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dynamics:

e Polynomial-like renormalization

o Commuting-pair renormalization

Cylinder renormalization
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e renormalization of critical circle maps
e renormalization of critical circle covers

e renormalization of Henon maps
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Near-parabolic renormalizations unifies several of these notions. We focus
on this renormalization operator.
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Let
P(z) = z(1 + 2)2.

e P(0O)=0and P'(0)=1
e P'(-1)=P'(-1/3)=0; P(—1)=0and P(—1/3)=—-4/27€ U.

P :U — P(U) has a particular covering structure.



Let F be the set of maps
h=Poy*
where
e 1) : U — C is univalent and has quasi-conformal extension onto C,
e ¢(0) =0 and ¢'(0) = 1.



Let F be the set of maps
h=Poy*
where
e 1) : U — C is univalent and has quasi-conformal extension onto C,
e ¢(0) =0 and ¢'(0) = 1.

It follows that
e h is defined on ¢(U),
e h(0)=0, K (0)=1
e | has a critical point at c.p. = ¥(—1/3) which is mapped to —4/27,
e h:y(U) — P(U) has the same covering structure as the one of P.
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Set
A, x F={(ax h)|ae Ay, he F}



We equip A, x F with the topology of uniform convergence on compact
sets.



We equip A, x F with the topology of uniform convergence on compact
sets.

Since
F—={¢:D—=C|4(0)=0,¢'(0)=1}

by Koebe distortion theorem, F forms a pre-compact class of maps.



Dynamics of a map h € F;

h has a parabolic fixed point at 0; the orbit of c.p. tends to 0.




If p is small enough, a X h has two preferred fixed points at 0 and
oc=oc(ax h). |o| =0(|al).

We have 4 4
(a x h)'(0) = 2™, (ax h) (o) = ¥

where 3 is a complex number with —1/2 < Re 8 < 1/2.



If p is small enough, a X h has two preferred fixed points at 0 and
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We have 4 4
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There is a simply connected region

Paxn C Dom(h)

which is bounded by analytic curves landing at 0, o, and c.p.,
as well as a univalent map

such that

ozb<h

Pap(h — C

Donn((@x h)(2)) = Paxn(z) + 1, on Paxn,

Dawn(c.p.)

=0.



Proposition (Ch. 2009)

There is a constant k, independent of o and h such that one may choose
Paxn and ®,wpn with

1
Pann(Paxn) ={z € C|0<Rez <Re——ki}

and fory > 0,

arg® ! (iy) ~ —2myIma + arg o + Coup.
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We drop the subscripts a X h from Pyxpn and @oup, - ..
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We drop the subscripts a X h from Pyxpn and @oup, - ..
Define

A={z€P:1/2 <Re(®(2)) <3/2,2<Imd(2)}

C={zeP:1/2<Re(®(2)) <3/2, —2<ImP(z) < 2}

It follows from the work of Inou-Shishikura that there are chains

Ak axh Ak71 axh axh Al axh
1-1 -1 7 1-1 1-1
and
X h k—1 aXh axh 1 axh
ck 21, ¢ C
1-1 1-1 1-1 2—1

where A* and C* are contained in P.

Prop. (Ch.) & is uniformly bounded from above independent of « and h.
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Let
E=do(axh)*cd !:0A"UCr) = d(AUC).

We have E(¢ + 1) = E(¢) + 1 on the boundary of ®(A* U C¥).

E projects under Exp(¢) = 57¢2™ to a holomorphic map defined on a
punctured neighborhood of 0. That is, there is a map Ryp..(a X h) with

Rp- (a X h) o EXP(C) = Exp OE({)
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Key point: while the return map may require large number of iterates,
renormalization is defined using the composition of k£ + 2 maps?



It follows that
—2mi=2L 2
Ruapi(ax h)(z) ~e oz 4 agz” + ...
The above map is called the top near-parabolic renormalization of a x h.
Q: How does this correspond to a “return map”?

Key point: while the return map may require large number of iterates,
renormalization is defined using the composition of k£ + 2 maps?

Inou-Shishikura: The above map has the same covering structure as the
one of P on U! That is,

-1
Ruape(a X h) € {? mod Z} x F.



There is a similar process to define a “return map"” near o-fixed point:
It gives us

-1
Rypn(a X h) € {7 mod Z} x F.
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Let o7
Qo(z) =2+ 1_622’

so that its critical value lies at —4/27.
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Let o7
Qo(z) =2+ 1_622’

so that its critical value lies at —4/27.
Then

a X QO — e?ﬂ’iaz 4 %6471'%’&22.

a X Qg does not belong to o x F!

However, Ryp..(a X Qo) and Ryp.,(a X Qo) are defined in the same
fashion, and

-1
Rup(a X Qo) € {? mod Z} x F,

Rupn(a X Qo) € {%1 mod Z} x F.



Lecture Il:

Hyperbolicity of the near-parabolic renormalization operators
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We are interested in the dynamics of the operators
Ruri(a x h) = a(a x h) x h(a x h)
Rupn(a X h) = a(a x h) x h(a x h)
acting on A(p) x F with values in C x F.

Also recall that

-1 -1
d(alxh):?modZ, d(axh)zmmodZ

Rup.. preserves vertical fibers, while Ryp., does not preserve them.
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zeDomn |772| - |"7§|

is a measure of conformality of h.
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F is equipped with a Teichmiiller metric:
for f=Pop ltandg=Poy~tin F,

dreicn(f, 9) = inf { log Dil(¢) 0 57"}

where inf is taken over all quasi-conformal extensions ¢ and & of ¢ and
1) onto C.
Here,

Dilty) = sup eIl
z€Domn 02| — |7z

is a measure of conformality of h.
dreich (fn, f) — 0 implies f,, — f uniformly on compact sets, but not vice
versa.

A(p) is equipped with the Euclidean metric.



We wish to understand the derivatives of these operators (infinite by
infinite matrices!)

o4 aﬁ(axh)_

— | O« _Oa
D Rup. = A& Oh(axh)
L Oh oh
[9a  Oh(axh) |

— | O _ O«
DRNP*’ | oa  Oh(axh)
L Oh oh
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The operators Ryp.. and Ryp.,, are holomorphic.
Recall that,

hh(axh): F—=F, hehlaxh): F—F.
By Royden-Gardiner,
dreicn(h(a % h1), h(a x ha) < 1 dreicn(ha, ha),
dreich (R(@ x 1), h(a % ho) < 1 dreich (1, h2)
Indeed, Inou-Shishikura showed that these are uniform contractions!
In my symbolic notations, these mean

Oh(a x h)

R <y



Recall that

-1
G(ax h) = — mod Z
@

Then,
oa _ 1
Oa o a2
and
o0&

oh



Recall that

. _ 1 1N 2mifB
a(axh)—iﬁ(axh) mod Z, (a x h)' (o) = =™,
we need
da(ax h)  da(ax h)
da 7 oh

Proposition 3 a Jordan domain W 3 0, independence of « and h, such
that every o x h € A, x F has only two fixed points 0 and o(c x k) in
Ww.



Recall that

a(a x h) = mod Z, (a x h)' (o) = *™P,

_ -1

Bla x h)

we need

da(ax h)  da(ax h)
oo’ Oh

Proposition 3 a Jordan domain W 3 0, independence of « and h, such
that every o x h € A, x F has only two fixed points 0 and o(c x k) in
Ww.
Then,

1 1 1 1
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Recall

1 1 1 1
1 h) = — dz = - — .
(o< h) 27 Jow z — (a X h)(2) P I —ema T 12w

Prop. We have

9 I(Oé X h1)| S BQ.

Haxh)| < B Iy

These imply

9p
«

B3 'la] < [B(ax h1)| < Bslal, Bp' < |5 (@ % h1)l < Ba.

and hence
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Recall

Haxh) = L __
@ T omi ow 2 — (@ x h)(z) Z= 1 _ e2mia | ] _ g2mif’

I(a x h) is a holomorphic function of a and h.

Prop. We have
[I(aw x hy) — I(a X ho)| < Bs dreich (1, ha).

+ some analysis we get
|B(c x h1) — B(a  ha)| < Bgla|? deich (h1, h2)

Hence,
-1 1

Blaxhy) | Blaxh)
2

< |§—|32|ﬂ(04 X hl) — 5(04 X h2)|

|&(a x hi) — &(a X he)| =]

B2
B ﬁBdoﬂ dreich (h1, h2) = B3 Bg dreicn (1, h).



In my symbolic notation, the previous bound means

Oc(a X h)

| oh ‘ SBZ)%BGS
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For every fixed h € F,
o h(a,h),a— h(ax h),

map A, into F.

These have different nature, mapping a domain in C into the infinite
dimensional Teichmiiller space!

To control these maps, we need to understand how the Fatou coordinate
P, xn depends on «, and how the renormalization is constructed.

Theorem (Ch. 2015)
There is L > 0 such that for every h € F the maps
o — h(a,h) and a — h(a, h)

are L-Lipschitz with respect to dgy,e on A(p) and dteich on F.



Recall

d9a  Ohlaxh)

9a  Oh(axh)
= Oa 7 do e Jda . Oa
D 7?/NP—t - 86[ M D RNP—b @ M
oh oh

oh Oh



Recall

96 Oh(axh)
— | O« _Oa

DRy = 8a  Oh(axh)
oh oh

Combining the previous bounds:

L L
DR =[5 1]

déi
DRNP—b = [%
oh
‘D Rps | =~

Ah(axh)

. Oa
Oh(axh)

|



Recall

96 Oh(axh)
— | O« _Oa

D Rp-t 8a  Oh(axh)
oh oh

Combining the previous bounds:

L L
DR =[5 1]

What does this imply?

DRNP—b = [

|D R |

&
Oa
da
Oh




Let s — Y(s) = (a(s) x h(s)), for s in a connected set A C C, and with
values in the set A, x F.



Let s — Y(s) = (a(s) x h(s)), for s in a connected set A C C, and with
values in the set A, x F.

For k > 0, we say that Y is k-horizontal, if T is continuous on A, and for
all s1,s9 € A we have

dreich (h(s1), h(s2)) < Ela(s1) — a(s2)].



Let s — Y(s) = (a(s) x h(s)), for s in a connected set A C C, and with
values in the set A, x F.

For k > 0, we say that Y is k-horizontal, if T is continuous on A, and for

all s1,s9 € A we have

dreich (h(s1), h(s2)) < Ela(s1) — a(s2)].

Theorem (Ch., Shishikura, 2015)

There are p’ > 0 and k > 0 such that
for every k-horizontal curve T in A, x F, the curves Ryp.(T) and
Rupn(Y) are k-horizontal in Aoe X F.



Let s — Y(s) = (a(s) x h(s)), for s in a connected set A C C, and with
values in the set A, x F.

For k > 0, we say that Y is k-horizontal, if T is continuous on A, and for
all s1,s9 € A we have

dreich (h(s1), h(s2)) < Ela(s1) — a(s2)].

Theorem (Ch., Shishikura, 2015)

There are p’ > 0 and k > 0 such that
for every k-horizontal curve T in A, x F, the curves Ryp.(T) and
Rupn(Y) are k-horizontal in Aoe X F.

In other words, Ryp., and Ryp.,, map cone-fields of ki-horizontal curves
into themselves.
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Let k = (K1, k2, K3, ...) € {t,b}. For n > 1, consider

A((sa)y) = {ax h ‘ Rgpry 0 ++ 0 Rogpn, (0  h) is defined}.

Example, A(k1) = A, x F

A(t, ko)= “dark grey region” xF; A(b,r2) ~ “black region” xF:

” “ ::...-""’" ""”'-.,‘:: “ “
< >



The invariance of k-horizontal curves implies that

Theorem (Ch., Shishikura 2015)

For all k-horizontal family of maps Y : A, — A, x F and all

Kk € {t,b}", every connected component of the set A(k) N Y(A,) is a
single point.
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It follows from the above Theorem and some more work:

Theorem (Ch., Shishikura 2015)

The renormalizations operators Ryp., and Ryp., are uniformly hyperbolic
on Ap/ X fo.

Moreover, D Ryp., and D Ryp., at each point in Ay x Fo have an
invariant one-dimensional expanding direction and an invariant uniformly
contracting co-dimension-one direction.

The above theorem has applications to
e the Feigenbaum-Coullet-Tresser universality of the scaling laws,
e the geometry of the Mandelbrot set (local-connectivity),

e dynamics of infinitely polynomial-like renormalizable quadratic
polynomials with degenerating geometries,



