implies that, given ε > 0, ∃δ = δ (ε): d(x,y) < δ =⇒ d′(x,y) < ε . Re-
placing d and d′ by dn and d′

n we can deduce that dn(x,y)< δ =⇒ d′
n(x,y)< ε . In particular, any

(dn,δ )-dense set is also (d′
n,ε)-dense set. Hence,

Sd(n,δ )≥ Sd′(n,ε) , n ≥ 1.

Thus, hd( f ,δ )≥ hd′( f ,ε),

=⇒ hd( f ) = lim
δ→0

hd( f ,δ )≥ lim
ε→0

hd′( f ,ε) = hd′( f )

=⇒ hd( f )≥ hd′( f )

By the symmetry of the above argument we also have hd( f )≤ hd′( f ).
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Corollary 3. Entropy is a conjugacy invariant.

Proof. Let π : X → Y be a conjugacy between f : X → X and g : Y → Y , i.e. π ◦g = f ◦π . If dX is
a metric on X , then define dY on Y by,

dY (y,y′) = dX
(
π−1(y),π−1(y′)

)
Thus π becomes an isometry in these metrics. Therefore hd( f ) = hd′(g) =⇒ h( f ) = h(g).

Example 9. Consider the expanding map f : S1 → S1, f (x) = dx (mod 1), d ≥ 2. Observe that
for any n ≥ 1, a dn-ball B(x,n,ε), has diameter 2ε

dn . Thus we can cover S1 by
(dn

2ε
)
+1 such balls.

Therefore

S(n,ε)≤
(dn

2ε
)
+1, and S(n,ε)≥

(dn

2ε
)
.

In particular,

h(T ) = lim
ε→0

lim
n→∞

1
n

log(S(n,ε)) = lim
ε→0

(logd) = logd.

Remark 4. Any expanding map f : S1 → S1 of degree d ≥ 2 is topologically conjugate to a linear
of degree d, and hence has the same entropy logd.

On the other hand,

Proposition 14. If f : X → X is an isometry, then h( f ) = 0.

Proof. By definition dn(x,y) = d(x,y), ∀n ≥ 1, in particular S(n,ε) is independent of n. Thus,
h( f ) = 0.

Example 10. Consider a rotation f : S1 → S1 defined as f (x) = x+α(mod1). This is an isometry
and so h( f ) = 0.

Remark 5. By the Denjoy theorem; certain homeomorphisms are conjugate to rotations, and have
zero entropy. In fact, all homeomorphisms of S1 have zero entropy.

The above definition is suitable for finding upper bounds for the topological entropy. That is
because an example of (n,ε)-dense set provides an upper bound for S(n,ε). There is an alternative
definition of the topological entropy which is more suitable for proving lower bounds. We present
this below.

Let N(n,ε) be the maximal number of points in X whose pairwise dn distances are at least ε > 0
A set of such points is called an (n,ε)-separated set.

Lemma 5. We have,

i) N(n,ε)≥ S(n,ε);

ii) S(n,ε)≥ N(n,2ε).
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Proof. i). A (n,ε)-separated set is a (n,ε)-spanning set, since otherwise we could enlarge the
separating set by adding a point not already covering. Thus N(n,ε)≥ S(n,ε).

ii). Let A be an arbitrary (n,2ε)-separated set, and B be an arbitrary (n,ε)-dense set. We define
the map ϕ : A → B as follows. By the definition of (n,ε)-dense set, the set ∪x∈BB(x,n,ε) covers X .
Then, for any x ∈ A, there is ϕ(x) ∈ B such that dn(x,ϕ(x))< ε .

The map ϕ is one-to-one. That is, because, if ϕ(x) = ϕ(y), then

dn(x,y)≤ dn(x,ϕ(x))+dn(ϕ(y),y)< ε + ε = 2ε.

However, as A is (n,2ε)-separated, we must have x = y.
The injectivity of ϕ implies that the number of elements in A is at least the number of elements

in B. Since A and B where arbitrary sets, we must have S(n,ε)≥ N(n,2ε). This finishes the proof
of the proposition by taking limits as ε → 0.

Proposition 15.

h( f ) = lim
ε→0

lim
n→∞

1
n

logN(n,ε)

Proof. By part i) of the above lemma,

lim
1
n

N(n,ε)≥ lim
n→∞

1
n

logS(n,ε) = h( f ,ε)

By part ii) of the above lemma,

lim
n→∞

1
n

logN(n,2ε)≤ lim
n→∞

1
n

logS(n,ε) = h( f ,ε)

Letting ε → 0, gives the result.

Proposition 16. Let f : X → X and g : Y → Y be continuous maps and π : X → Y be a surjective
semi-conjugacy (i.e. gπ = π f ). Then h(g)≤ h( f ).

Proof. Let dX and dY denote the metrics on X and Y respectively. For ε > 0, choose δ > 0 such that
dX(x1,x2)< δ =⇒ dY(π(x1),π(x2)

)
< ε . Thus a dX

n δ -ball B(x,n,δ ) has an image π
(
B(x,n,δ )

)
⊆

B
(
π(x),n,ε

)
. In particular,

SdX (x,δ )≥ SdY (n,ε)

The result follows.

This leads to another proof of the following,

Corollary 4. If f : X → X and g : Y → Y are (topologically) conjugate, then h( f ) = h(g).
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Review Problems
1. Is F(x) = x+ 1

2sin(x) the lift of a circle homeomorphism?

2. F(x) = x+ 1
4xsin(2πx) the lift of a circle homeomorphism?

3. Let F(x) = x+ c+ bsin(2πx). Show that if |2πb| < 1 then this is an orientation preserving
homeomorphism. If |c|< |b| show that ρ( f ) = 0 for the corresponding map f : S1 → S1.

4. Let f and g be orientation preserving homeomorphisms of S1. Prove that ρ( f ) = ρ(g−1 f g),
wehere ρ denotes the rotation number.

5. Let X be a compact metric space with more than one point and f : X → X be an isometry.
Show that f cannot be mixing.

6. Prove that a homeomorphism of R can have no periodic points with prime period greater than
2

7. Show that w : [0,1]→ R defined as, {
0, x = 0
xsin(1

x ), x ̸= 0

is not a function of bounded variation

8. Show that w : [0,1]→ R defined as, {
0, x = 0
x2sin(1

x ), x ̸= 0

is a function of bounded variation

9. Let Qc(x) = x2 + c. Prove that if c < 1
4 there is a unique µ > 1 such that Qc is topologically

conjugate to fµ(x) = µx(1− x) via a map of the form h(x) = αx+β .

10. Let f : X → X be a continuous map of a compact metric space. A point p ∈ X is called
topologically recurrent if for any open set V , p ∈ V , there exists an n > 0 with f n(p) ∈ V .
Clearly every periodic point is recurrent.
i). Give an example of a f : X → X with a non-periodic recurrent point.
ii). Give an example of a f : X → X with a non-periodic recurrent point p whose orbit is not
dense in X .

11. Show that the horseshow map (Λ, f ) is topologically mixing.

12. Prove that the topological entropy of any C1 (continuously differentiable) map of S1 × S1

(torus) is finite.
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13. Let f : S1 → S1 be a homeomorphism of cricle. Show that ρ( f m) = mρ( f ) where ρ( f )
denotes the rotation number of f .

14. Consider the linear map A : Rn → Rn defined as A(x) = 2x, observe that A induces a map
f : T n → T n, where T n = S1 ×S1 × ...×S1 (n times) is the n-dimensional torus.
a). Prove that the periodic points of f are dense in T n.
b). Prove that eventual fixed points, i.e. the points x ∈ T n with f

(
f n(x)

)
= f n(x), for some

n, are dense in T n.
c). Prove that f : T n → T n is chaotic.

15. Let X be a compact metric space with at least three distinct points. Let f : X → X be an
isomtery.
a). Show that f is not mixing.

b). What if X has only two points?

16. Let f : S1 ×S1 ×S1 → S1 ×S1 ×S1 be defined as,

f (x,y,z) = (x,x+ y,y+ z)(mod1)

Find htop( f ).

17. Let D =
{

z ∈ C; |z| ≤ 1
}

and define fλ : D → D, for λ ∈ [0,1], as fλ (z) = λ z2.
a). Show that htop( fλ )≥ log2, when λ = 1.
b). Show that htop( fλ ) = 0, when 0 ≤ λ < 1.
Therefore, topological entropy does not depend continuously on the map.
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