Exam: Dynamical Systems 2015/16

2 hours
Answer 3 out of 4 questions.
Question 1 Consider the doubling map $E_{2}:[0,1[\rightarrow[0,1[$ given by $x \mapsto 2 x \bmod 1$.

1. A point x is called recurrent if there exists a sequence n_{k} with $\lim _{k \rightarrow \infty} \Phi_{n_{k}}(x)=x$. Does there exists a point which is not recurrent. [4marks]
2. Show that the Lebesgue measure m restricted to $\left[0,1\left[\right.\right.$ is invariant w.r.t. E_{2}. [4marks]
3. Compute $E_{2}^{-n}\left(\left[\frac{j}{2^{k}}, \frac{j+1}{2^{k}}[) \cdot[4\right.\right.$ marks]
4. Let Φ be a map and μ be a measure. We say that μ is mixing w.r.t. Φ iff for any interval A, B of the form $A=\left[\frac{j}{2^{k}}, \frac{j+1}{2^{k}}\left[\right.\right.$ and $B=\left[\frac{j^{\prime}}{2^{k}}, \frac{j^{\prime}+1}{2^{k^{\prime}}}\left[\right.\right.$ holds that $\lim _{n \rightarrow \infty} \mu\left(\Phi_{n}^{-1}(A) \cap B\right)=\mu(A) \mu(B)$.
Show that m is mixing w.r.t. E_{2}. [4marks]
5. Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n} \sin \left(2^{n} \pi x\right)=0 . \tag{1}
\end{equation*}
$$

[4marks]

Answer

1. Yes, for example any point $x=2^{-m}$.
2. Let us compute $\left(E_{2}\right)_{\#} m$, that is we have to compute

$$
\begin{align*}
\left(E_{2}\right) \nRightarrow m(A) & =m(x \in[0,1[: 2 x \bmod 1 \in A) \tag{2}\\
& =m(x \in[0,1 / 2[: 2 x \in A)+m(x \in[1 / 2,1[: 2 x-1 \in A) \tag{3}
\end{align*}
$$

Let us consider the two pieces separately. Indeed, that map $f: x \mapsto 2 x$ as map from $[0,1 / 2[\rightarrow$ [0,1 [is differentiable and

$$
\begin{equation*}
m\left(x \in \left[0,1 / 2[: 2 x \in A)=f_{\#} m(A)\right.\right. \tag{4}
\end{equation*}
$$

Note that $D f(x)=2$ and $f^{1}(y)=y / 2$. Hence by definition of the push-forward we get that

$$
\begin{equation*}
f_{\#} m(A)=\int_{A} \frac{1}{\left|\operatorname{det}\left(D f\left(f^{-1}(y)\right)\right)\right|} d y=\frac{1}{2} m(A) . \tag{5}
\end{equation*}
$$

[Bookwork]

3. Using the definition

$$
\begin{align*}
& E_{2}^{-n}\left(\left[\frac{j}{2^{k}}, \frac{j+1}{2^{k}}[)\right.\right. \tag{6}\\
& =\left\{x \in \left[0,1\left[: \frac{j}{2^{k}} \leq 2^{n} x<\frac{j+1}{2^{k}} \bmod 1\right\}\right.\right. \tag{7}\\
& =\left\{x \in \left[0,1\left[: \exists i \in \mathbb{N}_{0} \text { with } \frac{j}{2^{k}} \leq 2^{n} x+i \frac{j+1}{2^{k}} \bmod 1\right\}\right.\right. \tag{8}\\
& =\left\{x \in \left[0,1\left[: \exists i=0, \ldots, 2^{n}-1 \text { with } \frac{j}{2^{k+n}}+\frac{i}{2^{n}} \leq x<\frac{j+1}{2^{k+n}}+\frac{i}{2^{n}} \bmod 1\right\}\right.\right. \tag{9}\\
& =\bigcup_{i=1}^{2^{n}-1}\left[\frac{j}{2^{k+n}}+\frac{i}{2^{n}}, \frac{j+1}{2^{k+n}}+\frac{i}{2^{n}}[\right. \tag{10}
\end{align*}
$$

where the union is disjoint. [Unseen]
4. Now we have to compute the intersection

$$
\begin{equation*}
E_{2}^{-n}(A) \cap B=\bigcup_{i=1}^{2^{n}-1}\left[\frac{j}{2^{k+n}}+\frac{i}{2^{n}}, \frac{j+1}{2^{k+n}}+\frac{i}{2^{n}}\left[\cap \left[\frac{j^{\prime}}{2^{k^{\prime}}}, \frac{j^{\prime}+1}{2^{k^{\prime}}}[\right.\right.\right. \tag{11}
\end{equation*}
$$

If n is so large that $k+n \geq k^{\prime}$ then the intervals forming $E_{2}^{-n}(A)$ either contained in B or disjoint to B. Each of the intervals in $E_{2}^{-n}(A)$ has length $2^{-(k+n)}$ and the gap between the intervals is of the size $2^{-n}-2^{-(n+k)}$. This means that $\frac{2^{-k^{\prime}}}{2^{-n}} \pm 1$ can intersect. As each have length $2^{-(k+n)}$ one gets that the length of $E_{2}^{-n}(A) \cap B$ is $2^{-k^{\prime}-k} \pm 2^{-(k+n)}$ which tends for $n \rightarrow \infty$ to $2^{-k^{\prime}-k}$ which is just $m(A) m(B)$. [Unseen]
5. As the dynamics is mixing it is also ergodic. Consider the testfunction $\varphi(x):=\sin (2 \pi x)$ and the convergence follows from Birkhoff's ergodic theorem and the limit is $\bar{\varphi}(x)=\int_{0}^{1} \varphi(y) d y=$ $\int_{0}^{1} \sin (2 \pi x) d x=-\left.\frac{1}{2 \pi} \cos (2 \pi x)\right|_{x=0} ^{1}=0$. [Unseen]

Question 2 1. Show that if a measure μ is invariant with respect to Φ then μ is invariant w.r.t Φ^{2} 。
Show that the converse is not true. [3 marks]
2. Let $V=\mathbb{C}$ and consider the cone

$$
\begin{equation*}
C=\left\{\binom{x_{1}}{x_{2}}: x_{j}>0\right\} \tag{12}
\end{equation*}
$$

Show that C is a proper convex cone. [3 marks]
3. Compute α_{C}. [3 marks]
4. Show that for $v, w \in C$

$$
\begin{equation*}
\Theta_{C}(v, w)=-\max \left\{\ln \left(\frac{w_{1} v_{2}}{v_{1} w_{2}}\right), \ln \left(\frac{v_{1} w_{2}}{w_{1} v_{2}}\right)\right\} \tag{13}
\end{equation*}
$$

[3 marks]
5. Identify all linear maps $T: V \rightarrow V$ such that T preserves the cone C.[4marks]
6. Show that the diameter of $T(C)$ is

$$
\begin{equation*}
\min \left\{\frac{a_{i, j} a_{k, l}}{a_{k, j} a_{i, l}}: i, j, k, l \in\{0,2\}\right\} \tag{14}
\end{equation*}
$$

Hint: Prove that $D \geq 1$. [4marks]

Answer

1. The invariance follows from the definition. Indeed,

$$
\begin{align*}
\mu\left(\Phi_{2}(A)\right) & =\mu\left(\left\{x \in \Omega: \Phi_{2}(x) \in A\right\}\right)=\mu(\{x \in \Omega: \Phi(\Phi(x)) \in A\}) \tag{15}\\
& =\mu\left(\left\{x \in \Omega: \Phi(x) \in \Phi^{-1}(A)\right\}\right)=\Phi_{\#} \mu\left(\Phi^{-1}(A)\right) \tag{16}
\end{align*}
$$

then by invariance of μ we get

$$
\begin{equation*}
=\mu\left(\Phi^{-1}(A)\right)=\Phi_{\#} \mu(A)=\mu(A) \tag{17}
\end{equation*}
$$

Consider the rotation $\Phi=R_{1 / 2}$. Then we have $\Phi^{2}=R_{1}$ which is the identity map. So any measure is invariant w.r.t. Φ^{2} but not all are invariant w.r.t. Φ. For example, the measure $\delta_{1 / 2}$ is not invariant,

$$
\begin{align*}
\left(R_{1 / 2}\right)_{\#} \delta_{1 / 2}(A) & =\delta_{1 / 2}\left(R_{1 / 2}^{-1}(A)\right)= \begin{cases}1 & \frac{1}{2} \in R_{1 / 2}^{-1}(A) \\
0 & \text { otherwise }\end{cases} \tag{18}\\
& =\left\{\begin{array}{ll}
1 & R_{1 / 2}\left(\frac{1}{2}\right) \in A \\
0 & \text { otherwise }
\end{array}=\left\{\begin{array}{ll}
1 & 1 \in A \\
0 & \text { otherwise }
\end{array}=\delta_{1}(A)\right.\right. \tag{19}
\end{align*}
$$

[Unseen]

2. Let $x^{(i)} \in C$ and $\alpha, \beta>0$ then as $x_{j}^{(i)}>0$ and hence $\alpha x_{j}^{(1)}+\beta x_{j}^{(2)}>0$. Let $w \in \mathbb{R}^{2}$ and $v \in C$, then $w \in \bar{C}^{r}$ iff $w_{j}+\alpha v_{j}>0$, that is the case iff $w_{j} \geq 0$. Hence

$$
\begin{equation*}
\bar{C}^{r}=\left\{\binom{x_{1}}{x_{2}}: x_{j} \geq 0\right\} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{C}^{r} \cap-\bar{C}^{r}=\{0\} \tag{21}
\end{equation*}
$$

[Modification of exercise]
3.

$$
\begin{equation*}
\{t \geq 0: w-t v \in C\}=\left\{t \geq 0: w_{j}-t v_{j}>0\right\}=\left\{t \geq 0: t<\frac{w_{1}}{v_{1}} \text { and } t<\frac{w_{2}}{v_{2}}\right\} \tag{22}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\alpha(v, w)=\max \left\{\frac{w_{1}}{v_{1}}, \frac{w_{2}}{v_{2}}\right\} \tag{23}
\end{equation*}
$$

[Modification of exercise]
4. From this follows that

$$
\begin{equation*}
\Theta_{C}(v, w)=-\ln \max \left\{\frac{w_{1}}{v_{1}}, \frac{w_{2}}{v_{2}}\right\} \max \left\{\frac{v_{1}}{w_{1}}, \frac{v_{2}}{w_{2}}\right\}=-\ln \max \left\{\frac{w_{1} v_{2}}{v_{1} w_{2}}, \frac{w_{2} v_{1}}{v_{2} w_{1}}, 1\right\} \tag{24}
\end{equation*}
$$

Since either $\frac{w_{1} v_{2}}{v_{1} w_{2}} \leq 1$ or $\frac{w_{2} v_{1}}{v_{2} w_{1}} \leq 1$, we get that

$$
\begin{equation*}
\Theta_{C}(v, w)=-\ln \max \left\{\frac{w_{1} v_{2}}{v_{1} w_{2}}, \frac{w_{2} v_{1}}{v_{2} w_{1}}\right\} \tag{25}
\end{equation*}
$$

[Book work

5. Cone preserving means that for all $v_{1}, v_{2}>0$ holds that

$$
\begin{align*}
& a_{1,1} v_{1}+a_{1,2} v_{2}>0 \tag{26}\\
& a_{2,1} v_{1}+a_{2,2} v_{2}>0 . \tag{27}
\end{align*}
$$

Consider now a sequence $\beta_{n} \downarrow 0$, then for $v_{1}=1$ and $v_{2}=\beta_{n}$ this gives in the limit $n \rightarrow \infty$

$$
\begin{align*}
& a_{1,1}>0 \tag{28}\\
& a_{2,1}>0 \tag{29}
\end{align*}
$$

Analogously, one obtains that

$$
\begin{align*}
& a_{1,2}>0 \tag{30}\\
& a_{2,2}>0 \tag{31}
\end{align*}
$$

These conditions are also obviously also sufficient. [Unseen]
6. Call

$$
\begin{align*}
& D:=\min \left\{\frac{a_{i, j} a_{k, l}}{a_{k, j} a_{i, l}}: i, j, k, l \in\{0,2\}\right\} \tag{32}\\
& \frac{T(w)_{1} T(v)_{2}}{T(v)_{1} T(w)_{2}}=\frac{\left(a_{1,1} w_{1}+a_{1,2} w_{2}\right)\left(a_{2,1} v_{1}+a_{2,2} v_{2}\right)}{\left(a_{1,1} v_{1}+a_{1,2} v_{2}\right)\left(a_{2,1} w_{1}+a_{2,2} w_{2}\right)} \tag{33}\\
& =\frac{a_{1,1} a_{2,1} v_{1} w_{1}+a_{1,1} a_{2,2} v_{2} w_{1}+a_{1,2} a_{2,1} v_{1} w_{2}+a_{1,2} a_{2,2} v_{2} w_{2}}{a_{1,1} a_{2,1} w_{1} v_{1}+a_{1,1} a_{2,2} w_{2} v_{1}+a_{1,2} a_{2,1} w_{1} v_{2}+a_{1,2} a_{2,2} w_{2} v_{2}} \tag{34}\\
& \geq \frac{a_{1,1} a_{2,1} v_{1} w_{1}+D a_{2,1} a_{1,2} v_{2} w_{1}+D a_{2,2} a_{1,1} v_{1} w_{2}+a_{1,2} a_{2,2} v_{2} w_{2}}{a_{1,1} a_{2,1} w_{1} v_{1}+a_{1,1} a_{2,2} w_{2} v_{1}+a_{1,2} a_{2,1} w_{1} v_{2}+a_{1,2} a_{2,2} w_{2} v_{2}} \tag{35}
\end{align*}
$$

Interchanging i and k one sees that in the minima in Equation 13 which each number also always its inverse appears. Hence $D<1$. So we can estimate

$$
\begin{align*}
& \frac{T(w)_{1} T(v)_{2}}{T(v)_{1} T(w)_{2}} \tag{36}\\
& \geq \frac{D a_{1,1} a_{2,1} v_{1} w_{1}+D a_{2,1} a_{1,2} v_{2} w_{1}+D a_{2,2} a_{1,1} v_{1} w_{2}+D a_{1,2} a_{2,2} v_{2} w_{2}}{a_{1,1} a_{2,1} w_{1} v_{1}+a_{1,1} a_{2,2} w_{2} v_{1}+a_{1,2} a_{2,1} w_{1} v_{2}+a_{1,2} a_{2,2} w_{2} v_{2}} \tag{37}\\
& =D \tag{38}
\end{align*}
$$

and analogously also

$$
\begin{equation*}
\frac{T(v)_{1} T(w)_{2}}{T(w)_{1} T(v)_{2}} \geq D \tag{39}
\end{equation*}
$$

Hence $\Theta_{C}(T(v), T(w)) \leq \ln (D)$. If we choose $v=\left(1, t_{n}\right)$ and $w=\left(1, t_{n}\right)$ with $t_{n} \downarrow 0$, then we see that

$$
\begin{equation*}
\frac{T(w)_{1} T(v)_{2}}{T(v)_{1} T(w)_{2}} \rightarrow \frac{a_{1,2} a_{2,1}}{a_{1,1} a_{2,2}} \tag{40}
\end{equation*}
$$

Looking at the analogous cases we get that the diameter has to be also $\leq D$. [Unseen]
Question 3 Let α be an irrational number and define

$$
f:[0,1) \times[0,1) \rightarrow[0,1) \times[0,1) \text { as } f(x, y):=(x+\alpha, x+y)(\bmod 1)
$$

be a homeomorphism (of the two dimensional torus).

1. Define, in terms of orbits, what it means for f to be topologically transitive. [2 marks]
2. Prove that for all non-empty open sets U and V in $[0,1) \times[0,1)$ there is a positive integer n with $f^{-n}(U) \cap V \neq \varnothing$. (hint: look at first few iterates of a small square in the domain of the map). [7 marks]
3. Prove, using the above statement or directly, that f is topologically transitive. [$\mathbf{6}$ marks]
4. When is a continuous map $g: X \rightarrow X$, for a compact metric space X, is chaotic? Is the above map f chaotic? [5 marks]

Answer

Students have not encountered this map in the lectures.

1. The map f is called topologically transitive if it has a dense orbit; i.e. there is a point $x \in[0,1)^{2}$ Lectures with $\left\{f^{j}(x)\right\}_{j \in \mathbb{Z}}$ dense in $[0,1)^{2}$. [2pts, definition from lectures]
2. Given non-empty open sets U and V, there are points (a, b) and (c, d) as well as a small constant ϵ with

$$
\begin{aligned}
& V \supseteq(a-\epsilon, a+\epsilon) \times(b-\epsilon, b+\epsilon), \text { and } \\
& U \supseteq(c-\epsilon, c+\epsilon) \times(d-\epsilon, d+\epsilon) .
\end{aligned}
$$

Let π_{2} denote the projection onto the second coordinate.
$\pi_{2}(V)$ is connected and has length 2ϵ.
$f(a-\epsilon, b-\epsilon)=(a-\epsilon+\alpha, a+b-2 \epsilon)$ and $f(a+\epsilon, b+\epsilon)=(a+\epsilon+\alpha, a+b+2 \epsilon)$ implies that $\pi_{2}(f(V))$ has length at least $2 \epsilon+2 \epsilon$.
Similarly, $f^{2}(a-\epsilon, b-\epsilon)=(a-\epsilon+2 \alpha, a+b-2 \epsilon+a-\epsilon+\alpha)$ and $f^{2}(a+\epsilon, b+\epsilon)=(a+$ $\epsilon+2 \alpha, a+b+2 \epsilon+a+\epsilon+\alpha)$, implies that $\pi_{2}\left(f^{2}(V)\right)$ has length at least $2 \epsilon+2 \cdot 2 \epsilon[4 \mathbf{p t s}$, for understanding the map in the second coordinate].
Repeating this calculations, one concludes that $\pi_{2}\left(f^{n}(V)\right)$ has length at least $2 \epsilon+n \cdot 2 \epsilon$. Choose $N>0$ such that $2 \epsilon+N \cdot 2 \epsilon>3$. That is, image of $f^{k}(V)$, for $k>N$, covers the second coordinate at least 3 times. Using the density of orbits in the first coordinate, it follows that $f^{k}(V) \cap U \neq \varnothing$, for some $k \geq N$. Equivalently, $f^{-k}(U) \cap V \neq \varnothing[3 \mathbf{p t s}]$.
3. Let $Y=\left\{y_{i}\right\}_{i=1}^{\infty}$ be a countable dense set in $[0,1)^{2}$. Let $U_{i}, i=1,2, \ldots$, be an open disk centered at y_{i}, with diameter $1 / i$.
Now choose $N_{1} \geq 0$ such that $f^{-N_{1}}\left(U_{2}\right) \cap U_{1} \neq \varnothing$. Then choose an open disk V_{1} of radius less than $1 / 2$ such that

$$
V_{1} \subseteq \overline{V_{1}} \subseteq U_{1} \cap f^{-N_{1}}\left(U_{2}\right)
$$

Choose $N_{2} \geq 0$ such that $f^{-N_{2}}\left(U_{3}\right) \cap V_{1} \neq \varnothing$. Then choose an open disk V_{2} of radius less than $1 / 4$ such that

$$
V_{2} \subseteq \overline{V_{2}} \subseteq V_{1} \cap f^{-N_{2}}\left(U_{3}\right)[\mathbf{2 p t s}]
$$

Repeating this process inductively, we obtain open sets, $V_{1} \supseteq V_{2} \supseteq V_{3}, \ldots$, with radius $V_{n} \leq \frac{1}{2^{n}}$ and

$$
\overline{V_{n+1}} \subseteq V_{n} \cap f^{-N_{n+1}}\left(U_{n+2}\right)[\mathbf{2 p t s}]
$$

If we let $\{x\}=\cap_{n=1}^{\infty} \overline{V_{n}}$, then $f^{N_{n-1}}(x) \in U_{n}$, for $n \geq 1$. Therefore, $\left\{f^{n}(x)\right\}_{n=1}^{\infty}$ is dense $\mathbf{2 p t s}$.
Question 4 1. Let f be a continues map of a compact metric space (X, d) to itself. Define what it means for a finite set $E \subseteq X$ to be (n, ϵ)-dense. What does it mean for a set $F \subseteq X$ to be (n, ϵ)-separated. [5 marks]
2. Define the topological entropy of the map f in terms of the above sets (both of them). [5 marks]
3. Find the topological entropy of the map $f:[0,1)^{2} \rightarrow[0,1)^{2}$ defined as

$$
f(x, y)=(2 x, 3 y)(\bmod 1)
$$

[10 marks]

Answers

1. For every $n \geq 0$ define the new metric d_{n} on X as follows.

$$
d_{n}(x, y):=\max \left\{d\left(f^{j}(x), f^{j}(y)\right) \mid 0 \leq j \leq n-1\right\}
$$

[1pts] Let $B(x, n, \epsilon):=\left\{y \in X \mid d_{n}(x, y)<\epsilon\right\}$. A finite set $E \subseteq X$ is (n, ϵ)-dense if

$$
X \subseteq \cup_{x \in E} B(x, n, \epsilon)[\mathbf{2 p t s}]
$$

A set $F \subseteq X$ is called (n, ϵ)-separated if the d_{n} distance between any two distinct points in F is greater than $\epsilon[\mathbf{2 p t s}]$.
2. Let $S(n, \epsilon)$ be the minimum of cardinality of all (n, ϵ)-dense sets in $X[\mathbf{1} \mathbf{p t}]$. Define

$$
h(f, \epsilon):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log S(n, \epsilon)[\mathbf{1} \mathbf{p} \mathbf{t}] .
$$

The topological entropy of f is defined as $h(f):=\lim _{\epsilon \rightarrow 0} h(f, \epsilon)[\mathbf{1} \mathbf{p t}]$.
Let $N(n, \epsilon)$ denote the maximal cardinality of all (n, ϵ)-separating sets $[\mathbf{1} \mathbf{p t}]$. Then,

$$
h(f):=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log N(n, \epsilon)[\mathbf{1} \mathbf{p t s}] .
$$

3. let d denote the maximum metric on $S^{1} \times S^{1}$ i.e. $d((a, b),(c, d))=\max \left\{d^{\prime}(a, c), d^{\prime}(b, d)\right\}$ where d^{\prime} is the angular metric on S^{1}.
Let ϵ be an arbitrary number less than $1 / 4$.

Lectures

Unseen, but not too far from lectures

For any $n \geq 1$, define the set E_{n} as follows:

$$
E_{n}:=\left\{\left.\left(\frac{i}{2^{n}} \frac{\epsilon}{2}, \frac{j}{3^{n}} \frac{\epsilon}{2}\right) \right\rvert\, 0 \leq i \leq\left\lfloor\frac{2 \cdot 2^{n}}{\epsilon}\right\rfloor+1,0 \leq j \leq\left\lfloor\frac{2 \cdot 3^{n}}{\epsilon}\right\rfloor+1\right\}
$$

Now, $[0,1) \times[0,1) \subseteq \cup_{x \in E_{n}} B(x, n, \epsilon)$, thus E_{n} is a (n, ϵ)-spanning set [3pts, for any optimum (n, ϵ)-spanning set]. Therefore,

$$
h(f, \epsilon) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log 4 \cdot \frac{6^{n}}{\epsilon^{2}}=\log 6
$$

Hence, $h(f) \leq \lim _{\epsilon \rightarrow 0} h(f, \epsilon)=\log 6[\mathbf{2 p t s}]$.
On the other hand, the set

$$
F_{n}:=\left\{\left.\left(\frac{i}{2^{n}} \epsilon, \frac{j}{3^{n}} \epsilon\right) \right\rvert\, 0 \leq i \leq\left\lfloor\frac{2^{n}}{\epsilon}\right\rfloor, 0 \leq j \leq\left\lfloor\frac{3^{n}}{\epsilon}\right\rfloor\right\}
$$

forms an (n, ϵ)-separating set [3pts, for any optimum (n, ϵ)-separating set]. Therefore,

$$
h(f, \epsilon) \geq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \frac{6^{n}}{\epsilon^{2}}=\log 6
$$

Hence, $h(f) \geq \lim _{\epsilon \rightarrow 0} h(f, \epsilon)=\log 6[\mathbf{2 p t s}]$.
Putting these two inequalities together, we have $h(f)=\log 6$.

