Near-Parabolic renormalization; hyperbolicity and rigidity

Davoud Cheraghi
Imperial College London

Simons semester at IMPAN, Sept 2015

There are several notions of renormalization operators in holomorphic dynamics:

- Polynomial-like renormalization
- Commuting-pair renormalization
- Cylinder renormalization
- Sector renormalization
- Near-parabolic renormalization

On circle:

- renormalization of critical circle maps
- renormalization of critical circle covers
- renormalization of Henon maps

There are several notions of renormalization operators in holomorphic dynamics:

- Polynomial-like renormalization
- Commuting-pair renormalization
- Cylinder renormalization
- Sector renormalization
- Near-parabolic renormalization

On circle:

- renormalization of critical circle maps
- renormalization of critical circle covers
- renormalization of Henon maps

Near-parabolic renormalizations unifies several of these notions. We focus on this renormalization operator.

There is an explicit Jordan domain $U \subset \mathbb{C}$ bounded by an analytic curve:

$$
0 \in U,-1 \notin U,-8 / 9 \in U
$$

There is an explicit Jordan domain $U \subset \mathbb{C}$ bounded by an analytic curve:

$$
0 \in U,-1 \notin U,-8 / 9 \in U
$$

Let

$$
P(z)=z(1+z)^{2} .
$$

- $P(0)=0$ and $P^{\prime}(0)=1$,
- $P^{\prime}(-1)=P^{\prime}(-1 / 3)=0 ; P(-1)=0$ and $P(-1 / 3)=-4 / 27 \in U$.
$P: U \rightarrow P(U)$ has a particular covering structure.

Let \mathcal{F} be the set of maps

$$
h=P \circ \psi^{-1}
$$

where

- $\psi: U \rightarrow \mathbb{C}$ is univalent and has quasi-conformal extension onto \mathbb{C},
- $\psi(0)=0$ and $\psi^{\prime}(0)=1$.

Let \mathcal{F} be the set of maps

$$
h=P \circ \psi^{-1}
$$

where

- $\psi: U \rightarrow \mathbb{C}$ is univalent and has quasi-conformal extension onto \mathbb{C},
- $\psi(0)=0$ and $\psi^{\prime}(0)=1$.

It follows that

- h is defined on $\psi(U)$,
- $h(0)=0, h^{\prime}(0)=1$,
- h has a critical point at c.p. $=\psi(-1 / 3)$ which is mapped to $-4 / 27$,
- $h: \psi(U) \rightarrow P(U)$ has the same covering structure as the one of P.

Let $A_{\rho}=\{\alpha \in \mathbb{C}|0<|\alpha| \leq \rho,|\operatorname{Im} \alpha| \leq|\operatorname{Re} \alpha|\}$,

Let $A_{\rho}=\{\alpha \in \mathbb{C}|0<|\alpha| \leq \rho,|\operatorname{Im} \alpha| \leq|\operatorname{Re} \alpha|\}$,

For $\alpha \in A_{\rho}$ and $h \in \mathcal{F}$, let

$$
(\alpha \ltimes h)(z)=h\left(e^{2 \pi i \alpha} z\right) .
$$

Let $A_{\rho}=\{\alpha \in \mathbb{C}|0<|\alpha| \leq \rho,|\operatorname{Im} \alpha| \leq|\operatorname{Re} \alpha|\}$,

For $\alpha \in A_{\rho}$ and $h \in \mathcal{F}$, let

$$
(\alpha \ltimes h)(z)=h\left(e^{2 \pi i \alpha} z\right) .
$$

Set

$$
A_{\rho} \ltimes \mathcal{F}=\left\{(\alpha \ltimes h) \mid \alpha \in A_{\rho}, h \in \mathcal{F}\right\}
$$

We equip $A_{\rho} \ltimes \mathcal{F}$ with the topology of uniform convergence on compact sets.

We equip $A_{\rho} \ltimes \mathcal{F}$ with the topology of uniform convergence on compact sets.

Since

$$
\mathcal{F} \hookrightarrow\left\{\phi: \mathbb{D} \rightarrow \mathbb{C} \mid \phi(0)=0, \phi^{\prime}(0)=1\right\}
$$

by Koebe distortion theorem, \mathcal{F} forms a pre-compact class of maps.

Dynamics of a map $h \in \mathcal{F}$;
h has a parabolic fixed point at 0 ; the orbit of c.p. tends to 0 .

If ρ is small enough, $\alpha \ltimes h$ has two preferred fixed points at 0 and $\sigma=\sigma(\alpha \ltimes h) .|\sigma|=O(|\alpha|)$.

We have

$$
(\alpha \ltimes h)^{\prime}(0)=e^{2 \pi i \alpha}, \quad(\alpha \ltimes h)^{\prime}(\sigma)=e^{2 \pi i \beta}
$$

where β is a complex number with $-1 / 2<\operatorname{Re} \beta \leq 1 / 2$.

If ρ is small enough, $\alpha \ltimes h$ has two preferred fixed points at 0 and $\sigma=\sigma(\alpha \ltimes h) .|\sigma|=O(|\alpha|)$.

We have

$$
(\alpha \ltimes h)^{\prime}(0)=e^{2 \pi i \alpha}, \quad(\alpha \ltimes h)^{\prime}(\sigma)=e^{2 \pi i \beta}
$$

where β is a complex number with $-1 / 2<\operatorname{Re} \beta \leq 1 / 2$.

There is a simply connected region

$$
\mathcal{P}_{\alpha \ltimes h} \subset \operatorname{Dom}(h)
$$

which is bounded by analytic curves landing at $0, \sigma$, and c.p., as well as a univalent map

$$
\Phi_{\alpha \ltimes h}: \mathcal{P}_{\alpha \ltimes h} \rightarrow \mathbb{C}
$$

such that

$$
\Phi_{\alpha \ltimes h}((\alpha \ltimes h)(z))=\Phi_{\alpha \ltimes h}(z)+1, \text { on } \mathcal{P}_{\alpha \ltimes h}, \quad \Phi_{\alpha \ltimes h}(\text { с.p. })=0 .
$$

Proposition (Ch. 2009)

There is a constant k_{1} independent of α and h such that one may choose $\mathcal{P}_{\alpha \ltimes h}$ and $\Phi_{\alpha \ltimes h}$ with

$$
\Phi_{\alpha \ltimes h}\left(\mathcal{P}_{\alpha \ltimes h}\right)=\left\{z \in \mathbb{C} \left\lvert\, 0<\operatorname{Re} z \leq \operatorname{Re} \frac{1}{\alpha}-k_{1}\right.\right\}
$$

and for $y \geq 0$,

$$
\arg \Phi_{\alpha \ltimes h}^{-1}(i y) \simeq-2 \pi y \operatorname{Im} \alpha+\arg \sigma+C_{\alpha \ltimes h} .
$$

We drop the subscripts $\alpha \ltimes h$ from $\mathcal{P}_{\alpha \ltimes h}$ and $\Phi_{\alpha \ltimes h, \ldots}$
Define

$$
\begin{gathered}
A=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,2 \leq \operatorname{Im} \Phi(z)\} \\
C=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,-2 \leq \operatorname{Im} \Phi(z) \leq 2\}
\end{gathered}
$$

We drop the subscripts $\alpha \ltimes h$ from $\mathcal{P}_{\alpha \ltimes h}$ and $\Phi_{\alpha \ltimes h}, \ldots$
Define

$$
\begin{gathered}
A=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,2 \leq \operatorname{Im} \Phi(z)\} \\
C=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,-2 \leq \operatorname{Im} \Phi(z) \leq 2\}
\end{gathered}
$$

It follows from the work of Inou-Shishikura that there are chains

$$
A^{k} \xrightarrow[1-1]{\alpha \ltimes h} A^{k-1} \xrightarrow[1-1]{\alpha \ltimes h} \ldots \xrightarrow[1-1]{\stackrel{\alpha \ltimes h}{\longrightarrow}} A^{1} \xrightarrow[1-1]{\alpha \ltimes h} A
$$

and

$$
C^{k} \xrightarrow[1-1]{\alpha \ltimes h} C^{k-1} \xrightarrow[1-1]{\alpha \ltimes h} \ldots \xrightarrow[1-1]{\stackrel{\alpha \ltimes h}{\longrightarrow}} C^{1} \xrightarrow[2-1]{\alpha \ltimes h} C
$$

where A^{k} and C^{k} are contained in \mathcal{P}.

We drop the subscripts $\alpha \ltimes h$ from $\mathcal{P}_{\alpha \ltimes h}$ and $\Phi_{\alpha \ltimes h}, \ldots$
Define

$$
\begin{gathered}
A=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,2 \leq \operatorname{Im} \Phi(z)\} \\
C=\{z \in \mathcal{P}: 1 / 2 \leq \operatorname{Re}(\Phi(z)) \leq 3 / 2,-2 \leq \operatorname{Im} \Phi(z) \leq 2\}
\end{gathered}
$$

It follows from the work of Inou-Shishikura that there are chains

$$
A^{k} \xrightarrow[1-1]{\alpha \ltimes h} A^{k-1} \xrightarrow[1-1]{\alpha \ltimes h} \ldots \xrightarrow[1-1]{\alpha \ltimes h} A^{1} \xrightarrow[1-1]{\alpha \ltimes h} A
$$

and

$$
C^{k} \xrightarrow[1-1]{\alpha \ltimes h} C^{k-1} \xrightarrow[1-1]{\alpha \ltimes h} \ldots \xrightarrow[1-1]{\stackrel{\alpha \ltimes h}{\longrightarrow}} C^{1} \xrightarrow[2-1]{\alpha \ltimes h} C
$$

where A^{k} and C^{k} are contained in \mathcal{P}.
Prop. (Ch.) k is uniformly bounded from above independent of α and h.

Let

$$
E=\Phi \circ(\alpha \ltimes h)^{\circ k} \circ \Phi^{-1}: \Phi\left(A^{k} \cup C^{k}\right) \rightarrow \Phi(A \cup C) .
$$

Let

$$
E=\Phi \circ(\alpha \ltimes h)^{\circ k} \circ \Phi^{-1}: \Phi\left(A^{k} \cup C^{k}\right) \rightarrow \Phi(A \cup C) .
$$

We have $E(\zeta+1)=E(\zeta)+1$ on the boundary of $\Phi\left(A^{k} \cup C^{k}\right)$.

Let

$$
E=\Phi \circ(\alpha \ltimes h)^{\circ k} \circ \Phi^{-1}: \Phi\left(A^{k} \cup C^{k}\right) \rightarrow \Phi(A \cup C) .
$$

We have $E(\zeta+1)=E(\zeta)+1$ on the boundary of $\Phi\left(A^{k} \cup C^{k}\right)$.
E projects under $\operatorname{Exp}(\zeta)=\frac{-4}{27} e^{2 \pi i \zeta}$ to a holomorphic map defined on a punctured neighborhood of 0 . That is, there is a map $\mathcal{R}_{\text {NP-t }}(\alpha \ltimes h)$ with

$$
\mathcal{R}_{\mathrm{NP-t}}(\alpha \ltimes h) \circ \mathbb{E} \operatorname{xp}(\zeta)=\mathbb{E x p} \circ E(\zeta)
$$

It follows that

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)(z) \simeq e^{-2 \pi i \frac{-1}{\alpha}} z+a_{2} z^{2}+\ldots
$$

The above map is called the top near-parabolic renormalization of $\alpha \ltimes h$.

It follows that

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)(z) \simeq e^{-2 \pi i \frac{-1}{\alpha}} z+a_{2} z^{2}+\ldots
$$

The above map is called the top near-parabolic renormalization of $\alpha \ltimes h$.
Q: How does this correspond to a "return map"?

It follows that

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)(z) \simeq e^{-2 \pi i \frac{-1}{\alpha}} z+a_{2} z^{2}+\ldots
$$

The above map is called the top near-parabolic renormalization of $\alpha \ltimes h$.
Q: How does this correspond to a "return map"?
Key point: while the return map may require large number of iterates, renormalization is defined using the composition of $k+2$ maps?

It follows that

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)(z) \simeq e^{-2 \pi i \frac{-1}{\alpha}} z+a_{2} z^{2}+\ldots
$$

The above map is called the top near-parabolic renormalization of $\alpha \ltimes h$.
Q: How does this correspond to a "return map"?
Key point: while the return map may require large number of iterates, renormalization is defined using the composition of $k+2$ maps?

Inou-Shishikura: The above map has the same covering structure as the one of P on U ! That is,

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h) \in\left\{\frac{-1}{\alpha} \bmod \mathbb{Z}\right\} \ltimes \mathcal{F} .
$$

There is a similar process to define a "return map" near σ-fixed point: It gives us

$$
\mathcal{R}_{\mathrm{NP}-\mathrm{b}}(\alpha \ltimes h) \in\left\{\frac{-1}{\beta} \bmod \mathbb{Z}\right\} \ltimes \mathcal{F} .
$$

Let

$$
Q_{0}(z)=z+\frac{27}{16} z^{2}
$$

so that its critical value lies at $-4 / 27$.

Let

$$
Q_{0}(z)=z+\frac{27}{16} z^{2},
$$

so that its critical value lies at $-4 / 27$.
Then

$$
\alpha \ltimes Q_{0}=e^{2 \pi i \alpha} z+\frac{27}{16} e^{4 \pi i \alpha} z^{2}
$$

Let

$$
Q_{0}(z)=z+\frac{27}{16} z^{2}
$$

so that its critical value lies at $-4 / 27$.
Then

$$
\alpha \ltimes Q_{0}=e^{2 \pi i \alpha} z+\frac{27}{16} e^{4 \pi i \alpha} z^{2}
$$

$\alpha \ltimes Q_{0}$ does not belong to $\alpha \ltimes \mathcal{F}$!
However, $\mathcal{R}_{\text {NP-t }}\left(\alpha \ltimes Q_{0}\right)$ and $\mathcal{R}_{\text {NP-b }}\left(\alpha \ltimes Q_{0}\right)$ are defined in the same fashion, and

$$
\begin{aligned}
& \mathcal{R}_{\mathrm{NP-t}}\left(\alpha \ltimes Q_{0}\right) \in\left\{\frac{-1}{\alpha} \bmod \mathbb{Z}\right\} \ltimes \mathcal{F}, \\
& \mathcal{R}_{\mathrm{NP-b}}\left(\alpha \ltimes Q_{0}\right) \in\left\{\frac{-1}{\beta} \bmod \mathbb{Z}\right\} \ltimes \mathcal{F} .
\end{aligned}
$$

Lecture II:

Hyperbolicity of the near-parabolic renormalization operators

We are interested in the dynamics of the operators

$$
\begin{aligned}
& \mathcal{R}_{\mathrm{NP-t}}(\alpha \ltimes h)=\hat{\alpha}(\alpha \ltimes h) \ltimes \hat{h}(\alpha \ltimes h) \\
& \mathcal{R}_{\mathrm{NP}-\mathrm{b}}(\alpha \ltimes h)=\check{\alpha}(\alpha \ltimes h) \ltimes \check{h}(\alpha \ltimes h)
\end{aligned}
$$

acting on $A(\rho) \ltimes \mathcal{F}$ with values in $\mathbb{C} \ltimes \mathcal{F}$.

We are interested in the dynamics of the operators

$$
\begin{aligned}
& \mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)=\hat{\alpha}(\alpha \ltimes h) \ltimes \hat{h}(\alpha \ltimes h) \\
& \mathcal{R}_{\mathrm{NPP-b}}(\alpha \ltimes h)=\check{\alpha}(\alpha \ltimes h) \ltimes \check{h}(\alpha \ltimes h)
\end{aligned}
$$

acting on $A(\rho) \ltimes \mathcal{F}$ with values in $\mathbb{C} \ltimes \mathcal{F}$.
Also recall that

$$
\hat{\alpha}(\alpha \ltimes h)=\frac{-1}{\alpha} \bmod \mathbb{Z}, \quad \check{\alpha}(\alpha \ltimes h)=\frac{-1}{\beta(\alpha \ltimes h)} \bmod \mathbb{Z} .
$$

We are interested in the dynamics of the operators

$$
\begin{aligned}
& \mathcal{R}_{\mathrm{NP}-\mathrm{t}}(\alpha \ltimes h)=\hat{\alpha}(\alpha \ltimes h) \ltimes \hat{h}(\alpha \ltimes h) \\
& \mathcal{R}_{\mathrm{NPP-b}}(\alpha \ltimes h)=\check{\alpha}(\alpha \ltimes h) \ltimes \check{h}(\alpha \ltimes h)
\end{aligned}
$$

acting on $A(\rho) \ltimes \mathcal{F}$ with values in $\mathbb{C} \ltimes \mathcal{F}$.
Also recall that

$$
\hat{\alpha}(\alpha \ltimes h)=\frac{-1}{\alpha} \bmod \mathbb{Z}, \quad \check{\alpha}(\alpha \ltimes h)=\frac{-1}{\beta(\alpha \ltimes h)} \bmod \mathbb{Z} .
$$

$\mathcal{R}_{\text {NP-t }}$ preserves vertical fibers, while $\mathcal{R}_{\text {NP-b }}$ does not preserve them.
\mathcal{F} is equipped with a Teichmüller metric: for $f=P \circ \varphi^{-1}$ and $g=P \circ \psi^{-1}$ in \mathcal{F},

$$
\mathrm{d}_{\text {Teich }}(f, g)=\inf \left\{\log \operatorname{Dil}\left(\hat{\psi} \circ \hat{\varphi}^{-1}\right)\right\}
$$

where inf is taken over all quasi-conformal extensions $\hat{\varphi}$ and $\hat{\psi}$ of φ and ψ onto \mathbb{C}.
Here,

$$
\operatorname{Dil}(\eta)=\sup _{z \in \operatorname{Dom} \eta} \frac{\left|\eta_{z}\right|+\left|\eta_{\bar{z}}\right|}{\left|\eta_{z}\right|-\left|\eta_{\bar{z}}\right|} .
$$

is a measure of conformality of h.
\mathcal{F} is equipped with a Teichmüller metric: for $f=P \circ \varphi^{-1}$ and $g=P \circ \psi^{-1}$ in \mathcal{F},

$$
\mathrm{d}_{\text {Teich }}(f, g)=\inf \left\{\log \operatorname{Dil}\left(\hat{\psi} \circ \hat{\varphi}^{-1}\right)\right\}
$$

where inf is taken over all quasi-conformal extensions $\hat{\varphi}$ and $\hat{\psi}$ of φ and ψ onto \mathbb{C}. Here,

$$
\operatorname{Dil}(\eta)=\sup _{z \in \operatorname{Dom} \eta} \frac{\left|\eta_{z}\right|+\left|\eta_{\bar{z}}\right|}{\left|\eta_{z}\right|-\left|\eta_{\bar{z}}\right|} .
$$

is a measure of conformality of h.
$\mathrm{d}_{\text {Teich }}\left(f_{n}, f\right) \rightarrow 0$ implies $f_{n} \rightarrow f$ uniformly on compact sets, but not vice versa.
\mathcal{F} is equipped with a Teichmüller metric:
for $f=P \circ \varphi^{-1}$ and $g=P \circ \psi^{-1}$ in \mathcal{F},

$$
\mathrm{d}_{\text {Teich }}(f, g)=\inf \left\{\log \operatorname{Dil}\left(\hat{\psi} \circ \hat{\varphi}^{-1}\right)\right\}
$$

where inf is taken over all quasi-conformal extensions $\hat{\varphi}$ and $\hat{\psi}$ of φ and ψ onto \mathbb{C}.
Here,

$$
\operatorname{Dil}(\eta)=\sup _{z \in \operatorname{Dom} \eta} \frac{\left|\eta_{z}\right|+\left|\eta_{\bar{z}}\right|}{\left|\eta_{z}\right|-\left|\eta_{\bar{z}}\right|} .
$$

is a measure of conformality of h.
$\mathrm{d}_{\text {Teich }}\left(f_{n}, f\right) \rightarrow 0$ implies $f_{n} \rightarrow f$ uniformly on compact sets, but not vice versa.
$A(\rho)$ is equipped with the Euclidean metric.

We wish to understand the derivatives of these operators (infinite by infinite matrices!)

$$
\begin{aligned}
& D \mathcal{R}_{\mathrm{NP-t}}=\left[\begin{array}{ll}
\frac{\partial \hat{\alpha}}{\partial \alpha} & \frac{\partial \hat{h}(\alpha \ltimes h)}{\partial \alpha} \\
\frac{\partial \hat{\alpha}}{\partial h} & \frac{\partial \hat{h}(\alpha \ltimes h)}{\partial h}
\end{array}\right] \\
& D \mathcal{R}_{\mathrm{NP-b}}=\left[\begin{array}{ll}
\frac{\partial \check{\alpha}}{\partial \alpha} & \frac{\partial \check{h}(\alpha \ltimes h)}{\partial \alpha} \\
\frac{\partial \tilde{\alpha}}{\partial h} & \frac{\partial \check{h}(\alpha \ltimes h)}{\partial h}
\end{array}\right]
\end{aligned}
$$

The operators $\mathcal{R}_{\text {NP-t }}$ and $\mathcal{R}_{\text {NP-b }}$ are holomorphic.

The operators $\mathcal{R}_{\text {NP-t }}$ and $\mathcal{R}_{\text {NP-b }}$ are holomorphic. Recall that,

$$
h \mapsto \hat{h}(\alpha \ltimes h): \mathcal{F} \rightarrow \mathcal{F}, \quad h \mapsto \check{h}(\alpha \ltimes h): \mathcal{F} \rightarrow \mathcal{F} .
$$

By Royden-Gardiner,

$$
\begin{aligned}
& \mathrm{d}_{\text {Teich }}\left(\hat{h}\left(\alpha \ltimes h_{1}\right), \hat{h}\left(\alpha \ltimes h_{2}\right) \leq 1 \cdot \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right),\right. \\
& \mathrm{d}_{\text {Teich }}\left(\hat{h}\left(\alpha \ltimes h_{1}\right), \hat{h}\left(\alpha \ltimes h_{2}\right) \leq 1 \cdot \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right)\right.
\end{aligned}
$$

The operators $\mathcal{R}_{\text {NP-t }}$ and $\mathcal{R}_{\text {NP-b }}$ are holomorphic. Recall that,

$$
h \mapsto \hat{h}(\alpha \ltimes h): \mathcal{F} \rightarrow \mathcal{F}, \quad h \mapsto \check{h}(\alpha \ltimes h): \mathcal{F} \rightarrow \mathcal{F} .
$$

By Royden-Gardiner,

$$
\begin{aligned}
& \mathrm{d}_{\text {Teich }}\left(\hat{h}\left(\alpha \ltimes h_{1}\right), \hat{h}\left(\alpha \ltimes h_{2}\right) \leq 1 \cdot \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right),\right. \\
& \mathrm{d}_{\text {Teich }}\left(\hat{h}\left(\alpha \ltimes h_{1}\right), \hat{h}\left(\alpha \ltimes h_{2}\right) \leq 1 \cdot \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right)\right.
\end{aligned}
$$

Indeed, Inou-Shishikura showed that these are uniform contractions!

The operators $\mathcal{R}_{\text {NP-t }}$ and $\mathcal{R}_{\text {NP-b }}$ are holomorphic. Recall that,

$$
h \mapsto \hat{h}(\alpha \ltimes h): \mathcal{F} \rightarrow \mathcal{F}, \quad h \mapsto \check{h}(\alpha \ltimes h): \mathcal{F} \rightarrow \mathcal{F} .
$$

By Royden-Gardiner,

$$
\begin{aligned}
& \mathrm{d}_{\text {Teich }}\left(\hat{h}\left(\alpha \ltimes h_{1}\right), \hat{h}\left(\alpha \ltimes h_{2}\right) \leq 1 \cdot \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right),\right. \\
& \mathrm{d}_{\text {Teich }}\left(\hat{h}\left(\alpha \ltimes h_{1}\right), \hat{h}\left(\alpha \ltimes h_{2}\right) \leq 1 \cdot \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right)\right.
\end{aligned}
$$

Indeed, Inou-Shishikura showed that these are uniform contractions!
In my symbolic notations, these mean

$$
\left|\frac{\partial \hat{h}(\alpha \ltimes h)}{\partial h}\right| \leq 1, \quad\left|\frac{\partial \check{h}(\alpha \ltimes h)}{\partial h}\right| \leq 1 .
$$

Recall that

$$
\hat{\alpha}(\alpha \ltimes h)=\frac{-1}{\alpha} \bmod \mathbb{Z}
$$

Then,

$$
\frac{\partial \hat{\alpha}}{\partial \alpha}=\frac{1}{\alpha^{2}}
$$

and

$$
\frac{\partial \hat{\alpha}}{\partial h}=0 .
$$

Recall that

$$
\check{\alpha}(\alpha \ltimes h)=\frac{-1}{\beta(\alpha \ltimes h)} \bmod \mathbb{Z}, \quad(\alpha \ltimes h)^{\prime}(\sigma)=e^{2 \pi i \beta} .
$$

we need

$$
\frac{\partial \check{\alpha}(\alpha \ltimes h)}{\partial \alpha}, \quad \frac{\partial \check{\alpha}(\alpha \ltimes h)}{\partial h}
$$

Proposition \exists a Jordan domain $W \ni 0$, independence of α and h, such that every $\alpha \ltimes h \in A_{\rho} \ltimes \mathcal{F}$ has only two fixed points 0 and $\sigma(\alpha \ltimes h)$ in W.

Recall that

$$
\check{\alpha}(\alpha \ltimes h)=\frac{-1}{\beta(\alpha \ltimes h)} \bmod \mathbb{Z}, \quad(\alpha \ltimes h)^{\prime}(\sigma)=e^{2 \pi i \beta} .
$$

we need

$$
\frac{\partial \check{\alpha}(\alpha \ltimes h)}{\partial \alpha}, \quad \frac{\partial \check{\alpha}(\alpha \ltimes h)}{\partial h}
$$

Proposition \exists a Jordan domain $W \ni 0$, independence of α and h, such that every $\alpha \ltimes h \in A_{\rho} \ltimes \mathcal{F}$ has only two fixed points 0 and $\sigma(\alpha \ltimes h)$ in W.
Then,

$$
I(\alpha \ltimes h):=\frac{1}{2 \pi i} \int_{\partial W} \frac{1}{z-(\alpha \ltimes h)(z)} d z=\frac{1}{1-e^{2 \pi i \alpha}}+\frac{1}{1-e^{2 \pi i \beta}} .
$$

Recall

$$
I(\alpha \ltimes h):=\frac{1}{2 \pi i} \int_{\partial W} \frac{1}{z-(\alpha \ltimes h)(z)} d z=\frac{1}{1-e^{2 \pi i \alpha}}+\frac{1}{1-e^{2 \pi i \beta}} .
$$

Prop. We have

$$
\left|I\left(\alpha \ltimes h_{1}\right)\right| \leq B_{1}, \quad\left|\frac{\partial}{\partial \alpha} I\left(\alpha \ltimes h_{1}\right)\right| \leq B_{2} .
$$

Recall

$$
I(\alpha \ltimes h):=\frac{1}{2 \pi i} \int_{\partial W} \frac{1}{z-(\alpha \ltimes h)(z)} d z=\frac{1}{1-e^{2 \pi i \alpha}}+\frac{1}{1-e^{2 \pi i \beta}}
$$

Prop. We have

$$
\left|I\left(\alpha \ltimes h_{1}\right)\right| \leq B_{1}, \quad\left|\frac{\partial}{\partial \alpha} I\left(\alpha \ltimes h_{1}\right)\right| \leq B_{2} .
$$

These imply

$$
B_{3}^{-1}|\alpha| \leq\left|\beta\left(\alpha \ltimes h_{1}\right)\right| \leq B_{3}|\alpha|, \quad B_{4}^{-1} \leq\left|\frac{\partial \beta}{\partial \alpha}\left(\alpha \ltimes h_{1}\right)\right| \leq B_{4} .
$$

Recall

$$
I(\alpha \ltimes h):=\frac{1}{2 \pi i} \int_{\partial W} \frac{1}{z-(\alpha \ltimes h)(z)} d z=\frac{1}{1-e^{2 \pi i \alpha}}+\frac{1}{1-e^{2 \pi i \beta}} .
$$

Prop. We have

$$
\left|I\left(\alpha \ltimes h_{1}\right)\right| \leq B_{1}, \quad\left|\frac{\partial}{\partial \alpha} I\left(\alpha \ltimes h_{1}\right)\right| \leq B_{2} .
$$

These imply

$$
B_{3}^{-1}|\alpha| \leq\left|\beta\left(\alpha \ltimes h_{1}\right)\right| \leq B_{3}|\alpha|, \quad B_{4}^{-1} \leq\left|\frac{\partial \beta}{\partial \alpha}\left(\alpha \ltimes h_{1}\right)\right| \leq B_{4} .
$$

and hence

$$
\frac{\partial \check{\alpha}(\alpha \ltimes h)}{\partial \alpha}=\frac{1}{\beta^{2}} \cdot \frac{\partial \beta}{\partial \alpha} \simeq \frac{1}{\alpha^{2}} .
$$

Recall

$$
I(\alpha \ltimes h):=\frac{1}{2 \pi i} \int_{\partial W} \frac{1}{z-(\alpha \ltimes h)(z)} d z=\frac{1}{1-e^{2 \pi i \alpha}}+\frac{1}{1-e^{2 \pi i \beta}} .
$$

$I(\alpha \ltimes h)$ is a holomorphic function of α and h.

Recall

$$
I(\alpha \ltimes h):=\frac{1}{2 \pi i} \int_{\partial W} \frac{1}{z-(\alpha \ltimes h)(z)} d z=\frac{1}{1-e^{2 \pi i \alpha}}+\frac{1}{1-e^{2 \pi i \beta}} .
$$

$I(\alpha \ltimes h)$ is a holomorphic function of α and h.
Prop. We have

$$
\left|I\left(\alpha \ltimes h_{1}\right)-I\left(\alpha \ltimes h_{2}\right)\right| \leq B_{5} \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right) .
$$

Recall

$$
I(\alpha \ltimes h):=\frac{1}{2 \pi i} \int_{\partial W} \frac{1}{z-(\alpha \ltimes h)(z)} d z=\frac{1}{1-e^{2 \pi i \alpha}}+\frac{1}{1-e^{2 \pi i \beta}}
$$

$I(\alpha \ltimes h)$ is a holomorphic function of α and h.
Prop. We have

$$
\left|I\left(\alpha \ltimes h_{1}\right)-I\left(\alpha \ltimes h_{2}\right)\right| \leq B_{5} \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right) .
$$

+ some analysis we get

$$
\left|\beta\left(\alpha \times h_{1}\right)-\beta\left(\alpha \ltimes h_{2}\right)\right| \leq B_{6}|\alpha|^{2} \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right)
$$

Recall

$$
I(\alpha \ltimes h):=\frac{1}{2 \pi i} \int_{\partial W} \frac{1}{z-(\alpha \ltimes h)(z)} d z=\frac{1}{1-e^{2 \pi i \alpha}}+\frac{1}{1-e^{2 \pi i \beta}} .
$$

$I(\alpha \ltimes h)$ is a holomorphic function of α and h.
Prop. We have

$$
\left|I\left(\alpha \ltimes h_{1}\right)-I\left(\alpha \ltimes h_{2}\right)\right| \leq B_{5} \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right) .
$$

+ some analysis we get

$$
\left|\beta\left(\alpha \times h_{1}\right)-\beta\left(\alpha \ltimes h_{2}\right)\right| \leq B_{6}|\alpha|^{2} \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right)
$$

Hence,

$$
\begin{aligned}
\left|\check{\alpha}\left(\alpha \ltimes h_{1}\right)-\check{\alpha}\left(\alpha \ltimes h_{2}\right)\right| & =\left|\frac{-1}{\beta\left(\alpha \ltimes h_{1}\right)}+\frac{1}{\beta\left(\alpha \ltimes h_{2}\right)}\right| \\
& \leq \frac{B_{3}^{2}}{|\alpha|^{2}}\left|\beta\left(\alpha \ltimes h_{1}\right)-\beta\left(\alpha \ltimes h_{2}\right)\right| \\
& \leq \frac{B_{3}^{2}}{|\alpha|^{2}} B_{6}\left|\alpha^{2}\right| \mathrm{d}_{\text {Teich }}\left(h_{1}, h_{2}\right)=B_{3}^{2} B_{6} \mathrm{~d}_{\text {Teich }}\left(h_{1}, h_{2}\right) .
\end{aligned}
$$

In my symbolic notation, the previous bound means

$$
\left|\frac{\partial \check{\alpha}(\alpha \ltimes h)}{\partial h}\right| \leq B_{3}^{2} B_{6}
$$

For every fixed $h \in \mathcal{F}$,

$$
\alpha \mapsto \hat{h}(\alpha, h), \alpha \mapsto \breve{h}(\alpha \ltimes h),
$$

$\operatorname{map} A_{\rho}$ into \mathcal{F}.

For every fixed $h \in \mathcal{F}$,

$$
\alpha \mapsto \hat{h}(\alpha, h), \alpha \mapsto \breve{h}(\alpha \ltimes h),
$$

map A_{ρ} into \mathcal{F}.
These have different nature, mapping a domain in \mathbb{C} into the infinite dimensional Teichmüller space!

For every fixed $h \in \mathcal{F}$,

$$
\alpha \mapsto \hat{h}(\alpha, h), \alpha \mapsto \breve{h}(\alpha \ltimes h),
$$

map A_{ρ} into \mathcal{F}.
These have different nature, mapping a domain in \mathbb{C} into the infinite dimensional Teichmüller space!

To control these maps, we need to understand how the Fatou coordinate $\Phi_{\alpha \ltimes h}$ depends on α, and how the renormalization is constructed.

For every fixed $h \in \mathcal{F}$,

$$
\alpha \mapsto \hat{h}(\alpha, h), \alpha \mapsto \check{h}(\alpha \ltimes h),
$$

$\operatorname{map} A_{\rho}$ into \mathcal{F}.
These have different nature, mapping a domain in \mathbb{C} into the infinite dimensional Teichmüller space!

To control these maps, we need to understand how the Fatou coordinate $\Phi_{\alpha \ltimes h}$ depends on α, and how the renormalization is constructed.

Theorem (Ch. 2015)
There is $L>0$ such that for every $h \in \mathcal{F}$ the maps

$$
\alpha \mapsto \hat{h}(\alpha, h) \text { and } \alpha \mapsto \check{h}(\alpha, h)
$$

are L-Lipschitz with respect to $\mathrm{d}_{\text {Eucl }}$ on $A(\rho)$ and $\mathrm{d}_{\text {Teich }}$ on \mathcal{F}.

Recall

$$
D \mathcal{R}_{\mathrm{NP}-\mathrm{t}}=\left[\begin{array}{ll}
\frac{\partial \hat{\alpha}}{\partial \alpha} & \frac{\partial \hat{h}(\alpha \ltimes h)}{\partial \alpha} \\
\frac{\partial \hat{\alpha}}{\partial h} & \frac{\partial \hat{h}(\alpha \ltimes h)}{\partial h}
\end{array}\right] \quad D \mathcal{R}_{\mathrm{NP-b}}=\left[\begin{array}{ll}
\frac{\partial \check{\alpha}}{\partial \alpha} & \frac{\partial \check{h}(\alpha \ltimes h)}{\partial \alpha} \\
\frac{\partial \check{\alpha}}{\partial h} & \frac{\partial \check{h}(\alpha \ltimes h)}{\partial h}
\end{array}\right]
$$

Recall

$$
D \mathcal{R}_{\mathrm{NP-t}}=\left[\begin{array}{ll}
\frac{\partial \hat{\alpha}}{\partial \alpha} & \frac{\partial \hat{h}(\alpha \ltimes h)}{\partial \alpha} \\
\frac{\partial \hat{\alpha}}{\partial h} & \frac{\partial \hat{h}(\alpha \ltimes h)}{\partial h}
\end{array}\right] \quad D \mathcal{R}_{\mathrm{NP-b}}=\left[\begin{array}{ll}
\frac{\partial \check{\alpha}}{\partial \alpha} & \frac{\partial \check{h}(\alpha \propto h)}{\partial \alpha} \\
\frac{\partial \check{\alpha}}{\partial h} & \frac{\partial \check{h}(\alpha \ltimes h)}{\partial h}
\end{array}\right]
$$

Combining the previous bounds:

$$
\left|D \mathcal{R}_{\mathrm{NP}-\mathrm{t}}\right| \simeq\left[\begin{array}{cc}
\frac{1}{\alpha^{2}} & L \\
0 & 1
\end{array}\right] \quad\left|D \mathcal{R}_{\mathrm{NP}-\mathrm{b}}\right| \simeq\left[\begin{array}{cc}
\frac{1}{\alpha^{2}} & L \\
C & 1
\end{array}\right]
$$

Recall

$$
D \mathcal{R}_{\mathrm{NP}-\mathrm{t}}=\left[\begin{array}{ll}
\frac{\partial \hat{\alpha}}{\partial \alpha} & \frac{\partial \hat{h}(\alpha \ltimes h)}{\partial \alpha} \\
\frac{\partial \hat{\alpha}}{\partial h} & \frac{\partial \hat{h}(\alpha \ltimes h)}{\partial h}
\end{array}\right] \quad D \mathcal{R}_{\mathrm{NP}-\mathrm{b}}=\left[\begin{array}{ll}
\frac{\partial \check{\alpha}}{\partial \alpha} & \frac{\partial \check{h}(\alpha \ltimes h)}{\partial \alpha} \\
\frac{\partial \tilde{\alpha}}{\partial h} & \frac{\partial \check{h}(\alpha \ltimes h)}{\partial h}
\end{array}\right]
$$

Combining the previous bounds:

$$
\left|D \mathcal{R}_{\mathrm{NP}-\mathrm{t}}\right| \simeq\left[\begin{array}{cc}
\frac{1}{\alpha^{2}} & L \\
0 & 1
\end{array}\right] \quad\left|D \mathcal{R}_{\mathrm{NP}-\mathrm{b}}\right| \simeq\left[\begin{array}{cc}
\frac{1}{\alpha^{2}} & L \\
C & 1
\end{array}\right]
$$

What does this imply?

Let $s \mapsto \Upsilon(s)=(\alpha(s) \ltimes h(s))$, for s in a connected set $\Delta \subseteq \mathbb{C}$, and with values in the set $A_{\infty} \ltimes \mathcal{F}$.

Let $s \mapsto \Upsilon(s)=(\alpha(s) \ltimes h(s))$, for s in a connected set $\Delta \subseteq \mathbb{C}$, and with values in the set $A_{\infty} \ltimes \mathcal{F}$.

For $k>0$, we say that Υ is k-horizontal, if Υ is continuous on Δ, and for all $s_{1}, s_{2} \in \Delta$ we have

$$
\mathrm{d}_{\text {Teich }}\left(h\left(s_{1}\right), h\left(s_{2}\right)\right) \leq k\left|\alpha\left(s_{1}\right)-\alpha\left(s_{2}\right)\right| .
$$

Let $s \mapsto \Upsilon(s)=(\alpha(s) \ltimes h(s))$, for s in a connected set $\Delta \subseteq \mathbb{C}$, and with values in the set $A_{\infty} \ltimes \mathcal{F}$.

For $k>0$, we say that Υ is k-horizontal, if Υ is continuous on Δ, and for all $s_{1}, s_{2} \in \Delta$ we have

$$
\mathrm{d}_{\text {Teich }}\left(h\left(s_{1}\right), h\left(s_{2}\right)\right) \leq k\left|\alpha\left(s_{1}\right)-\alpha\left(s_{2}\right)\right|
$$

Theorem (Ch., Shishikura, 2015)
There are $\rho^{\prime}>0$ and $k>0$ such that for every k-horizontal curve Υ in $A_{\rho^{\prime}} \ltimes \mathcal{F}$, the curves $\mathcal{R}_{\text {NP-t }}(\Upsilon)$ and $\mathcal{R}_{\text {NP-b }}(\Upsilon)$ are k-horizontal in $A_{\infty} \ltimes \mathcal{F}$.

Let $s \mapsto \Upsilon(s)=(\alpha(s) \ltimes h(s))$, for s in a connected set $\Delta \subseteq \mathbb{C}$, and with values in the set $A_{\infty} \ltimes \mathcal{F}$.

For $k>0$, we say that Υ is k-horizontal, if Υ is continuous on Δ, and for all $s_{1}, s_{2} \in \Delta$ we have

$$
\mathrm{d}_{\text {Teich }}\left(h\left(s_{1}\right), h\left(s_{2}\right)\right) \leq k\left|\alpha\left(s_{1}\right)-\alpha\left(s_{2}\right)\right|
$$

Theorem (Ch., Shishikura, 2015)
There are $\rho^{\prime}>0$ and $k>0$ such that for every k-horizontal curve Υ in $A_{\rho^{\prime}} \ltimes \mathcal{F}$, the curves $\mathcal{R}_{\text {NP-t }}(\Upsilon)$ and $\mathcal{R}_{\text {NP-b }}(\Upsilon)$ are k-horizontal in $A_{\infty} \ltimes \mathcal{F}$.

In other words, $\mathcal{R}_{\text {NP-t }}$ and $\mathcal{R}_{\text {NP-b }}$ map cone-fields of k_{1}-horizontal curves into themselves.

Let $\kappa=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right) \in\{t, b\}^{\mathbb{N}}$. For $n \geq 1$, consider

$$
\Lambda\left(\left\langle\kappa_{i}\right\rangle_{i=1}^{n}\right)=\left\{\alpha \ltimes h \mid \mathcal{R}_{\mathrm{NP}-\kappa_{\mathrm{n}}} \circ \cdots \circ \mathcal{R}_{\mathrm{NP}-\kappa_{1}}(\alpha \ltimes h) \text { is defined }\right\} .
$$

Let $\kappa=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right) \in\{t, b\}^{\mathbb{N}}$. For $n \geq 1$, consider

$$
\Lambda\left(\left\langle\kappa_{i}\right\rangle_{i=1}^{n}\right)=\left\{\alpha \ltimes h \mid \mathcal{R}_{\mathrm{NP}-\kappa_{\mathrm{n}}} \circ \cdots \circ \mathcal{R}_{\mathrm{NP}-\kappa_{1}}(\alpha \ltimes h) \text { is defined }\right\} .
$$

Example, $\Lambda\left(\kappa_{1}\right)=A_{\rho} \ltimes \mathcal{F}$

Let $\kappa=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right) \in\{t, b\}^{\mathbb{N}}$. For $n \geq 1$, consider

$$
\Lambda\left(\left\langle\kappa_{i}\right\rangle_{i=1}^{n}\right)=\left\{\alpha \ltimes h \mid \mathcal{R}_{\mathrm{NP}-\kappa_{\mathrm{n}}} \circ \cdots \circ \mathcal{R}_{\mathrm{NP}-\kappa_{1}}(\alpha \ltimes h) \text { is defined }\right\} .
$$

Example, $\Lambda\left(\kappa_{1}\right)=A_{\rho} \ltimes \mathcal{F}$
$\Lambda\left(t, \kappa_{2}\right)=$ "dark grey region" $\ltimes \mathcal{F} ; \Lambda\left(b, \kappa_{2}\right) \simeq$ "black region" $\ltimes \mathcal{F}$:

The invariance of k-horizontal curves implies that

Theorem (Ch., Shishikura 2015)
For all k-horizontal family of maps $\Upsilon: A_{\rho^{\prime}} \rightarrow A_{\rho^{\prime}} \ltimes \mathcal{F}$ and all $\kappa \in\{t, b\}^{\mathbb{N}}$, every connected component of the set $\Lambda(\kappa) \cap \Upsilon\left(A_{\rho^{\prime}}\right)$ is a single point.

It follows from the above Theorem and some more work:
Theorem (Ch., Shishikura 2015)
The renormalizations operators $\mathcal{R}_{\mathrm{NP}-\mathrm{t}}$ and $\mathcal{R}_{\mathrm{NP}-\mathrm{b}}$ are uniformly hyperbolic on $A_{\rho^{\prime}} \ltimes \mathcal{F}_{0}$.
Moreover, $D \mathcal{R}_{\text {NP-t }}$ and $D \mathcal{R}_{\text {NP-b }}$ at each point in $A_{\rho^{\prime}} \ltimes \mathcal{F}_{0}$ have an invariant one-dimensional expanding direction and an invariant uniformly contracting co-dimension-one direction.

It follows from the above Theorem and some more work:
Theorem (Ch., Shishikura 2015)
The renormalizations operators $\mathcal{R}_{\mathrm{NP}-\mathrm{t}}$ and $\mathcal{R}_{\mathrm{NP}-\mathrm{b}}$ are uniformly hyperbolic on $A_{\rho^{\prime}} \ltimes \mathcal{F}_{0}$.
Moreover, $D \mathcal{R}_{\text {NP-t }}$ and $D \mathcal{R}_{\mathrm{NP}-\mathrm{b}}$ at each point in $A_{\rho^{\prime}} \ltimes \mathcal{F}_{0}$ have an invariant one-dimensional expanding direction and an invariant uniformly contracting co-dimension-one direction.

The above theorem has applications to

- the Feigenbaum-Coullet-Tresser universality of the scaling laws,

It follows from the above Theorem and some more work:
Theorem (Ch., Shishikura 2015)
The renormalizations operators $\mathcal{R}_{\mathrm{NP}-\mathrm{t}}$ and $\mathcal{R}_{\mathrm{NP}-\mathrm{b}}$ are uniformly hyperbolic on $A_{\rho^{\prime}} \ltimes \mathcal{F}_{0}$.
Moreover, $D \mathcal{R}_{\text {NP-t }}$ and $D \mathcal{R}_{\mathrm{NP-b}}$ at each point in $A_{\rho^{\prime}} \ltimes \mathcal{F}_{0}$ have an invariant one-dimensional expanding direction and an invariant uniformly contracting co-dimension-one direction.

The above theorem has applications to

- the Feigenbaum-Coullet-Tresser universality of the scaling laws,
- the geometry of the Mandelbrot set (local-connectivity),

It follows from the above Theorem and some more work:
Theorem (Ch., Shishikura 2015)
The renormalizations operators $\mathcal{R}_{\mathrm{NP}-\mathrm{t}}$ and $\mathcal{R}_{\mathrm{NP}-\mathrm{b}}$ are uniformly hyperbolic on $A_{\rho^{\prime}} \ltimes \mathcal{F}_{0}$.
Moreover, $D \mathcal{R}_{\text {NP-t }}$ and $D \mathcal{R}_{\mathrm{NP-b}}$ at each point in $A_{\rho^{\prime}} \ltimes \mathcal{F}_{0}$ have an invariant one-dimensional expanding direction and an invariant uniformly contracting co-dimension-one direction.

The above theorem has applications to

- the Feigenbaum-Coullet-Tresser universality of the scaling laws,
- the geometry of the Mandelbrot set (local-connectivity),
- dynamics of infinitely polynomial-like renormalizable quadratic polynomials with degenerating geometries,

