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There are several notions of renormalization operators in holomorphic
dynamics:

• Polynomial-like renormalization

• Commuting-pair renormalization

• Cylinder renormalization

• Sector renormalization

• Near-parabolic renormalization

On circle:

• renormalization of critical circle maps

• renormalization of critical circle covers

• renormalization of Henon maps
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• Near-parabolic renormalization

On circle:

• renormalization of critical circle maps

• renormalization of critical circle covers

• renormalization of Henon maps

Near-parabolic renormalizations unifies several of these notions. We focus
on this renormalization operator.



There is an explicit Jordan domain U ⊂ C bounded by an analytic curve:

0 ∈ U , −1 /∈ U , −8/9 ∈ U



There is an explicit Jordan domain U ⊂ C bounded by an analytic curve:

0 ∈ U , −1 /∈ U , −8/9 ∈ U

Let
P (z) = z(1 + z)2.

• P (0) = 0 and P ′(0) = 1,

• P ′(−1) = P ′(−1/3) = 0; P (−1) = 0 and P (−1/3) = −4/27 ∈ U .

P : U → P (U) has a particular covering structure.



Let F be the set of maps
h = P ◦ ψ−1

where

• ψ : U → C is univalent and has quasi-conformal extension onto C,

• ψ(0) = 0 and ψ′(0) = 1.



Let F be the set of maps
h = P ◦ ψ−1

where

• ψ : U → C is univalent and has quasi-conformal extension onto C,

• ψ(0) = 0 and ψ′(0) = 1.

It follows that

• h is defined on ψ(U),

• h(0) = 0, h′(0) = 1,

• h has a critical point at c.p. = ψ(−1/3) which is mapped to −4/27,

• h : ψ(U) → P (U) has the same covering structure as the one of P .



Let Aρ = {α ∈ C | 0 < |α| ≤ ρ, | Imα| ≤ |Reα|},

ρ
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Let Aρ = {α ∈ C | 0 < |α| ≤ ρ, | Imα| ≤ |Reα|},

ρ

For α ∈ Aρ and h ∈ F , let

(α⋉ h)(z) = h(e2πiαz).

Set
Aρ ⋉ F = {(α⋉ h) | α ∈ Aρ, h ∈ F}



We equip Aρ ⋉ F with the topology of uniform convergence on compact
sets.



We equip Aρ ⋉ F with the topology of uniform convergence on compact
sets.

Since
F →֒ {φ : D → C | φ(0) = 0, φ′(0) = 1}

by Koebe distortion theorem, F forms a pre-compact class of maps.



Dynamics of a map h ∈ F ;

h has a parabolic fixed point at 0; the orbit of c.p. tends to 0.

× b



If ρ is small enough, α⋉ h has two preferred fixed points at 0 and
σ = σ(α ⋉ h). |σ| = O(|α|).

We have
(α⋉ h)′(0) = e2πiα, (α⋉ h)′(σ) = e2πiβ

where β is a complex number with −1/2 < Re β ≤ 1/2.
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(α⋉ h)′(0) = e2πiα, (α⋉ h)′(σ) = e2πiβ

where β is a complex number with −1/2 < Re β ≤ 1/2.

. . .

0

σ

×



There is a simply connected region

Pα⋉h ⊂ Dom(h)

which is bounded by analytic curves landing at 0, σ, and c.p.,

as well as a univalent map

Φα⋉h : Pα⋉h → C

such that

Φα⋉h((α ⋉ h)(z)) = Φα⋉h(z) + 1, on Pα⋉h, Φα⋉h(c.p.) = 0.



Proposition (Ch. 2009)
There is a constant k1 independent of α and h such that one may choose

Pα⋉h and Φα⋉h with

Φα⋉h(Pα⋉h) = {z ∈ C | 0 < Re z ≤ Re
1

α
− k1}

and for y ≥ 0,

argΦ−1

α⋉h(iy) ≃ −2πy Imα+ arg σ + Cα⋉h.



We drop the subscripts α⋉ h from Pα⋉h and Φα⋉h, . . .

Define

A = {z ∈ P : 1/2 ≤ Re(Φ(z)) ≤ 3/2 , 2 ≤ ImΦ(z)}

C = {z ∈ P : 1/2 ≤ Re(Φ(z)) ≤ 3/2 , −2 ≤ ImΦ(z) ≤ 2}
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It follows from the work of Inou-Shishikura that there are chains
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−−−−→

2−1
C

where Ak and Ck are contained in P .
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Prop. (Ch.) k is uniformly bounded from above independent of α and h.
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Let
E = Φ ◦ (α⋉ h)◦k ◦ Φ−1 : Φ(Ak ∪ Ck) → Φ(A ∪C).
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We have E(ζ + 1) = E(ζ) + 1 on the boundary of Φ(Ak ∪ Ck).



Let
E = Φ ◦ (α⋉ h)◦k ◦ Φ−1 : Φ(Ak ∪ Ck) → Φ(A ∪C).

We have E(ζ + 1) = E(ζ) + 1 on the boundary of Φ(Ak ∪ Ck).

E projects under Exp(ζ) = −4

27
e2πiζ to a holomorphic map defined on a

punctured neighborhood of 0. That is, there is a map RNP-t(α ⋉ h) with

RNP-t(α⋉ h) ◦ Exp(ζ) = Exp ◦E(ζ)



It follows that

RNP-t(α⋉ h)(z) ≃ e−2πi−1

α z + a2z
2 + . . .

The above map is called the top near-parabolic renormalization of α⋉ h.
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Key point: while the return map may require large number of iterates,
renormalization is defined using the composition of k + 2 maps?



It follows that

RNP-t(α⋉ h)(z) ≃ e−2πi−1

α z + a2z
2 + . . .

The above map is called the top near-parabolic renormalization of α⋉ h.

Q: How does this correspond to a “return map”?

Key point: while the return map may require large number of iterates,
renormalization is defined using the composition of k + 2 maps?

Inou-Shishikura: The above map has the same covering structure as the
one of P on U ! That is,

RNP-t(α⋉ h) ∈ {
−1

α
mod Z} ⋉ F .



There is a similar process to define a “return map” near σ-fixed point:
It gives us

RNP-b(α⋉ h) ∈ {
−1

β
mod Z}⋉ F .



×



Let

Q0(z) = z +
27

16
z2,

so that its critical value lies at −4/27.



Let

Q0(z) = z +
27

16
z2,

so that its critical value lies at −4/27.

Then

α⋉Q0 = e2πiαz +
27

16
e4πiαz2.



Let

Q0(z) = z +
27

16
z2,

so that its critical value lies at −4/27.

Then

α⋉Q0 = e2πiαz +
27

16
e4πiαz2.

α⋉Q0 does not belong to α⋉ F !

However, RNP-t(α⋉Q0) and RNP-b(α⋉Q0) are defined in the same
fashion, and

RNP-t(α⋉Q0) ∈ {
−1

α
mod Z}⋉ F ,

RNP-b(α⋉Q0) ∈ {
−1

β
mod Z}⋉ F .



Lecture II:

Hyperbolicity of the near-parabolic renormalization operators



We are interested in the dynamics of the operators

RNP-t(α ⋉ h) = α̂(α⋉ h)⋉ ĥ(α ⋉ h)

RNP-b(α⋉ h) = α̌(α⋉ h)⋉ ȟ(α⋉ h)

acting on A(ρ)⋉ F with values in C⋉ F .
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We are interested in the dynamics of the operators

RNP-t(α ⋉ h) = α̂(α⋉ h)⋉ ĥ(α ⋉ h)

RNP-b(α⋉ h) = α̌(α⋉ h)⋉ ȟ(α⋉ h)

acting on A(ρ)⋉ F with values in C⋉ F .

Also recall that

α̂(α⋉ h) =
−1

α
mod Z, α̌(α⋉ h) =

−1

β(α⋉ h)
mod Z.

RNP-t preserves vertical fibers, while RNP-b does not preserve them.



F is equipped with a Teichmüller metric:
for f = P ◦ ϕ−1 and g = P ◦ ψ−1 in F ,

dTeich(f, g) = inf
{

logDil(ψ̂ ◦ ϕ̂−1)
}

where inf is taken over all quasi-conformal extensions ϕ̂ and ψ̂ of ϕ and
ψ onto C.
Here,

Dil(η) = sup
z∈Dom η

|ηz |+ |ηz |

|ηz | − |ηz |
.

is a measure of conformality of h.
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F is equipped with a Teichmüller metric:
for f = P ◦ ϕ−1 and g = P ◦ ψ−1 in F ,

dTeich(f, g) = inf
{

logDil(ψ̂ ◦ ϕ̂−1)
}

where inf is taken over all quasi-conformal extensions ϕ̂ and ψ̂ of ϕ and
ψ onto C.
Here,

Dil(η) = sup
z∈Dom η

|ηz |+ |ηz |

|ηz | − |ηz |
.

is a measure of conformality of h.
dTeich(fn, f) → 0 implies fn → f uniformly on compact sets, but not vice
versa.

A(ρ) is equipped with the Euclidean metric.



We wish to understand the derivatives of these operators (infinite by
infinite matrices!)

DRNP-t =

[

∂α̂
∂α

∂ĥ(α⋉h)
∂α

∂α̂
∂h

∂ĥ(α⋉h)
∂h

]

DRNP-b =

[

∂α̌
∂α

∂ȟ(α⋉h)
∂α

∂α̌
∂h

∂ȟ(α⋉h)
∂h

]
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dTeich(ĥ(α⋉ h1), ĥ(α⋉ h2) ≤ 1 · dTeich(h1, h2),
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h 7→ ĥ(α⋉ h) : F → F , h 7→ ȟ(α⋉ h) : F → F .
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Recall that,

h 7→ ĥ(α⋉ h) : F → F , h 7→ ȟ(α⋉ h) : F → F .

By Royden-Gardiner,

dTeich(ĥ(α⋉ h1), ĥ(α⋉ h2) ≤ 1 · dTeich(h1, h2),

dTeich(ĥ(α⋉ h1), ĥ(α⋉ h2) ≤ 1 · dTeich(h1, h2)

Indeed, Inou-Shishikura showed that these are uniform contractions!

In my symbolic notations, these mean

∣

∣

∂ĥ(α⋉ h)

∂h

∣

∣ ≤ 1,
∣

∣

∂ȟ(α ⋉ h)

∂h

∣

∣ ≤ 1.



Recall that

α̂(α⋉ h) =
−1

α
mod Z

Then,
∂α̂

∂α
=

1

α2

and
∂α̂

∂h
= 0.



Recall that
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mod Z, (α ⋉ h)′(σ) = e2πiβ .
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Proposition ∃ a Jordan domain W ∋ 0, independence of α and h, such
that every α⋉ h ∈ Aρ ⋉ F has only two fixed points 0 and σ(α⋉ h) in
W .
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,
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Proposition ∃ a Jordan domain W ∋ 0, independence of α and h, such
that every α⋉ h ∈ Aρ ⋉ F has only two fixed points 0 and σ(α⋉ h) in
W .
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I(α⋉ h) :=
1

2πi

∫
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1
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.
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Recall

I(α⋉ h) :=
1

2πi

∫

∂W

1

z − (α⋉ h)(z)
dz =

1

1− e2πiα
+

1

1− e2πiβ
.

I(α⋉ h) is a holomorphic function of α and h.

Prop. We have

|I(α ⋉ h1)− I(α ⋉ h2)| ≤ B5 dTeich(h1, h2).

+ some analysis we get

|β(α × h1)− β(α⋉ h2)| ≤ B6|α|
2 dTeich(h1, h2)

Hence,

|α̌(α⋉ h1)− α̌(α⋉ h2)| = |
−1

β(α ⋉ h1)
+

1

β(α⋉ h2)
|

≤
B2

3

|α|2
|β(α ⋉ h1)− β(α⋉ h2)|

≤
B2

3

|α|2
B6|α

2| dTeich(h1, h2) = B2

3
B6 dTeich(h1, h2).



In my symbolic notation, the previous bound means

∣

∣

∂α̌(α⋉ h)

∂h

∣

∣ ≤ B2

3B6
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α 7→ ĥ(α, h), α 7→ ȟ(α⋉ h),
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For every fixed h ∈ F ,

α 7→ ĥ(α, h), α 7→ ȟ(α⋉ h),

map Aρ into F .

These have different nature, mapping a domain in C into the infinite
dimensional Teichmüller space!

To control these maps, we need to understand how the Fatou coordinate
Φα⋉h depends on α, and how the renormalization is constructed.

Theorem (Ch. 2015)
There is L > 0 such that for every h ∈ F the maps

α 7→ ĥ(α, h) and α 7→ ȟ(α, h)

are L-Lipschitz with respect to dEucl on A(ρ) and dTeich on F .
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What does this imply?
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dTeich(h(s1), h(s2)) ≤ k|α(s1)− α(s2)|.



Let s 7→ Υ(s) = (α(s)⋉ h(s)), for s in a connected set ∆ ⊆ C, and with
values in the set A∞ ⋉ F .

For k > 0, we say that Υ is k-horizontal, if Υ is continuous on ∆, and for
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Theorem (Ch., Shishikura, 2015)
There are ρ′ > 0 and k > 0 such that

for every k-horizontal curve Υ in Aρ′ ⋉ F , the curves RNP-t(Υ) and
RNP-b(Υ) are k-horizontal in A∞ ⋉ F .



Let s 7→ Υ(s) = (α(s)⋉ h(s)), for s in a connected set ∆ ⊆ C, and with
values in the set A∞ ⋉ F .

For k > 0, we say that Υ is k-horizontal, if Υ is continuous on ∆, and for
all s1, s2 ∈ ∆ we have

dTeich(h(s1), h(s2)) ≤ k|α(s1)− α(s2)|.

Theorem (Ch., Shishikura, 2015)
There are ρ′ > 0 and k > 0 such that

for every k-horizontal curve Υ in Aρ′ ⋉ F , the curves RNP-t(Υ) and
RNP-b(Υ) are k-horizontal in A∞ ⋉ F .

In other words, RNP-t and RNP-b map cone-fields of k1-horizontal curves
into themselves.



Let κ = (κ1, κ2, κ3, . . . ) ∈ {t, b}N. For n ≥ 1, consider
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n
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Let κ = (κ1, κ2, κ3, . . . ) ∈ {t, b}N. For n ≥ 1, consider

Λ(〈κi〉
n
i=1

) =
{

α⋉ h
∣

∣

∣
RNP-κn

◦ · · · ◦ RNP-κ1
(α⋉ h) is defined

}

.

Example, Λ(κ1) = Aρ ⋉ F

Λ(t, κ2)= “dark grey region” ⋉F ; Λ(b, κ2) ≃ “black region” ⋉F :



The invariance of k-horizontal curves implies that

Theorem (Ch., Shishikura 2015)
For all k-horizontal family of maps Υ : Aρ′ → Aρ′ ⋉ F and all

κ ∈ {t, b}N, every connected component of the set Λ(κ) ∩Υ(Aρ′) is a
single point.



It follows from the above Theorem and some more work:
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The renormalizations operators RNP-t and RNP-b are uniformly hyperbolic
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Moreover, DRNP-t and DRNP-b at each point in Aρ′ ⋉ F0 have an

invariant one-dimensional expanding direction and an invariant uniformly

contracting co-dimension-one direction.
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It follows from the above Theorem and some more work:

Theorem (Ch., Shishikura 2015)
The renormalizations operators RNP-t and RNP-b are uniformly hyperbolic

on Aρ′ ⋉ F0.

Moreover, DRNP-t and DRNP-b at each point in Aρ′ ⋉ F0 have an

invariant one-dimensional expanding direction and an invariant uniformly

contracting co-dimension-one direction.

The above theorem has applications to

• the Feigenbaum-Coullet-Tresser universality of the scaling laws,

• the geometry of the Mandelbrot set (local-connectivity),

• dynamics of infinitely polynomial-like renormalizable quadratic
polynomials with degenerating geometries,


