Attractors of quadratic polynomials with an irrationally indifferent fixed point

Davoud Cheraghi

University of Warwick

NUS, Singapore, April 23-27, 2012

Introduction

$$P_{\alpha}(z) = e^{2\pi\alpha \mathbf{i}} z + z^2 : \mathbb{C} \to \mathbb{C}, \quad \alpha \in \mathbb{R} \setminus \mathbb{Q}$$
$$P_{\alpha}(0) = 0, \quad P'_{\alpha}(0) = e^{2\pi\alpha \mathbf{i}},$$

The study of local, semi-local, and global dynamics of P_{α} has a rather rich history. This usually involves the arithmetic of α .

Still, the dynamics of some P_{α} are not understood at all.

Here, we look at the measurable dynamics of P_{α} on its Julia set. This is partly motivated by

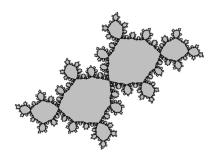
Theorem (Buff-Cheritat 2005)

 $\exists \alpha$ (of Brjuno and non-Brjuno type) s.t. $J(P_{\alpha})$ has positive area.

linearizable maps

 P_{α} is called linearizable at 0, if there exists a conformal coordinate ϕ near 0 s.t. $\phi \circ P_{\alpha} \circ \phi^{-1}(z) = e^{2\pi\alpha \mathbf{i}}z$.

Example: $\alpha = [1, 1, 1, \dots]$



When P_{α} is linearizable, the maximal domain of linearization is called the Siegel disk of P_{α} , and α is called a Brjuno number.

Main results

To understand the long term behaviour of the orbits in the Julia set, one needs to understand the orbit of the critical point, and the iterates of the map on and near it.

The post-critical set of
$$P_{\alpha}$$
 is $\mathcal{PC}(P_{\alpha}) := \overline{\bigcup_{i \geq 1} P_{\alpha}^{i}(c.p.)}$

With $\alpha:=[a_0,a_1,a_2,\dots]$, we show that

Theorem

 $\exists N$, such that for α with all $a_i > N$, $\mathcal{PC}(P_\alpha)$ has zero area. Moreover, $\mathcal{PC}(P_\alpha) \setminus \overline{\Delta}_\alpha$ is non-uniformly porous, where Δ_α is the maximal domain of linearization.

Although P_{α} on $\mathcal{PC}(P_{\alpha})$ is not minimal,

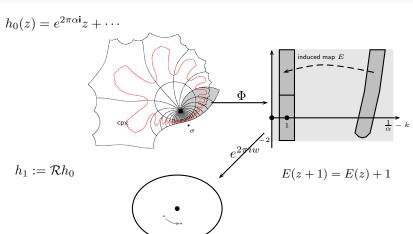
Theorem

For α with all $a_i > N$, $\omega(z) = \mathcal{PC}(P_{\alpha})$, for a.e. z in $J(P_{\alpha})$.

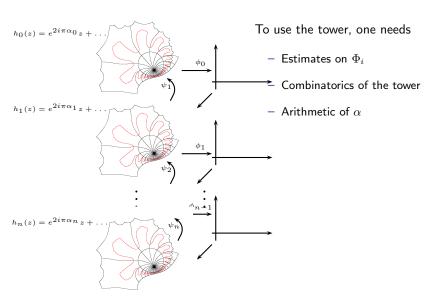
Basic tools

- Inou-Shishikura Renormalization:
 Indeed, the compactness of a sequence of normalized return maps define on a sector containing the critical point.
- Good estimates on the perturbed Fatou coordinates:
 How perturbed Fatou coordinates degenerate and converge to the Fatou coordinates.

Renormalization: Inou-Shishikura



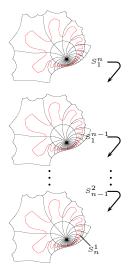
Renormalization tower



Domains where many iterates are understood

Using the tower, one introduces a nest of topological disks

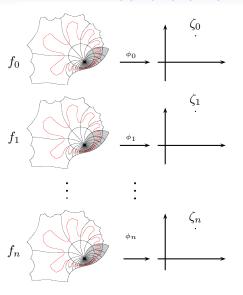
$$\Omega^0 \supset \Omega^1 \supset \Omega^2 \supset \cdots \supset \mathcal{PC}(P_\alpha).$$



$$\Omega^0:=\bigcup_{j=0}^{a_0+k}P^j_\alpha(S^1_0)$$

$$\Omega^n := \bigcup_{j=0}^{q_{n+1}+\ell q_n} P_\alpha^j(S_1^n)$$

Proof of the main theorem



– Given $z \in \cap \Omega^n$, we obtain a sequence of points ζ_n in the tower

 $-\{\operatorname{Im} \zeta_n\}_n$ highly depends on the arithmetic of α

Two types of points in the tower

For some constant D, define

$$L := \{ z \in \cap_{n=0}^{\infty} \Omega_0^n \cap \mathcal{PC}_{\alpha} \mid \exists \text{ ∞-ly many m with } \operatorname{Im} \zeta_m < \frac{D}{\alpha_m} \},$$

$$\Gamma := \{ z \in \cap_{n=0}^{\infty} \Omega_0^n \cap \mathcal{PC}_{\alpha} \mid \exists K \text{ s.th. } \forall m \geq K, \operatorname{Im} \zeta_m \geq \frac{D}{\alpha_m} \}.$$

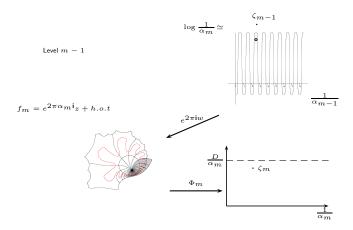
Proposition

- (1) $\mathcal{PC}(P_{\alpha})$ is non-uniformly porous at every point in L.
- (2) Γ has zero area.

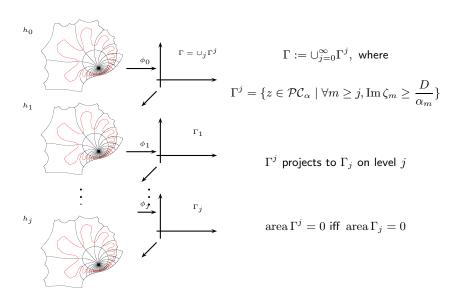
Proposition

When $0 \in \mathcal{PC}(P_{\alpha})$, $\mathcal{PC}(P_{\alpha}) \setminus \{0\} \subseteq L$. When $0 \notin \mathcal{PC}(P_{\alpha})$, $\mathcal{PC}(P_{\alpha}) \setminus \overline{\Delta}_{\alpha} \subseteq L$, where Δ_{α} is the Siegel disk of P_{α} .

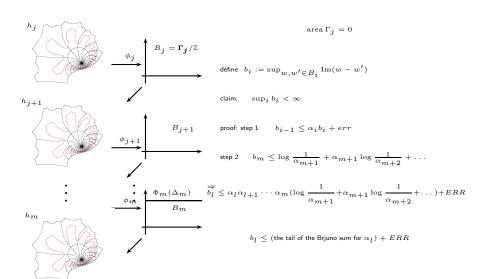
On the set L



On the set Γ



On the set Γ_j



The estimate

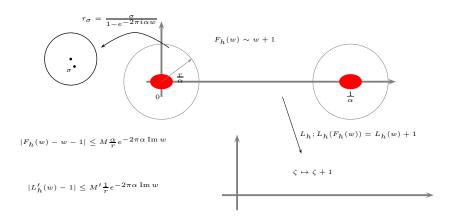
Proposition

 $\forall D>0$, $\exists C$ s.t. $\forall h$ in the Inou-Shishikura class, and $\forall w$ with ${\rm Im}\, w>D/\alpha$, we have

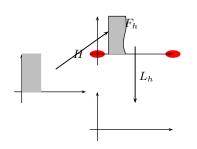
$$|\chi_h'(w) - \alpha| \le C\alpha e^{-2\pi\alpha \operatorname{Im} w}$$

The estimate on the perturbed Fatou coordinates

Given $h(z) = e^{2\pi\alpha i}z + \cdots$,



From estimate on F_h to estimate on L_h

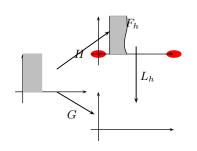


$$\begin{split} H: (0,1)\times(0,\infty) &\to \mathbb{C} \text{ is } C^2 \\ \forall t \in (0,\infty), \quad F(H(0,t)) &= H(1,t) \\ |\partial_z H(z) - 1| & \preceq \frac{\alpha}{r} e^{-2\pi\alpha\operatorname{Im}z} \\ |\partial_{\bar{z}} H(z)|, |\partial_{z\bar{z}} H(z)| &\preceq \frac{\alpha}{r} e^{-2\pi\alpha\operatorname{Im}z} \end{split}$$

$$\begin{split} H(s,t) &:= A + \int_0^s X(\ell,t) \, d\ell + \mathbf{i} \big(t + \int_0^s Y(\ell,t) \, d\ell \big), \text{ where} \\ X(s,t) &:= a_0(t) + a_1(t) \sin(\pi s) + a_2(t) \cos(\pi s) + a_3(t) \sin(2\pi s) + a_4(t) \cos(2\pi s), \\ Y(s,t) &:= b_0(t) + b_1(t) \sin(\pi s) + b_2(t) \cos(\pi s) + b_3(t) \sin(2\pi s) + b_4(t) \cos(2\pi s), \\ a_0(t) &= \operatorname{Re}(F_h(A + \mathbf{i} t) - A) + \operatorname{Re}F_h''(A + \mathbf{i} t)/\pi, \dots \end{split}$$

 $b_0(t) = \text{Im}(F_h(A + it) - A) - t + \text{Im}(F_h''(A + it))/\pi, \dots$

From estimate on F_h to estimate on L_h



$$\begin{split} &H: (0,1)\times (0,\infty) \to \mathbb{C} \text{ is } C^2 \\ &\forall t \in (0,\infty), \quad F(H(0,t)) = H(1,t) \\ &|\partial_{\bar{z}}H(z)|, |\partial_{z\bar{z}}H(z)| \preceq \frac{\alpha}{r}e^{-2\pi\alpha\operatorname{Im}z} \\ &|\partial_z H(z) - 1| \preceq \frac{\alpha}{r}e^{-2\pi\alpha\operatorname{Im}z} \end{split}$$

$$G:=L_h\circ H:\mathbb{C} o\mathbb{C}$$
 is C^2 with $G(z+1)=G(z)+1$, and $G(z)=z+z_0$, if $\mathrm{Im}\,z<-1$ $|\partial_{\bar{z}}G(z)|, |\partial_{z\bar{z}}G(z)| \leq rac{lpha}{r}e^{-2\pilpha\,\mathrm{Im}\,z}$

G induces the map $K:\mathbb{C}\to\mathbb{C}$ that

$$|\partial_{\zeta\bar{\zeta}}H(\zeta)| \leq \frac{\alpha}{r}|\zeta|^{\alpha-1}$$

By general Cauchy Integral formula, one can show that

$$|\partial_{\zeta}K(\zeta) - \partial_{\zeta}K(0)| \leq \frac{1}{r}|\zeta|^{\alpha}$$