Typical Orbits of Quadratic Polynomials with a Neutral Fixed Point

Davoud Cheraghi

University of Warwick

Seillac, France, May 3-8, 2010

The map

Let $P_{\alpha}(z) = e^{2\pi\alpha i}z + z^2 : \mathbb{C} \to \mathbb{C}$, with α irrational. 0 is fixed with rotation

$$\alpha := \frac{1}{a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}}$$

whose best rational approximants are

$$\frac{p_n}{q_n}:=[a_0,a_1,\ldots,a_{n-1}].$$

Local dynamics

Local and global dynamics

Theorem (Brjuno-Yoccoz 1965)

The quadratic polynomial P_{α} is locally linearizable at 0, iff

$$\sum_{n=1}^{\infty} \frac{\log q_{n+1}}{q_n} < \infty.$$

Such values of α are called Brjuno.

Global dynamics:

The Julia set of P_{α} , $J(P_{\alpha})$, for non-Brjuno α (and for some Brjuno α) is known to have complicated topology.

Theorem (Buff-Cheritat 2005)

There exist α , both of Brjuno and non-Brjuno type, such that $J(P_{\alpha})$ has positive area.

Measurable dynamics

Assume $J(P_{\alpha})$ has positive area for some α . Can we describe typical orbits on the Julia set? It is important to understand the structure of the postcritical set of P_{α}

$$\mathcal{PC}(\mathcal{P}_{\alpha}) := \overline{\bigcup_{i \ge 1} \mathcal{P}^{i}_{\alpha}(c.p.)}.$$

and the iterates near it.

To address the problem, we use a renormalization technique developed by H. Inou and M. Shishikura!

Inou-Shishikura Renormalization in 1 min.

One time iterating f_1 corresponds to a_0 times iterating f_0 .

Renormalization tower

Main results

Theorem (Inou-Shishikura 2005)

There exists a compact class of maps such that for every map h in this class all the renormalizations $f_n := \mathcal{R}^n(h)$ are well defined and belong to this class.

In particular, there exists a constant N > 0 such that the renormalization tower is defined for P_{α} , provided all $a_i > N$.

By controlling how ϕ_n behaves as the rotation number goes to zero, using quasi-conformal methods, we can show

Theorem

If α is a non-Brjuno number with all $a_i > N$, then the orbit of almost every point in the Julia set of $P_{\alpha}(z) = e^{2\pi\alpha i}z + z^2$ accumulates at the fixed point 0.

Theorem

If α is Brjuno with all $a_i > N$, then the orbit of almost every point in the Julia set of $P_{\alpha}(z) = e^{2\pi\alpha i}z + z^2$ accumulates on the boundary of the Siegel disk.

Ideas of the proof

Using the tower, one introduces a nest of topological disks

$$\Omega^0 \supset \Omega^1 \supset \Omega^2 \supset \cdots \supset \mathcal{PC}(P_\alpha).$$

$$\Omega^0 := \bigcup_{j=0}^{a_0+k} P^j_{\alpha}(S^1_0)$$

$$\Omega^n := \bigcup_{j=0}^{q_{n+1}+\ell q_n} P^j_\alpha(S_1^n)$$

Size of the sectors

Main technical lemma

There exists a constant C such that at every level $n \ge 1$, there exists a sector whose diameter is less than

$$C \cdot \alpha_0 \cdot \alpha_1^{\alpha_0} \cdot \alpha_2^{\alpha_0 \alpha_1} \cdot \alpha_3^{\alpha_0 \alpha_1 \alpha_2} \dots \alpha_{n-1}^{\alpha_0 \dots \alpha_{n-2}}$$

Taking log, we obtain

$$\sum_{i=1}^{n-1} \alpha_0 \alpha_1 \cdots \alpha_{i-1} \log \alpha_i,$$
$$\sum_{i=1}^{\infty} \frac{\log q_{n+1}}{q_n} = \infty.$$

n=1

which goes to ∞ iff

A corollary of the proof

Theorem

If α is non-Brjuno with all $a_i > N$, then P_{α} and every map in the Inou-Shishikura class, with the fixed point of multiplier $e^{2\pi\alpha i}$ at 0, is not linearizable at 0.

In particular, there exists a Jordan domain U containing 0 such that if f is a map of the form $e^{2\pi\alpha i}h(1+h)^2$, where $h: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a rational map of the Riemann sphere satisfying

- h(0) = 0, h'(0) = 1, and
- no critical value of h belongs to U,

then f is not linearizable at zero.

This gives rational maps of arbitrarily large degree for which the Brjuno condition is sharp for the linearizability.

These examples do not have Douady-Hubbard quadratic-like restriction.

Further properties

Theorem

If α is non-Brjuno with all $a_i > N$, then $\mathcal{PC}(P_{\alpha})$ has measure zero.

Corollary

With α as above, a.e. $z \in J(P_{\alpha})$ is non-recurrent. In particular, there is no finite absolutely continuous invariant measure on the Julia set.

Theorem

If α is non-Brjuno with all $a_i > N$, the orbit of a.e. $z \in J(P_{\alpha})$ accumulates on the critical point.

Idea of the proof

Given $z \in \cap \Omega^n$, we can go down to deep levels of the tower

Going down the tower

What we see on level n

Going up the tower

