
Exam: Dynamical Systems 2015/16

2 hours
Answer 3 out of 4 questions.

Question 1 Consider the doubling map E2 : [0, 1[→ [0, 1[ given by x 7→ 2x mod 1.

1. A point x is called recurrent if there exists a sequence nk with limk→∞Φnk
(x) = x. Does there

exists a point which is not recurrent. [4marks]

2. Show that the Lebesgue measure m restricted to [0, 1[ is invariant w.r.t. E2. [4marks]

3. Compute E−n2 ([ j
2k
, j+1

2k
[).[4marks]

4. Let Φ be a map and µ be a measure. We say that µ is mixing w.r.t. Φ iff for any interval A,B

of the form A = [ j
2k
, j+1

2k
[ and B = [ j

′

2k′
, j
′+1

2k′
[ holds that limn→∞ µ

(
Φ−1n (A) ∩B

)
= µ(A)µ(B).

Show that m is mixing w.r.t. E2. [4marks]

5. Show that

lim
n→∞

1

n

n∑
k=0

sin(2nπx) = 0. (1)

[4marks]

Answer

1. Yes, for example any point x = 2−m.

2. Let us compute (E2)#m, that is we have to compute

(E2)#m(A) = m (x ∈ [0, 1[: 2x mod 1 ∈ A) (2)

= m (x ∈ [0, 1/2[: 2x ∈ A) +m (x ∈ [1/2, 1[: 2x− 1 ∈ A) (3)

Let us consider the two pieces separately. Indeed, that map f : x 7→ 2x as map from [0, 1/2[→
[0, 1[ is differentiable and

m (x ∈ [0, 1/2[: 2x ∈ A) = f#m(A) (4)

Note that Df(x) = 2 and f1(y) = y/2. Hence by definition of the push-forward we get that

f#m(A) =

∫
A

1

|det(Df(f−1(y)))|
dy =

1

2
m(A). (5)

[Bookwork]

3. Using the definition

E−n2 ([
j

2k
,
j + 1

2k
[) (6)

=

{
x ∈ [0, 1[:

j

2k
≤ 2nx <

j + 1

2k
mod 1

}
(7)

=

{
x ∈ [0, 1[: ∃i ∈ N0 with

j

2k
≤ 2nx+ i

j + 1

2k
mod 1

}
(8)

=

{
x ∈ [0, 1[: ∃i = 0, . . . , 2n − 1 with

j

2k+n
+

i

2n
≤ x < j + 1

2k+n
+

i

2n
mod 1

}
(9)

=

2n−1⋃
i=1

[
j

2k+n
+

i

2n
,
j + 1

2k+n
+

i

2n
[ (10)

where the union is disjoint. [Unseen]
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4. Now we have to compute the intersection

E−n2 (A) ∩B =

2n−1⋃
i=1

[
j

2k+n
+

i

2n
,
j + 1

2k+n
+

i

2n
[∩[

j′

2k′
,
j′ + 1

2k′
[ (11)

If n is so large that k+n ≥ k′ then the intervals forming E−n2 (A) either contained in B or disjoint
to B. Each of the intervals in E−n2 (A) has length 2−(k+n) and the gap between the intervals is

of the size 2−n − 2−(n+k). This means that 2−k′

2−n ± 1 can intersect. As each have length 2−(k+n)

one gets that the length of E−n2 (A) ∩ B is 2−k
′−k ± 2−(k+n) which tends for n → ∞ to 2−k

′−k

which is just m(A)m(B). [Unseen]

5. As the dynamics is mixing it is also ergodic. Consider the testfunction ϕ(x) := sin(2πx) and

the convergence follows from Birkhoff’s ergodic theorem and the limit is ϕ(x) =
∫ 1

0
ϕ(y)dy =∫ 1

0
sin(2πx)dx = − 1

2π cos(2πx)
∣∣1
x=0

= 0. [Unseen]

Question 2 1. Show that if a measure µ is invariant with respect to Φ then µ is invariant w.r.t
Φ2.

Show that the converse is not true. [3 marks]

2. Let V = C and consider the cone

C =

{(
x1
x2

)
: xj > 0

}
(12)

Show that C is a proper convex cone. [3 marks]

3. Compute αC . [3 marks]

4. Show that for v, w ∈ C

ΘC(v, w) = −max

{
ln

(
w1v2
v1w2

)
, ln

(
v1w2

w1v2

)}
(13)

[3 marks]

5. Identify all linear maps T : V → V such that T preserves the cone C.[4marks]

6. Show that the diameter of T (C) is

min

{
ai,jak,l
ak,jai,l

: i, j, k, l ∈ {0, 2}
}

(14)

Hint: Prove that D ≥ 1. [4marks]

Answer

1. The invariance follows from the definition. Indeed,

µ(Φ2(A)) = µ({x ∈ Ω : Φ2(x) ∈ A}) = µ({x ∈ Ω : Φ(Φ(x)) ∈ A}) (15)

= µ({x ∈ Ω : Φ(x) ∈ Φ−1(A)}) = Φ#µ
(
Φ−1(A)

)
(16)

then by invariance of µ we get

= µ
(
Φ−1(A)

)
= Φ#µ(A) = µ(A). (17)

2



Consider the rotation Φ = R1/2. Then we have Φ2 = R1 which is the identity map. So any
measure is invariant w.r.t. Φ2 but not all are invariant w.r.t. Φ. For example, the measure δ1/2
is not invariant,(

R1/2

)
#
δ1/2(A) = δ1/2(R−11/2(A)) =

{
1 1

2 ∈ R
−1
1/2(A)

0 otherwise
(18)

=

{
1 R1/2

(
1
2

)
∈ A

0 otherwise
=

{
1 1 ∈ A
0 otherwise

= δ1(A) (19)

[Unseen]

2. Let x(i) ∈ C and α, β > 0 then as x
(i)
j > 0 and hence αx

(1)
j + βx

(2)
j > 0. Let w ∈ R2 and v ∈ C,

then w ∈ Cr iff wj + αvj > 0, that is the case iff wj ≥ 0. Hence

C
r

=

{(
x1
x2

)
: xj ≥ 0

}
(20)

and
C
r ∩ −Cr = {0}. (21)

[Modification of exercise]

3.

{t ≥ 0 : w − tv ∈ C} = {t ≥ 0 : wj − tvj > 0} =

{
t ≥ 0 : t <

w1

v1
and t <

w2

v2

}
(22)

and hence

α(v, w) = max

{
w1

v1
,
w2

v2

}
(23)

[Modification of exercise]

4. From this follows that

ΘC(v, w) = − ln max

{
w1

v1
,
w2

v2

}
max

{
v1
w1
,
v2
w2

}
= − ln max

{
w1v2
v1w2

,
w2v1
v2w1

, 1

}
(24)

Since either w1v2
v1w2

≤ 1 or w2v1
v2w1

≤ 1, we get that

ΘC(v, w) = − ln max

{
w1v2
v1w2

,
w2v1
v2w1

}
(25)

[Book work

5. Cone preserving means that for all v1, v2 > 0 holds that

a1,1v1 + a1,2v2 > 0 (26)

a2,1v1 + a2,2v2 > 0. (27)

Consider now a sequence βn ↓ 0, then for v1 = 1 and v2 = βn this gives in the limit n→∞

a1,1 > 0 (28)

a2,1 > 0. (29)

Analogously, one obtains that

a1,2 > 0 (30)

a2,2 > 0. (31)

These conditions are also obviously also sufficient. [Unseen]
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6. Call

D := min

{
ai,jak,l
ak,jai,l

: i, j, k, l ∈ {0, 2}
}

(32)

T (w)1T (v)2
T (v)1T (w)2

=
(a1,1w1 + a1,2w2)(a2,1v1 + a2,2v2)

(a1,1v1 + a1,2v2)(a2,1w1 + a2,2w2)
(33)

=
a1,1a2,1v1w1 + a1,1a2,2v2w1 + a1,2a2,1v1w2 + a1,2a2,2v2w2

a1,1a2,1w1v1 + a1,1a2,2w2v1 + a1,2a2,1w1v2 + a1,2a2,2w2v2
(34)

≥ a1,1a2,1v1w1 +Da2,1a1,2v2w1 +Da2,2a1,1v1w2 + a1,2a2,2v2w2

a1,1a2,1w1v1 + a1,1a2,2w2v1 + a1,2a2,1w1v2 + a1,2a2,2w2v2
(35)

Interchanging i and k one sees that in the minima in Equation 13 which each number also always
its inverse appears. Hence D < 1. So we can estimate

T (w)1T (v)2
T (v)1T (w)2

(36)

≥ Da1,1a2,1v1w1 +Da2,1a1,2v2w1 +Da2,2a1,1v1w2 +Da1,2a2,2v2w2

a1,1a2,1w1v1 + a1,1a2,2w2v1 + a1,2a2,1w1v2 + a1,2a2,2w2v2
(37)

= D (38)

and analogously also

T (v)1T (w)2
T (w)1T (v)2

≥ D (39)

Hence ΘC(T (v), T (w)) ≤ ln(D). If we choose v = (1, tn) and w = (1, tn) with tn ↓ 0, then we
see that

T (w)1T (v)2
T (v)1T (w)2

→ a1,2a2,1
a1,1a2,2

(40)

Looking at the analogous cases we get that the diameter has to be also ≤ D. [Unseen]

Question 3 Let α be an irrational number and define

f : [0, 1)× [0, 1)→ [0, 1)× [0, 1) as f(x, y) := (x+ α, x+ y)(mod 1)

be a homeomorphism (of the two dimensional torus).

1. Define, in terms of orbits, what it means for f to be topologically transitive. [2 marks]

2. Prove that for all non-empty open sets U and V in [0, 1)× [0, 1) there is a positive integer n with
f−n(U) ∩ V 6= ∅. (hint: look at first few iterates of a small square in the domain of the map).
[7 marks]

3. Prove, using the above statement or directly, that f is topologically transitive. [6 marks]

4. When is a continuous map g : X → X, for a compact metric space X, is chaotic? Is the above
map f chaotic? [5 marks]

Answer

Students have not encountered this map in the lectures.

1. The map f is called topologically transitive if it has a dense orbit; i.e. there is a point x ∈ [0, 1)2 Lectures
with {f j(x)}j∈Z dense in [0, 1)2. [2pts, definition from lectures]
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2. Given non-empty open sets U and V , there are points (a, b) and (c, d) as well as a small constant Unseen, a
bit difficult
to make it
precise, please
grade easily

ε with

V ⊇ (a− ε, a+ ε)× (b− ε, b+ ε), and

U ⊇ (c− ε, c+ ε)× (d− ε, d+ ε).

Let π2 denote the projection onto the second coordinate.

π2(V ) is connected and has length 2ε.

f(a− ε, b− ε) = (a− ε+ α, a+ b− 2ε) and f(a+ ε, b+ ε) = (a+ ε+ α, a+ b+ 2ε) implies that
π2(f(V )) has length at least 2ε+ 2ε.

Similarly, f2(a − ε, b − ε) = (a − ε + 2α, a + b − 2ε + a − ε + α) and f2(a + ε, b + ε) = (a +
ε+ 2α, a+ b+ 2ε+ a+ ε+ α), implies that π2(f2(V )) has length at least 2ε+ 2 · 2ε [4pts, for
understanding the map in the second coordinate] .

Repeating this calculations, one concludes that π2(fn(V )) has length at least 2ε+n · 2ε. Choose
N > 0 such that 2ε+N ·2ε > 3. That is, image of fk(V ), for k > N , covers the second coordinate
at least 3 times. Using the density of orbits in the first coordinate, it follows that fk(V )∩U 6= ∅,
for some k ≥ N . Equivalently, f−k(U) ∩ V 6= ∅[3pts].

3. Let Y = {yi}∞i=1 be a countable dense set in [0, 1)2. Let Ui, i = 1, 2, . . . , be an open disk centered Similar to lec-
turesat yi, with diameter 1/i.

Now choose N1 ≥ 0 such that f−N1(U2) ∩ U1 6= ∅. Then choose an open disk V1 of radius less
than 1/2 such that

V1 ⊆ V1 ⊆ U1 ∩ f−N1(U2).

Choose N2 ≥ 0 such that f−N2(U3) ∩ V1 6= ∅. Then choose an open disk V2 of radius less than
1/4 such that

V2 ⊆ V2 ⊆ V1 ∩ f−N2(U3)[2pts].

Repeating this process inductively, we obtain open sets, V1 ⊇ V2 ⊇ V3, . . . , with radius Vn ≤ 1
2n

and
Vn+1 ⊆ Vn ∩ f−Nn+1(Un+2)[2pts].

If we let {x} = ∩∞n=1Vn, then fNn−1(x) ∈ Un, for n ≥ 1. Therefore, {fn(x)}∞n=1 is dense2pts.

Question 4 1. Let f be a continues map of a compact metric space (X, d) to itself. Define what
it means for a finite set E ⊆ X to be (n, ε)-dense. What does it mean for a set F ⊆ X to be
(n, ε)-separated. [5 marks]

2. Define the topological entropy of the map f in terms of the above sets (both of them). [5 marks]

3. Find the topological entropy of the map f : [0, 1)2 → [0, 1)2 defined as

f(x, y) = (2x, 3y)( mod 1).

[10 marks]

Answers

1. For every n ≥ 0 define the new metric dn on X as follows. Lectures

dn(x, y) := max{d(f j(x), f j(y)) | 0 ≤ j ≤ n− 1}
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[1pts] Let B(x, n, ε) := {y ∈ X | dn(x, y) < ε}. A finite set E ⊆ X is (n, ε)-dense if

X ⊆ ∪x∈EB(x, n, ε)[2pts]

A set F ⊆ X is called (n, ε)-separated if the dn distance between any two distinct points in F is
greater than ε [2pts].

2. Let S(n, ε) be the minimum of cardinality of all (n, ε)-dense sets in X[1pt]. Define Lectures

h(f, ε) := lim sup
n→∞

1

n
logS(n, ε)[1pt].

The topological entropy of f is defined as h(f) := limε→0 h(f, ε)[1pt].

Let N(n, ε) denote the maximal cardinality of all (n, ε)-separating sets[1pt]. Then,

h(f) := lim
ε→0

lim sup
n→∞

1

n
logN(n, ε)[1pts].

3. let d denote the maximum metric on S1 × S1 i.e. d((a, b), (c, d)) = max{d′(a, c), d′(b, d)} where Unseen, but
not too far
from lectures

d′ is the angular metric on S1.

Let ε be an arbitrary number less than 1/4.

For any n ≥ 1, define the set En as follows:

En :=

{
(
i

2n
ε

2
,
j

3n
ε

2
) | 0 ≤ i ≤ b2 · 2

n

ε
c+ 1, 0 ≤ j ≤ b2 · 3

n

ε
c+ 1

}
Now, [0, 1)× [0, 1) ⊆ ∪x∈En

B(x, n, ε), thus En is a (n, ε)-spanning set [3pts, for any optimum
(n, ε)-spanning set]. Therefore,

h(f, ε) ≤ lim sup
n→∞

1

n
log 4 · 6n

ε2
= log 6.

Hence, h(f) ≤ limε→0 h(f, ε) = log 6 [2pts].

On the other hand, the set

Fn :=

{
(
i

2n
ε,
j

3n
ε) | 0 ≤ i ≤ b2

n

ε
c, 0 ≤ j ≤ b3

n

ε
c
}

forms an (n, ε)-separating set [3pts, for any optimum (n, ε)-separating set]. Therefore,

h(f, ε) ≥ lim sup
n→∞

1

n
log

6n

ε2
= log 6.

Hence, h(f) ≥ limε→0 h(f, ε) = log 6 [2pts].

Putting these two inequalities together, we have h(f) = log 6.
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