
One dimensional real and complex dynamics

Lecture notes for Mathematics Taught Course Centre, Spring 2014

Davoud Cheraghi

December 8, 2014



Contents

1 Fatou/Julia theory 4
Normal families of holomorphic maps . . . . . . . . . . . . . . . . . . 4

Fatou and Julia sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Periodic points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Classification of Fatou components 9
Parabolic fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Dynamics on cycles of Fatou components . . . . . . . . . . . . . . . . 12

3 Measurable dynamics on Julia sets 15
The post critical set . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Expansion on the complement of the post-critical set . . . . . . . . . 15

Hyperbolic rational maps . . . . . . . . . . . . . . . . . . . . . . . . . 18

Ergodic or attracting . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Polynomial dynamics 22
Filled Julia sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bötcher coordinates, external rays, and equipotentials . . . . . . . . . 23

Landing of rays and local connectivity . . . . . . . . . . . . . . . . . 24

Puzzle pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Modulus of an annulus . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Quadratic polynomials and renormalization 27
The Mandelbrot set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Nests of puzzle pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Quadratic-like mappings and straightening . . . . . . . . . . . . . . . 31

quadratic-like renormalization . . . . . . . . . . . . . . . . . . . . . . 32

6 Periodic points in the Julia set 34
Density of hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . 34

Global linearizations in the basins of attraction . . . . . . . . . . . . 34

Persistent cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Repelling cycles are dense . . . . . . . . . . . . . . . . . . . . . . . . 38

2



7 Holomorphic motions and invariant line fields 40
Holomorphic motions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Beltrami coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Invariant line fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
The quadratic family . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Density of hyperbolicity 46
Finitely renormalizable quadratic polynomials . . . . . . . . . . . . . 46
Compactness in the family of quadratic-like mappings . . . . . . . . . 48
Robust infinitely renormalizable quadratics . . . . . . . . . . . . . . . 49

3



Lecture 1

Fatou/Julia theory

Normal families of holomorphic maps

A map f from an open set U ⊆ C to C is called holomorphic, or complex analytic,
if the first derivative

z 7→ f ′(z) = lim
h→0

(f(z + h)− f(z)/h)

is defined and continuous as a function from U to C. Holomorphic maps from
an open set in Ĉ into Ĉ are defined similarly, using local charts. Recall that a
holomorphic map of the Riemann sphere to itself is of the form P (z)/Q(z), for some
polynomials P and Q.

A holomorphic map f is called conformal if the derivative f ′ is non-zero every-
where on U . It is called univalent if it is conformal and one-to-one on U .

The orbits of a holomorphic map f from Ĉ or C to itself are defined as the
sequence of points

z0, z1, z2, . . . , where zn+1 = f(zn).

To study orbits of a holomorphic map, it is more convenient to study families
of nearby orbits at once. This allows to take advantage of the underlying com-
plex structure on the domain and range of the map. For this purpose, we need to
introduce a topology on the space of maps defined on a fixed domain.

Let U and V be open subsets of the Riemann sphere Ĉ, and let fn : U → V ,
n = 1, 2, . . . be a sequence of holomorphic maps. We say that the sequence fn
converges in the compact-open topology, or in the topology of uniform convergence
on compact sets, if there is a holomorphic map g : U → V such that for every
compact subset K ⊆ U the sequence fn converges uniformly to g on K. On the
other hand, we say that the sequence fn diverges locally uniformly from V , if for all
compact subsets K ⊆ U and K ′ ⊆ V , we have fn(K)∩K ′ = ∅, for sufficiently large
n. Note that when the target space V is the whole Riemann sphere Ĉ no sequence
of maps may diverge locally uniformly from V .

A family of maps F from U to V is called normal if every sequence in F has a
subsequence that either converges uniformly on compact subsets of U , or diverges
locally uniformly from V . It is convenient (and important) to have a simple criterion
for the property of normality for families of maps.
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Theorem 1.1 (Montel). Let U be an open subset of Ĉ and F be a family of maps
from U to Ĉ which omits three different values. That is, there are distinct points
a, b, c in Ĉ such that f(U) ⊆ Ĉ \ {a, b, c} for every f ∈ F . Then, the family F is a
normal family.

The proof of the above theorem is based on some foundational theorems in
complex analysis and is not proved here. Interested reader may consult Milnor’s
book “dynamics in one complex variable”.

Exercise 1.1. Consider the family of maps fn(z) = z + n from C or Ĉ to itself.
Show that this sequence diverges locally uniformly from C. However, as a family of
maps on Ĉ, this sequence neither converges or diverges locally uniformly, although
it converges pointwise to a constant map on Ĉ. Similarly, show that the family of
rational maps gn(z) = 1/(n2z − n) converges pointwise to a constant function, but
does not converge locally uniformly.

Exercise 1.2. Show that normality is a local property. That is, let F is a family of
holomorphic maps from U to V . If every point in U has a neighborhood on which
the restrictions of maps in F is normal, then the family F on U is normal. (Hint:
use the diagonal argument.)

Exercise 1.3. Let U be an open subset of Ĉ and V be a compact subset of Ĉ. Show
that a family F of holomorphic maps f : U → V is normal, if the derivatives |f ′(z)|
are uniformly bounded as f varies in F and z varies in a compact subset of U .

Fatou and Julia sets

For a rational map f of Ĉ we denote the n times composition of f with itself using
f ◦n, that is

f ◦n =

n times︷ ︸︸ ︷
f ◦ f ◦ · · · ◦ f .

The Fatou set of f is the set of points in Ĉ that have a neighborhood on which the
family of maps {f ◦n}∞n=0 is normal. The complement of the Fatou set of f is called
the Julia set of f . 1 We shall denote these sets by the notations F (f) and J(f),
respectively.

By definition, the Fatou set is an open subset of the phase space, and the Julia
set is a closed subset of it. Also, it follows that F (f) and J(f) are fully invariant
under f , that is, z ∈ F (f) if and only if f−1(z) ⊆ F (f).

Example 1.2. Let f(z) = z2 on Ĉ. The iterates are given by the formula f ◦n(z) =
z2n . Inside the unit disk |z| < 1, the family of iterates f ◦n converges uniformly on
compact sets to the constant map 0, and similarly on the set |z| > 1 the family
uniformly converges to the constant map ∞ on compact sets. (As a family of maps
on C, the iterates f ◦n diverges uniformly from C.) Thus, the complement of the
unit circle is contained in the Fatou set of f .

1The choice of names are after Pierre Fatou (1878–1929) and Gaston Julia (1893–1978), who
started the systematic study of the global dynamics of rational maps.
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On the other hand, if |z| = 1, the family of iterates f ◦n is not normal on any
neighborhood of z. That is, in any neighborhood of z there are points whose orbit
tends to infinity and there are points whose orbit tends to 0. Therefore, forcing any
limiting function of uniformly converegnt subsequence to be discontinuous at z.

The following is a simple consequence of the definition of the Fatou set.

Exercise 1.4. For any k ∈ N, the Julia set J(f ◦k) of the k-fold iterate is identical
with J(f).

A rational function of Ĉ may be written as the ratio of two polynomials P (z)/Q(z).
Then, its degree is given as the maximum of the degrees of the polynomials P and Q.
The degree of a rational map determines the number of elements in {f−1(z)}, for any
z, counted with multiplicities. It follows that the degree of the n-fold composition
of a rational map of degree d is equal to dn.

Lemma 1.3. If f is a rational map of the Riemann sphere with deg f ≥ 2, then the
Julia set of f is not empty.

Proof. If the Julia set is empty, then the family of maps f ◦n must be normal over
the whole Riemann sphere. That is, there exits a sequence of iterates f ◦nj , with
nj → ∞, converging to some holomorphic map g : Ĉ → Ĉ. However, g has finite
degree, and any map close enough to it must have the same degree. That is because,
any two maps of Ĉ with distance less than the distance between antipodal points
are isotopic. In particular, the iterates f ◦nj have the same degree for large enough
nj. This contradiction shows that J(f) must be non-empty.

Exercise 1.5. Any degree one rational map f has either one (indeed it is two if
counted with multiplicity) or two fixed points. Show that the derivative of f at the
two fixed points are reciprocal numbers λ and 1/λ, for some arbitrary λ ∈ C. Then,
classify all possibilities for J(f) and F (f), based on λ.

Periodic points

A periodic point of f is a point z with orbit relation

z, f(z), f ◦2(z), . . . , f ◦p(z) = z.

A periodic cycle is the orbit of a periodic point, that is, the set

{z, f(z), f ◦2(z), f ◦p(z) = z}.

The period of a periodic point z is the smallest positive integer p where f ◦p(z) = z.
The multiplier of a periodic point z of period p is defined as (f ◦p)′(z). Note that
the multiplier is the same for all points in the orbit of a periodic point. That is, all
the points in the orbit of a periodic point have the same multiplier.

In the special case that the point ∞ ∈ Ĉ is part of the orbit of a periodic point,
special attention should be made when calculating the multiplier of the periodic
point! For example, ∞ is a fixed point of f(z) = z2 with multiplier 0!
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Periodic points of a rational map are classified into several categories based on
the multiplier λ of the cycle. The cycle is called attracting if |λ| < 1, and repelling
if |λ| > 1. The especial case where λ = 0 is called super-attracting. When |λ| = 1
the cycle or the periodic point is called indifferent, or neutral. This case breaks
down into two cases based on the argument of λ/2π. The cycle is called rationally

indifferent, or more commonly parabolic, if λ = e2π p
q
i for some p/q ∈ Q, and is called

irrationally indifferent if λ = e2παi for some α ∈ R \Q.
For an attracting periodic point z ∈ Ĉ of period p, the basin of attraction of the

cycle of z is defined as

A = {z′ ∈ Ĉ | d(f ◦n(z′), {z, f(z), . . . , f ◦p−1(z)})→n→∞ 0}

where d denotes the spherical distance on Ĉ (or any other metric equivalent to it).

Proposition 1.4. The basin of attraction of every attracting periodic point is con-
tained in the Fatou set. In particular, every attracting periodic point is contained in
the Fatou set. On the other hand, every repelling periodic point is contained in the
Julia set.

Proof. First let us assume that z is a fixed point of f . If the multiplier λ at z
satisfies |λ| > 1, then the derivatives (f ◦n)′(z) = λn tends to infinity as n → ∞.
Thus, no subsequence of the family may converge to some holomorphic map on
any neighborhood of z. That is because, if a sequence of maps converges to a
map uniformly on an open set, the sequence of its derivatives must converge to the
derivative of the map (recall the Cauchy integral formula).

Now assume that z is an attracting periodic point of f with |f ′(z)| = λ < 1.
There exits a neighborhood U of z such that |f ′| is bounded by some c < 1. If follows
from the Taylor’s theorem that the sequence of iterates f ◦n converges uniformly on
compact sets to the constant map g = z. Now, the result on any compact subset of
the basin of the attraction of z follows.

The result for periodic points with period bigger than one follows from the one
for the fixed point and exercise 1.4

Two rational maps f and g are conformally conjugate on Ĉ, if there exists a
Mobius transformation θ(z) = (az + b)/(cz + d), with ad − bc 6= 0, such that
f ◦ θ = θ ◦ g on Ĉ. It follows that J(f) = θ(J(g)).

Proposition 1.5. If deg f ≥ 2, then every parabolic periodic point lies in J(f).

Proof. Composing with a Mobius transformation, we may assume that the parabolic
periodic point is at 0. Then there is some iterate f ◦n near 0 that has power series
expansion z 7→ z + amz

m + am+1z
m+1 + . . . , near 0, where am is non-zero. The

iterates f ◦(jn) have the form z 7→ z + jamz
m + . . . . The m-th derivative of f ◦(jn)

at 0 is equal to jamm!, and hence converges to ∞ as j → ∞. This implies that
no subsequence of the iterates of f may converge uniformly on any neighborhood of
0.

Proposition 1.6 (transitivity). Let z be a point in the Julia set of some rational
map f , and B be an arbitrary neighborhood of z. Then, the set U = ∪∞n=0f

◦n(B)
contains all of Ĉ except at most two points. In particular, U contains J(f).
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Proof. This immediately follows from Montel normal family theorem, Theorem 1.1

The above proposition implies some interesting properties of the Julia set.

Corollary 1.7. If the Julia set contains an interior point, then it must be the entire
Riemann sphere.

Corollary 1.8. Let f be a rational map of Ĉ with deg(f) ≥ 2. If z is an arbitrary
point in J(f), then the set of iterated pre-images

{z′ ∈ Ĉ | ∃n ∈ N such that f ◦n(z′) = z}

is everywhere dense in J(f).

Proof. First we show that if z ∈ J(f), then the set of its pre-images is an infinite
set. Suppose on the contrary that the set of the pre-images of z is a finite set A. It
follows that A consists of a single cycle z = z1 7→ z2 7→ . . . 7→ zm = z1. On the other
hand each point in Ĉ has d pre-images counted with multiplicity, which implies that
each point in the orbit of z1 must be a critical point. That is, z is a super-attracting
periodic point of f and hence, must be in the Fatou set.

Now let z′ be an arbitrary point in J(f) and U be an arbitrary neighborhood
of z′. By Proposition 1.6, the union of the forward iterates of U contains Ĉ except
possibly at most two points. Then by the previous argument, some pre-image of z
must be contained in U .

Corollary 1.9. If f has degree two or more, then J(f) has no isolated point.

Proof. By the proof of the previous corollary, for any z in J(f), the set of pre-images
of z is an infinite set. In particular, it contains an accumulation point z′. Now the
set of pre-images of z′ is dense in J(f).

By definition, a property of points is called generic in some complete metric
space X, if it holds for all points in a countable intersection of open dense subsets
of X.

Proposition 1.10. Let f be a rational map with deg(f) ≥ 2. For a generic choice
of a point z ∈ J(f), the forward orbit

{z, f(z), f ◦2(z), . . . },

is everywhere dense in J(f).

Proof. For n ∈ N, J(f) may be covered by a finite number of sets A1, A2, . . . , Am(n)

of diameter at most 1/n. By Corollary 1.8, the set Un,j, for j = 1, 2, . . . ,m(n), of

pre-images of Aj is an open dense subset of J(f). Let Un = ∩m(n)
j=1 Un,j, and note that

if some z belongs to Un, then its forward orbit crosses each Aj, for j = 1, 2, . . . ,m(n).
The intersection of Un, for n ∈ N, consists of points with dense forward orbit.
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Lecture 2

Classification of Fatou components

Parabolic fixed points

In the previous lecture we showed that there is a rather simple local dynamics near
an attracting fixed point (and hence near every attracting periodic point). The local
dynamics near a repelling fixed point may be understood by looking at the inverse
of the map. Also, we showed that every parabolic periodic point belongs to the Julia
set. Although this implies that iterates of a map near a parabolic periodic point
does not form a normal family, it may still be possible to understand large iterates
of a rational map near parabolic fixed points. In this section we look at this local
dynamics near a parabolic fixed point.

Let f be a rational map of degree at least two, with expansion f(z) = λz +
a2z

2 + a3z
3 + . . . near z = 0, where the multiplier at 0, λ, is a root of unity. We

first assume the simplest case where λ = 1, and assume an+1 is the first non-zero
coefficient of f after λ. That is

f(z) = z + an+1z
n+1 + an+2z

n+2 + . . .

= z(1 + an+1z
n + . . . ),

with an+1 6= 0. The integer n + 1 is called the multiplicity of the fixed point at 0.
There are n complex numbers v with nan+1v

n = 1, and n complex numbers v with
nan+1v

n = −1. Let us label these 2n vectors as vj, with 0 ≤ j ≤ 2n− 1, such that

vj = eπij/nv0, and nan+1vj = (−1)j.

That is, the even indexed numbers are called the repulsion vectors for f at 0, while
the odd indexed numbers are called the attraction vectors for f at 0.

Proposition 2.1. Let f be a holomorphic map defined on a neighborhood of 0 with
expansion z + azn+1 + . . . , with repulsion and attraction vectors an above. The, if
an orbit zn = f ◦n(z) converges to 0, then either

• the sequence is eventually identical to zero, or

• limk→∞ k
1/nzk exists and is equal to one of the attraction directions vj, j odd.

Similarly, if an inverse orbit z1, z2, z3, . . . of f−1 tends to 0 then either
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• the sequence is eventually identical to zero, or

• limk→∞ k
1/nzk exists and is equal to one of the repulsion directions vj, j even.

Finally, any of the 2n attraction and repulsion vectors can occur for some (indeed
an open set of) not eventually constant sequence.

Note that the local attraction and repulsion property is preserved under confor-
mal changes of coordinates.

Proof. We work in the coordinate

w = ϕ(z) =
c

zn
, where c =

−1

na
.

The attraction and repulsion vectors are mapped to

ϕ(vj) = Reϕ(vj) = (−1)j+1.

First we find appropriate inverse branches for the n-valued function ϕ−1. To this
end, let R+ = [0,∞) and R− = (−∞, 0]. Then, consider the half lines R+vj that
cut the plane into sectors of angle π/n. Define,

∆j = {reiθvj | r ∈ (0,∞), θ ∈ (−π/n, π/n)}, for 0 ≤ j ≤ 2n− 1.

Then, ϕ maps each ∆j univalently to a slit plane according to

ϕ(∆j) =

{
C \ R+ if j even

C \ R− if j odd
.

Then, there are inverse branches of ϕ on each ∆j with

ψj : C \ R(−1)j → ∆j.

The intersection of any two consecutive sectors, ∆j ∩∆j+1 (indexes are modulo 2n)
is a sector of angle π/n. Any such intersection is mapped either to the upper half
plane or the lower half plane, depending on whether j is odd or even. Recall that

f(z) = z(1 + azn + o(zn)), as z → 0,

where o(zn) stands for the remainder that satisfies o(zn)/zn → 0 as z → 0. Define
the maps

w 7→ Fj(w) = ϕ ◦ f ◦ ψj(w), for 0 ≤ j ≤ 2n− 1.

which are defined on slit w planes. To understand the behavior of f near 0 we
study the maps Fj for large values of |w|. Note that ψj is given as a branch of
w 7→ (c/w)1/n. Thus,

f ◦ ψj(w) = (
c

w
)

1
n (1 + a

c

w
+ o(

1

w
)), as |w| → ∞.
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Then,

Fj(w) = w(1 + a
c

w
+ o(

1

w
))−n = w(1 +

−nac
w

+ o(
1

w
)) = w+ 1 + o(1), as |w| → ∞,

for all j. By definition of little o we can choose R ∈ R such that

|F (w)− (w + 1)| < 1/2, for |w| > R.

In particular, the above equation implies that

ReF (w) > Rew + 1/2, for |w| > R. (2.1)

This translates to the inequality

Reϕ(f(z)) > Reϕ(z) + 1/2, for |z| < (
1

naR
)

1
n . (2.2)

Define
HR = {w ∈ C | Rew > R}, and Pj(R) = ψj(HR).

For odd values of j, Fj is defined on HR and by the above property, Fj maps HR well
into itself. Indeed, for any such j, and w ∈ HR the iterates of w under Fj tend to
∞ in HR. In terms of f , this implies that f maps Pj(R) into itself, and the iterates
of f on Pj(R) converge to 0 uniformly on compact subsets of Pj(R).

Now, let z0 7→ z1 7→ z2 7→ . . . be an orbit of f that tends to 0 with all points
in the orbit different from 0. Then, by Equation 2.2, for large enough k, we have
Reϕ(zk) ≥ R. This implies that, there is k such that zk belongs to one of the
attracting petals Pj(R) ⊆ ∆j. However, since f(Pj(R)) ⊆ Pj(R), for m ≥ k, we
have zm ∈ Pj(R).

Consider the sequence wj = ϕ(zj), for j ∈ N. By definition, wk ∈ HR and
Fj(wm) = wm+1, for all m ≥ k. By Equation 2.1, we conclude that Rewm → +∞
as m → +∞. In particular, |wm| → +∞, and therefore, wm+1 − wm → +1, as
m→ +∞.

By the above paragraph, the average

wm − w0

m
=

1

m

m−1∑
j=0

wj+1 − wj.

converges to +1, as m→ +∞. That is, wm/m tends to +1 as m→ +∞. Recall that
1/wm = −naznm and navnj = −1. Thus, −namznm → +1, and hence, mznm/v

n
j → +1.

Since zm belongs to the petal Pj(R), it follows that m1/nzm/vj → +1, as m→ +∞.
The proof for the repulsion directions is done similarly, by looking at the inverse

of the map Fj on some left half plane−HR. This finishes the proof of the Proposition.

Exercise 2.1. Let f be a holomorphic map with a parabolic fixed point at 0. Using
the proof of the above proposition show that there is a neighborhood U of 0 such
that f has no periodic cycle in U .

11



Mini-project 1. There are several mini projects on the dynamics of maps close to
a map with a parabolic cycle. When a rational map with a parabolic fixed point is
perturbed slightly in an appropriate way, a new periodic point is created (parabolic
explosion) near the fixed point. A project may be on the speed of how fast the newly
born cycle moves as the map is perturbed away from the original rational map.
Another project may be on a technique called parabolic renormalization to describe
the local dynamics of the perturbations of a map with a parabolic fixed point.

If 0 is a parabolic periodic point of f with multiplier λ = 1, we consider the
return map f ◦k where k is the period of the periodic point. Then, 0 is a fixed point
of f ◦k with some multiplicity n + 1 ≥ 2. Using the above proposition, we have n
attraction vectors vj, for j odd, and n repulsion vectors vj for j even, for the local
dynamics of f ◦k. Then the conformal map f sends these attraction and repulsion
vectors to n attraction and n repulsion vectors at f(0). That is, the sequence of
vectors tend to f(0) under f ◦k in one of these attraction vectors, or the inverse
orbits of f ◦k tend to f(0) along one of these repulsion vectors. Similarly, this local
behavior may be described near any point in the cycle of 0, using one of n attraction
or n repulsion vectors.

If 0 is a parabolic fixed point of f with multiplier λ = e2πip/q, for some rational
p/q, the local dynamics may be analyzed similarly.

Lemma 2.2. Let 0 be a parabolic fixed point of a rational map of degree ≥ 2 with
multiplier λ = e2πip/q where (p, q) = 1. Then the number n of the attraction vectors
at 0 must be a multiple of q.

The proof of the above lemma is similar to the argument in the above paragraph
and is left to the reader.

Consider a rational map with a parabolic fixed point at z with multiplier +1.
For each attraction vector vj at 0, we may consider the set Aj of all points z0 in Ĉ
whose orbit z0, z1, z2, . . . converges to 0 from the direction vj. Aj is called the basin
of attraction of z in the direction vj. By definition, the basins of attractions A1,
A2, . . . , An, are mutually disjoint. The immediate basin of attraction A0

j of z in
the direction vj is defined as the unique connected component of Aj that maps into
itself.

In general, for a rational map f with a parabolic periodic point z of period k
and multiplier e2πip/q, the iterate f ◦kq has a parabolic fixed point of multiplier +1
at z. Then the parabolic basins of attraction are defined similarly as the attractions
and repulsion vectors at other points on the cycle of z.

Lemma 2.3. For every rational map f of degree at least 2 with a parabolic periodic
point, every parabolic basin of attraction is contained in the Fatou set of f . But each
basin boundary is contained in the Julia set J(f).

Proof. This follows from the proof of Proposition 2.1. Further details are left to the
reader.

Dynamics on cycles of Fatou components

A map f : U → V is called proper, if the preimage of every compact set in V is a
compact subset of U .
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Let f be a rational map of the Riemann sphere with degree d ≥ 2. Let U be
a connected component of the Fatou set of f . It follows from the definition of the
Fatou set that U ′ = f(U) is also a Fatou component of f and f : U → U ′ is a proper
holomorphic map. Let us first assume that U ′ = U .

Theorem 2.4. If a rational map f of degree d ≥ 2 maps a Fatou component U to
itself, then there are at most four possibilities,

1) U is the immediate basin for an attracting fixed point,

2) U is a petal of a parabolic fixed point with multiplier equal to one,

3) U is a simply connected domain and f : U → U is conformally conjugate to
an irrational rotation on the unit disk,

4) U is a doubly connected region and f : U → U is conformally conjugate to an
irrational rotation on an annulus.

We have already seen examples of rational maps with Fatou comments of the
first two types. In the third case the component U is called the Siegel disk of f at the
unique fixed point inside U . In the fourth case, the component U is called a Herman
ring of f . Fatou had anticipated the existence of such connected components of the
Siegel disk, without any proof. It is a non-trivial result of C.L. Siegel that there
are examples of rational maps with Siegel disks. Indeed, he showed that there are
quadratic maps with Siegel disks. The first examples of the fourth type is due to
M. Herman. By the maximum principle, a polynomial map of C can not have a
Herman ring. The proofs are rather complicated and out of scope of this course.

An Indifferent periodic point in the Julia set is called a Cremer periodic point.
This is after H. Cremer who gave the first general arithmetic condition on the
rotation of the multiplier at the cycle that implies the cycle is in the Julia set.

One may make a similar statement as in the above theorem for periodic Fatou
components. If a Fatou component U is pre-periodic, that is, there is n ∈ N such
that f ◦n(U) is periodic, then the dynamics on U is also described by the above
theorem.

The proof of the above theorem is rather long and requires some language of
discrete actions on the Riemann sphere. So, it is not covered in this course.

Mini-project 2. The proof of the above theorem may be the subject of a mini-
project.

A Fatou component U is called wandering if f ◦j(U) ∩ f ◦i(U) = ∅ for distinct
positive integers i and j. A central problem in complex dynamics was whether
wandering domains may be realized by a rational map.

Theorem 2.5 (Sullivan). Every Fatou component of a rational map of the Riemann
sphere is pre-periodic.

Mini-project 3. Proof of the above theorem.
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Once we know all Fatou components are pre-periodic, the natural question is
whether the number of periodic Fatou components is bounded. If the answer is yes,
one wants to know an optimal bound on the number of periodic Fatou components.

Theorem 2.6 (Shishikura). A rational map of degree d has at most 2d − 2 cycles
of Fatou components.

Mini-project 4. Proof of the above theorem.

The three theorems listed above, completely describe the nice part of the dy-
namics of a rational map. In the remaining lectures of this course we shall mainly
focus on various ways to describe the dynamics on the Julia sets.
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Lecture 3

Measurable dynamics on Julia sets

In this lecture we review some general features of the measurable dynamics of a
rational map on its Julia set.

The post critical set

Let f be a rational map of the Riemann sphere. The post-critical set of f is defined
as the closure of the forward orbits of the critical values of f , that is

PC(f) = {f ◦n(c) | n ≥ 1, c ∈ Ĉ, f ′(c) = 0}.

The post critical set of f is the smallest closed set containing the critical values of
all maps f ◦n, n ∈ N. By definition, f(PC(f)) ⊆ PC(f), and PC(f) = PC(f ◦n), for
every n ∈ N.

A rational map is called post-critically finite, if PC(f) is a finite set.

Expansion on the complement of the post-critical set

Let us first take care of the exceptional case.

Exercise 3.1. Let f be a rational map of degree at least two with |PC(f)| < 3.
Then, f is conjugate to some z 7→ zd, d ∈ Z, by a Mobius transformation. In
particular, the Julia set is a round circle, and has zero area.

From now on we assume that the post-critical set consists of at least 3 points.
Recall that the spherical metric on Ĉ is given as

|ds| = 2|dz|
1 + |z|2

,

where |dz| denotes the Euclidean metric on C.
Let U ⊆ Ĉ be an open set. A conformal metric on U is a metric of the form

ρ(z)|dz| on U , where ρ : U → (0,+∞) is a smooth function.
If |Ĉ\U | ≥ 3, there is a complete conformal metric of constant negative curvature

on U . Here complete means that every Cauchy sequence (w.r.t ρ(z)|dz|) of points in
U converges to some point in U . This metric is also sometimes called the Poincaré
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metric and the domain U is called hyperbolic. In general, by completeness of the
metric, ρ(z)→∞ as z tends to the boundary of U .

For example, on the open unit disk |z < 1| the hyperbolic metric is given by
the formula ρ(z)dz = 2|dz|/(1 − |z|2), and on the upper half plane Im z > 0 it
is given by |dz|/ Im z. One can see that these metrics are invariant under Mobius
transformations of these spaces.

In particular, if PC(f) has at least three distinct points then Ĉ \ PC(f) is hy-
perbolic. We shall use the following fundamental lemma from complex analysis.

Lemma 3.1 (Schwarz-Pick Lemma). Let U and V be hyperbolic open subsets of Ĉ
(or more generally hyperbolic Riemann surfaces) and f : U → V be a holomorphic
map. Then, exactly one of the following three statements is valid:

Isometry: f is a conformal isomorphism from U onto V . That is, it maps U with
its Poincaré metric isometrically onto V with its Poincaré metric.

Covering: f is a covering map from U onto V but is not one-to-one. It is locally
but not globally a poincaré isometry, that is, for all z1, z2 in U we have

distV (f(z1), f(z2)) ≤ distU(z1, z2),

where equality holds if z1 and z2 are sufficiently close in U , and strict inequality
holds if they are sufficiently apart.

Contracting: f strictly decreases all non-zero distances. In fact, for any compact
set K ⊆ U , there is a constant ck < 1 such that for all z1, z2 ∈ K,

distV (f(z1), f(z2)) ≤ cK distU(z1, z2).

Note that by the above lemma, if f : U → V is a holomorphic map such that
f(U) is strictly contained in V , then f : U → V must be contracting.

Proposition 3.2. Let f be a rational map of degree at least two and |PC(f)| ≥ 3.
For every z ∈ J(f) whose forward orbit does not land in PC(f),

‖ (f ◦n)′(z) ‖→ ∞,

with respect to the hyperbolic metric on Ĉ \ PC(f).

Proof. Consider the sets Pn = f−n(PC(f)), for n ∈ N. First see that

f ◦n : Ĉ \ Pn → Ĉ \ PC(f)

are proper local homeomorphism. That is, they are covering maps. Then by
Schwarz-Pick lemma, they are local isomorphisms with respect to the Poincaré met-
rics on Ĉ \ Pn and Ĉ \ PC(f).

On the other hand, since |PC(f)| ≥ 3, by Montel’s normal family theorem, J(f)
is contained in the closure of the union of the sets Pn. In particular, the spherical
distance d(Pn, z)→ 0 as n→ +∞.
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Consider the inclusion maps

τn : Ĉ \ Pn → Ĉ \ PC(f).

By the above paragraph, ‖ τ ′n(z) ‖→ 0 as n→ +∞, where the norm of the derivative
is calculated using the Poincaré metrics on domain and range. Then, it follows that
‖ f ◦n ◦ τ−1

n (z) ‖→ +∞, as n → +∞, with respect to the Poincare metric on
Ĉ \ PC(f).

The above proposition is only useful when the post-critical set of f is not too
large. For example, if PC(f) = J(f), then it has no content. There are examples of
rational maps with J(f) = PC(f), and there are even quadratic polynomials with
this property. This suggests that it is important to control (the geometry of) the
post critical set, in many interesting circumstances.

Also, the above proposition suggests that the post critical set is related to attrac-
tion in the dynamics of f . We make this more precise in the next two statements.

Corollary 3.3. Let f be a rational map of degree at least two. The post-critical set
of f contains attracting cycles of f and the indifferent cycles of f that lie in the
Julia set.

Proof. For the attracting cycles, since the cycle is not contained in the Julia set one
can not directly use the above proposition. However, one applies the proof of the
proposition to one iterate of the map f and concludes that ‖ f ′(z) ‖≥ 1.

Proposition 3.4. The boundary of every Siegel disk and Herman ring is contained
in the post critical set.

Proof. Let ∆ be a Siegel disk or Herman ring of period p for some map f . Let h =
f ◦p. If we have z0 ∈ ∂∆ such that z0 /∈ PC(f), choose ε > 0 with Bε(z0)∩PC(f) = ∅.

For integers n ≥ 0, let z−n be the pre-image of z0 under h◦n contained in ∆. Then
define gn as the inverse branch of h◦n which maps z0 to z−n. By making ε small
enough, we may assume that all of gn(Bε(z0)), for n ≥ 1, omit a fixed neighborhood
in ∆. In particular, the family {gn}∞n=0 is a normal family.

Define the set V = ∪∞n=0gn(Bε(z0)). We claim that h(V ) ⊆ V . Since h(V ) ⊆
V ∪ h(Bε(z0)), we only need to show that h(Bε(z0)) ⊆ V . The family gn has a
subsequence that converges to the identity on Bε(z0)∩∆. Thus, every subsequence
of that subsequence, say gnk

, converges to the same limit on Bε(z0). By the argument
principle this implies that every point in Bε(z0) is contained in the image of gnk

, for
sufficiently large nk. That is, the union of gnk−1(Bε(z0)) covers h(Bε(z0)).

By the above paragraph, the family of iterates h◦n : V → V are defined and
normal, and Bε(z0) ⊆ V is contained in the Fatou set. This contradicts the choice
of z in the Julia set.

Indeed, one can see that the boundary of every Siegel disk and Herman ring is
contained in the closure of the orbits of some critical points in the Julia set.
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Hyperbolic rational maps

A rational map f of the Riemann sphere is called hyperbolic if all critical points of
f lie in the basin of attraction of attracting periodic points.

Theorem 3.5. Let f be a rational map of degree at least two. Then the following
statements are equivalent.

(1) The post critical set of f is disjoint from the Julia set of f .

(2) There are no critical points or parabolic cycles in the Julia set.

(3) Every critical point of f tends to an attracting cycle under iterates of f .

(4) There is a constant C > 1 and a smooth conformal metric ρ defined on a
neighborhood of J(f) such that ‖f ′‖ρ > C, for all z ∈ J(f).

(5) There is an integer n ≥ 1 such that f ◦n strictly expands the spherical metric
on J(f).

Proof. By Exercise 3.1, if |PC(f)| = 2 then, f is conjugate to some z 7→ zd, and the
equivalence of the above statements is clear. So below, we assume that |PC(f)| ≥ 3.

(1)⇒ (2) If PC(f)∩J(f) = ∅, then there is no critical point in J(f). Also, since
every parabolic cycle is contained in both J(f) and PC(f), by Proposition 1.5 and
Corollary 3.3, there is no parabolic cycle in the Julia set.

(2)⇒ (3) Since the boundary of every Siegel disk and Herman ring are contained
in the closure of the orbit of some critical points in the Julia set. Since there is no
critical point in the Julia set, there can not be Siegel disks and Herman rings. Also,
since there is no parabolic cycle in the Julia set, there is no basin of parabolic cycles.
Thus, by the classification of Fatou components, the only components of the Fatou
set are basins of attracting cycles.

(3)⇒ (1)
Since attracting cycles are contained in the Fatou set, this is clear.

(3)⇒ (4)
We have that PC(f) ∩ J(f) = ∅. We will use the idea of Poincaré expansion

outside of PC(f). Since all critical points are attracted to attracting cycles, PC(f) is
a countable set with a finite number of accumulation points. Thus, the complements
of PC(f) is connected. Similarly, Q(f) = Ĉ\PC(f) is also connected. The covering
map

f : Ĉ \Q(f)→ Ĉ \ PC(f)

is a covering map, and hence an isometry of respective Poincaré metrics.
On the other hand, since |PC(f)| ≥ 3, Q(f) \ PC(f) is a non-empty set, and

thus
τ : Ĉ \Q(f)→ Ĉ \ PC(f)

is strictly contracting on Ĉ \ Q(f), with respect to the hyperbolic metric domain
and range. This implies that f expands the Poincaré metric on Ĉ \ PC(f). Since,
J(f) is a compact subset of Ĉ \ PC(f), the expansion is uniform.
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(4)⇒ (5)
Choose K ∈ R such that 1/K ≤ ρ ≤ K on J(f), and choose n ∈ N such that

Cn/K2 > 2. Then, (|f ◦n)′| ≥ ‖(f ◦n)′‖/K2 ≥ Cn/K2 ≥ 2, where |f ′| denotes the
absolute value of derivative with respect to the spherical metric.

Note that here the spherical metric may be replaced by any other C1 conformal
metric on Ĉ.

(5)⇒ (2)
Obviously, if there is expansion on J(f), there can not be any critical point on

parabolic cycles in J(f).

Ergodic or attracting

We shall use two classical results from analysis.

Theorem 3.6 (Lebesgue’s density theorem). Let A ⊆ Rn be a Lebesgue measurable
subset. Then, for almost every x ∈ A we have

lim
ε→0

area(A ∩Bε(x))

areaBε(x)
= 1.

Theorem 3.7 (Koebe distortion Theorem). Let f : D→ C be a univalent map with
f(0) = 0 and f ′(0) = 1. Then,

1− |z|
(1 + |z|)3

≤ |f ′(z)| ≤ 1 + |z|
(1− |z|)3

,

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

In particular, f(D) contains the disk of radius 1/4.

The main result of this section is the following general statement.

Theorem 3.8. Let f be a rational map of degree at least two and J(f) 6= Ĉ. Then,
the spherical distance d(f ◦n(z),PC(f))→ 0 as n→∞, for almost every z ∈ J(f).

Proof. Let V be an arbitrary neighborhood of PC(f). We need to show that for
almost every z ∈ J(f) the orbit of z eventually remains in V .

Consider the set

Γ := {z ∈ J | for infinitely many integers k > 0, f ◦k(z) /∈ V }.

If area of Γ is not zero, let z be a Lebesgue density point of Γ. Let nk be an
increasing sequence of positive integers with f ◦nk(z) → y, for some y ∈ Ĉ \ V . As
y /∈ V , it has a definite distance δ from PC(f). For sufficiently large values of nk,
let Enk

denote the component of f ◦(−nk)(B(y, δ/2)) containing z. As B(y, δ/2) does
not intersect PC(f), f ◦nk : Enk

→ B(y, δ/2) is univalent. Moreover, its inverse has a
univalent extension over the larger domain B(y, δ). Hence, by the Koebe distortion
theorem, the domains Enk

have uniformly bounded eccentricities, and the maps
f ◦nk : Enk

→ B(y, δ/2) have uniformly bounded distortions.
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If the domains Enk
do not shrink to z as nk → ∞, their uniformly bounded

eccentricities implies that they contain a ball B(z, r) for some constant r > 0. Thus,
every f ◦nk maps B(z, r) into B(y, δ). This implies that {f ◦nk} is a normal family,
by Montel’s Theorem, contradicting z being in J(f). Therefore, diam (Enk

) → 0.
Furthermore, the family Enk

shrinks regularly to z, i.e. there exists a constant c > 0
such that for each Enk

there exists a round ball B ⊇ Enk
, with

area(Enk
) ≥ c · areaB.

Hence, the Lebesgue density theorem implies that

lim
nk→∞

area(Enk

⋂
Γ)

area(Enk
)

= 1.

As the maps f ◦nk have uniformly bounded distortions, and that Γ is f invariant, we
obtain

lim
nk→∞

area(B(y, δ/2)
⋂

Γ)

area(B(y, δ/2))
= lim

nk→∞

area(f ◦nk(Enk

⋂
Γ))

area(f ◦nk(Enk
))

= 1.

One concludes from this equality and that Γ ⊆ J to get B(y, δ/2) ⊆ J . This
implies that J = Ĉ, contradicting the assumption in the proposition.

Let f be a rational map of Ĉ and E be a measurable subset of Ĉ which is fully
invariant under f , that is, f−1(E) = E. The map f : E → E is called ergodic, if for
every fully invariant measurable set F ⊆ E we have area(F ) = 0 or area(E \F ) = 0.

Theorem 3.9. Let f be a rational map of degree at least two and J(f) = Ĉ. If for
z in a set of positive area the spherical distance d(f ◦n(z),PC(f)) 9 0, as n → ∞,
then, f : Ĉ→ Ĉ is ergodic.

Proof. Let E be the set of points z with d(f ◦n(z),PC(f)) 9 0, as n→∞. Clearly,
f−1(E) = E.

We break the proof into several steps.

Step 1. For every fully invariant measurable measurable set F ⊆ Ĉ with positive
area and every δ > 0, we have

inf
z∈Ĉ

area(Bδ(z) ∩ F ) > 0.

Recall that for every z ∈ J(f) = Ĉ, the set U = ∪∞i=0f
◦i(Bδ(z)) covers the

whole Riemann sphere except at most two points. Thus, there is n ∈ N such that
f ◦n(Bδ(z)) covers at least half area of F . However, since F is fully invariant, this
implies that area(Bδ(z)∩F ) > 0. On the other hand, the map z 7→ area(Bδ(z)∩F )
is a continuous function of z ∈ Ĉ. This implies the first step of the proof.

Step 2. The set E has full Lebesgue measure.
If this is not the case, then Ec = Ĉ \ E is fully invariant and has positive area.

In particular, for every δ > 0 we have the above inequality for the set Ec.
On the other hand, since E has positive area, it has Lebesgue density points. Let

z be a Lebesgue density point ofE, and let nk be the moments with d(f ◦nk(z),PC(f) ≥
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δ, for some δ > 0. By the proof of the above theorem, there is z′ ∈ Ĉ, an accumula-
tion point of the sequence f ◦nk(z), such that area(B(z′, δ/2)∩E) = areaB(z′, δ/2).
This contradicts the above inequality for the set Ec with δ/2.

Step 3. f : Ĉ→ Ĉ is ergodic.
Let F be a fully invariant subset of Ĉ that has positive area. We need to prove

that Ĉ \ F has measure zero.
By step 2, almost every point in F is contained in E. Let z be a Lebesgue density

point of F that is also contained in E. Repeating the argument in the proof of the
above theorem, we conclude that Ĉ \ F has measure zero.

Theorem 3.10. The Julia set of a hyperbolic rational map has zero area.

Proof. Since the Julia set is disjoint from the post critical set, then J(f) 6= Ĉ and we
may apply Theorem 3.8. If the Julia set has positive area, then the orbit of almost
every point in it must tend to the post critical set. Since both J(f) and PC(f) are
closed subsets of Ĉ, this implies that PC(f) ∩ J(f) 6= ∅. This contradiction implies
that J(f) may not have positive area.
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Lecture 4

Polynomial dynamics

Filled Julia sets

Let
P (z) = a0 + a1z + · · ·+ ad−1z

d−1 + adz
d,

be a polynomial of degree d ≥ 2. Without loss of generality, we may assume that
the polynomial is monic, that is ad = 1. This may be achieved by conjugating P
with an appropriate linear map z 7→ cz, where cd−1 = ad.

The filled Julia set of P is defined as

K(P ) = {z ∈ C | the orbit of z under P remians uniformly bounded}.

This is a non empty set as it contains many periodic points of P .
Recall that infinity is a supper attracting fixed point of P . the basin of attraction

of infinity is contained in the Fatou set of P .

Lemma 4.1. For every polynomial P of degree at least two, we have

• K(P ) is compact,

• C \K(P ) is connected,

• the topological boundary of K(P ), ∂K(P ), is equal to J(P ),

• the interior of K(P ) is equal to the set of all bounded Fatou components of P .

Proof. First note that there is R > 0 such that for every z ∈ C with |z| ≥ R the
orbit of z under P tends to infinity. For every z ∈ C \K(P ), there is n ∈ N such
that |P ◦n(z)| > R. It follows that there is a neighborhood U of z such that for all
z′ ∈ U we have |P ◦n(z′)| > R. That is U is contained in C \ K(P ). This implies
that C \K(P ) is an open set, proving the first part of the lemma.

If C\K(P ) is not connected, it has a connected component U different from the
component containing infinity. However, the iterates of every point on ∂U ⊂ K(P )
remain uniformly bounded. By the maximum principle, all iterates of P on U must
be uniformly bounded. That is, U ⊆ K(P ).

By definition, every point on ∂K(P ) is contained in J(P ). On the other hand,
by Montel’s theorem, every point in the interior of K(P ) is contained in the Fatou
set of P .

The last part is also clear using the Montel’s normal family theorem.
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The Green’s function of K(P ) is a function G : C→ [0,∞) which is identically
zero on K(P ) and for every z in the complement of K(P )

GP (z) = lim
k→∞

1

dk
log |P ◦k(z)| > 0.

By definition, G(P (z)) = dG(z).

Exercise 4.1. Show that GP is a continuous function on C that is harmonic outside
of K(P ). Moreover, it satisfies G(z) = log |z|+ o(1) as |z| → ∞.

The curves G(z) = c, for constants c ∈ (0,+∞), are called equipotentials of
K(P ). It follows that each equipotential is mapped to an equipotential by P .

Theorem 4.2. Let P be a polynomial of degree at least 2. Then, K(P ) and J(P )
are connected iff the orbit of all finite critical points of P remain uniformly bounded.
In other word, K(P ) is connected iff it contains all finite critical points of P .

Proof. For every c > 0, let Vc be the set of z ∈ C with GP (z) < c. For each c > 0, Vc
is a bounded open set, and by the maximum principle, every connected component
of Vc is simply connected. Moreover, each component of Vc intersects K(P ). On the
other hand, K(P ) = ∩c>0Vc.

For each c > 0, let χ(Vc) denote the number of connected components of Vc. Note
that P : Vc → Vcd is a proper branched covering. It follows that d · χ(Vcd) − χ(Vc)
is equal to the number of critical points of P in Vc counted with multiplicity.

For c sufficiently large, Vc is a connected set (It looks like a large disk). If all d−1
critical points of P are contained in K(P ), and hence all Vc, then we conclude from
the above formula that each Vc has only one connected component. That is, each
Vc is connected. Therefore, K(Pc) is connected. On the other hand, if there is at
least one critical point of P outside of K(P ), some Vc has more than one connected
component. Since each component of Vc intersects K(P ), it follows that K(P ) is
disconnected. (Indeed one can use this argument to show that when K(P ) is not
connected, it has infinitely many connected components.)

Bötcher coordinates, external rays, and equipotentials

From now on we assume that P is a polynomial of degree at least two with a
connected Julia set. By the above results C \ K(P ) is a doubly connected region.
Then, there is a conformal isomorphism

ΦP : C \K(P )→ C \ D,

where D is the unit disk centered at 0 in C. The map ΦP is unique upto rotations
of the circle. The holomorphic map ΦP ◦ P ◦ Φ−1

P is a proper covering of degree d
on C \ D. This implies that ΦP ◦ P ◦ Φ−1

P is equal to z 7→ azd for some constant a
with |a| = 1 (just lift to the universal cover of C \ D). By composing ΦP with an
appropriate rotation, we may assume that a = 1. That is, P on the complement of
K(P ) is conformally conjugate to the power map z 7→ zd on the complement of D.
The conformal map ΦP is called the Bẗocher coordinate of P at infinity. It follows
that the Green’s function Gp defined above is equal to log |ΦP |.
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The complement of D is foliated by circles and straight rays passing through 0.
The covering z 7→ zd preserves these foliations. That is, it maps leaves of these foli-
ations to corresponding leaves of these foliations. We may pull-back these foliations
to obtain two foliations on the complement of K(P ) with some nice properties that
we explore below.

Define the equipotential of radius h ∈ (0,∞) as

Eh
P = {Φ−1

P (he2πit) | ∀t ∈ [0, 1]},

and external ray of angle 2πθ ∈ [0, 2π] as

Rθ
P = {Φ−1

P (he2πiθ) | ∀h ∈ (0,∞)}.

By definition, each Eh
P is mapped to Edh

P and each Rθ
P is mapped to Rdθ

P , under
P respectively. In particular, if some angle θ is periodic under the map t 7→ dt,
mod Z, then the ray Rθ

P is mapped to itself under some iterate of P .

Exercise 4.2. Let P be a polynomial of degree d ≥ 2 and connected filled Julia
set. Then, a ray Rθ

P is fixed under P , iff θ is a rational number of the form j/d− 1,
for j = 1, 2, d− 1. In particular, P has d− 1 fixed angles.

A ray Rθ
P is called pre-periodic, if it is mapped to some periodic ray under some

iterate of P .

Exercise 4.3. Every ray Rθ
P with θ ∈ Q ∩ [0, 1] is either periodic or pre-periodic.

Landing of rays and local connectivity

An external ray Rθ
P is said to land at a point z ∈ ∂K(P ), if

lim
h→0+

Φ−1(ehe2πiθ) = z.

An important relation between landing property of rays and local connectivity
of J(P ) is given by the following theorem.

Theorem 4.3 (Caratheodory). For any polynomial P with degree d ≥ 2 and con-
nected Julia set J(P ), the following conditions are equivalent:

• Every external ray Rθ
P lands at a point γ(θ) which depends continuously on θ,

• the Julia set J(P ) (similarly K(P )) is locally connected.

If all rays of P land, the map γ : R/Z 7→ J(P ) semi-conjugates the multiplication
by d to the action of P on J(P ), that is, γ(dθ) = P (γ(θ)), for all θ ∈ [0, 1].

However, not all polynomials have locally connected Julia sets. For example, if P
has an irrationally indifferent periodic point in J(P ), then J(P ) may not be locally
connected (D. Sullivan). Recall that an irrationally indifferent cycle in the Julia set
is called a Cremer cycle. There are other examples of quadratic polynomials with
non locally connected Julia sets due to A. Douady.

We are interested in breaking the Julia set into several pieces using external rays
landing at the same point. Evidently, if a finite number of rays land at the same
point in z ∈ K(P ), then K(P ) \ {z} has a finite number of connected components.
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Theorem 4.4. Every periodic ray lands at a periodic point which is either repelling
or parabolic.

Since all rational angles are either periodic or pre-periodic under iterates of
z 7→ zd, we conclude the following corollary from the above theorem.

Corollary 4.5. All external rays with rational angle land at some periodic or pre-
periodic point in the Julia set.

On the other hand, it is possible to prove the following.

Theorem 4.6. All repelling and parabolic periodic points are landing points of at
least one, but at most finitely many, external rays.

The proof of the above theorems are lengthy and are not treated here.

Puzzle pieces

Let P be a polynomial of degree d ≥ 2 with all its critical points either repelling or
parabolic. Then, it has d fixed point points in the complex plane. While the map
θ → dθ on the unit circle has d− 1 fixed points. These d− 1 fixed angles land at at
most d− 1 of the fixed points of P . In other words, at least one of the fixed points
of P is not a landing point of a fixed ray. Since all repelling and parabolic periodic
points are landing points, there must be a periodic ray of period strictly bigger than
one landing at that fixed points. Then, all iterates of the ray landing at the fixed
point must also land at the same fixed point.

The union of all the rays landing at this fixed point divide the complex plane into
a finite number of connected components, say Y1, Y2, . . . , Yn. These are unbounded
open subsets of C. Let us cut off all these domains by some equipotential in C\K(P )
to obtain bounded open sets Y 0

1 , Y
0

2 , . . . , Y
0
n . That is, these are bounded components

of the complex plane minus the external rays landing at a particular fixed point and
an external rays. All these pieces are taken as open sets, and are called puzzle pieces
of level 0.

The pre-image of each Y 0
i , 1 ≤ i ≤ n, under P has at most d connected com-

ponents. Let us call these pieces puzzle pieces of level 1 and denote them by
Y 1

1 , Y
1

2 , . . . , Y
1
m. In general, puzzle pieces of level j are defined as the connected

components of the pre-images of the puzzle pieces of level 0 under P ◦j. Let us de-
note them by Y j

l , for l in an index set Al. The collection of all puzzle pieces of all
levels of P has the following Markov properties:

• the union of all puzzle pieces of any level j forms a neighborhood of the Julia
set minus a finite number of pre-images of the fixed point;

• any two puzzle pieces are either disjoint or nested;

• for any puzzle piece Y j
m of level j ≥ 1, P : Y j

m → P (Y j
m) is a proper holomorphic

map, which is either univalent or branched covering of finite degree, depending
on whether there is any critical points in Y j

m or not.
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Note that the intersection of each puzzle piece with the Julia set is a connected
subset of the Julia set.

The interior of the closure of all puzzle pieces of level j forms a neighborhood of
the Filled Julia set (and Julia set) bounded by equipotential of level 1/dj. Clearly, as
j → +∞, these neighborhoods shrink to the K(P ). This may be used to describe the
dynamics of the polynomial P on its Julia set. However, the complicated patterns
that arise are far from trivial.

In general, there is always a periodic point that is the landing point of at least
two external rays. One may use these rays to define the puzzle pieces of level 0 and
then continue as above to build the puzzle pieces are arbitrary level. They will enjoy
the Markov properties listed above.

For each z in the Julia set that is not mapped to the dividing fixed point under
iterates of P , and every j ∈ N, there is a unique puzzle pieces of level j containing
z. The natural question is whether any nest of puzzle pieces shrink to a point. Also,
it is important to understand the behavior of the orbits of the critical points in
the Julia set. For example the recurrence of each critical point to itself, and also
its accumulation on other critical points. To this end, one may arrange the puzzle
pieces intersecting PC(P ) in a table with arrows according to how they map one into
another. We shall analyze this in the quadratic case more carefully in the following
lectures.

Modulus of an annulus

Let U be a doubly connected subset of the complex plane. There are r and R in
[0,∞] and a univalent map ϕ : U → B(0, R) \ D(0, r), where B(0, R) denotes the
open ball of radius R and D(0, r) denotes the closed disk of radius r. Then, if R =∞
or r = 0 the modulus of U , denoted by mod (U), is defined as infinity. Otherwise,
we define

mod (U) =
1

2π
log(

R

r
).

Since B(0, R) \D(0, 1) is conformally isomorphic to B(0, R′) \D(0, 1) if and only if
R = R′, the above value is well-defined and independent of the choice of R and r.
Intuitively, mod (U) measures how “fat” the annulus U is relative to its size. We
need the following two properties of the modulus of annuli.

We say that a doubly connected domain U is non-trivially contained in a doubly
connected region V if the bounded components of C\V is contained in the bounded
components of C \ U .

Lemma 4.7. Let U1 and U2 be disjoint doubly connected regions non-trivially con-
tained in a doubly connected region U . Then mod (U) ≥ mod (U1)+ mod (U2).

Lemma 4.8. Let U be a doubly connected region that is a bounded subset of C. If
mod (U) =∞, then the bounded component of C \ U is a single point.
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Lecture 5

Quadratic polynomials and renormalization

The Mandelbrot set

In this section we focus on the family of maps

Pc(z) = z2 + c, c ∈ C,

on the complex plane.
Recall that when the unique finite critical point of Pc at 0 remains bounded

under iterates of Pc, the Julia set of Pc is connected. The set of all such parameters
c where J(Pc) is connected is the well-known Mandelbrot set. That is,

M = {c ∈ C | J(Pc) is connected}.

Exercise 5.1. Show that M is compact.

Mini-project 5. The set M is a connected subset of C, and C \ M is a doubly
connected domain.

Exercise 5.2. Prove that

1) if c /∈M , then J(Pc) is a Cantor set;

Figure 5.1: The Mandelbrot set
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2) if c1 and c2 belong to C \M , then Pc1 and Pc2 are topologically conjugate on
a neighborhood of their Julia sets.

Recall the general definition from topological dynamics that the orbit of a point
z is topologically recurrent, if z is an accumulation point of its orbit.

Lemma 5.1. Let c ∈M such that the critical point of Pc is not topologically recur-
rent. Then, the Julia set of Pc is locally connected and has zero area.

Proof. The parameters satisfying the property in the lemma are called semi-hyperbolic.
By carefully analyzing the proof in the hyperbolic case, one can give a proof of the
above lemma. Further details may be found in Orsay notes of Douady-Hubbard.

From now on we assume that c belongs to the Mandelbrot set. Recall from the
previous lecture that the Bötcher coordinate of Pc is the conformal isomorphism

ϕc : C \K(Pc)→ C \ D, where D = {w ∈ C | |w| < 1},

that is tangent to the identity near infinity. It conjugates Pc on C\K(Pc) to w 7→ w2

on C \ D. By means of this isomorphism, the external ray of angle 2πθ ∈ [0, 2π],
denoted by Rθ

c , and equipotential of radius r ∈ (1,+∞), denoted by Er
c , are defined.

We have Pc(E
r
c ) = Er2

c and Pc(R
θ
c) = R2θ

c .

The unique fixed ray of Pc, R
0
c , lands at a fixed point that is either repelling or

parabolic with multiplier +1 (why?). We denote this fixed point by β.

At c = 1/4, Pc has a parabolic fixed point of multiplicity two. The Julia set
has a rather simple structure; it is the boundary of the basin of attraction of the
parabolic fixed point.

For c 6= 1/4 there are two distinct fixed points, (1±
√

1− 4c)/2, with multipliers
1±
√

1− 4c. One of them is already denoted by β, and we denote the other one by
α.

The curve |P ′c(α)| = 1 is a closed curve dividing the complex plane into two com-
ponents. For c inside this component, which is called the main hyperbolic component
of M , α is attracting. On the boundary of the main hyperbolic component, α is
neutral, while on the complement of the closure of the main hyperbolic component
α becomes repelling. In Figure 5, the main hyperbolic component of the Mandelbrot
set is the region bounded by the cardioid at the center of the Mandelbrot set. In
particular, the boundary of the main hyperbolic component of M is parametrized
by θ ∈ [0, 1], where P ′c(α) = e2πθi at parameter θ.

Exercise 5.3. Prove that for every c in the main hyperbolic component, Pc on a
neighborhood of J(Pc) is homeomorphic to P0 on a neighborhood of the unit circle.

For c on the boundary of the main hyperbolic component, Pc has a neutral fixed
point which is either parabolic, or is an irrationally indifferent fixed point that lies
in F (Pc) or J(Pc). Quadratics of the latter type have very complicated dynamics,
which we do not discuss them here.
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Nests of puzzle pieces

When α is repelling, by Theorem 4.6 there are at least two, but a finite number of,
external rays landing on α.

Lemma 5.2. Prove that the set of rays landing at α consists of the orbit of a single
periodic ray.

Proof. Using the rays landing at α one cuts the complex plane into unbounded
sectors mapped one into another. Each such sector has an opening angle at infinity
that is multiplied by 2 by Pc. Then, one can see that any cycle of sectors must
contain at least one critical point, using the argument principle.

Let 2πθj ∈ [0, 2π), for 1 ≤ j ≤ q and q ≥ 2, denote the angles of the external
rays landing at α, labeled in increasing order. There is a non-zero integer p ∈ (0, q),

with (p, q) = 1, such that Pc(R
θj
c ) = R

θj′
c where j′ = j + p (mod q). The rational

number p/q is called the combinatorial rotation of Pc at α. The fixed point α is
sometimes referred to as the dividing fixed point of Pc. That is because J(Pc) \ {α}
has at least two connected components. It follows that for any rational p/q ∈ (0, 1),
there are parameters c in the Mandelbrot set where α has combinatorial rotation
p/q at α. For example, c ∈M with P ′c(α) = e2πip/q.

The closure of the q rays landing at α cut the complex plane into q (open)
connected components which we denote by Yj, for 0 ≤ j ≤ q − 1. The map Pc on
these pieces has a simple covering property. Let Y0 denote the one containing the
critical point 0. Then, Pc on Y0 is a double cover, while it is univalent on all other
pieces. In particular it follows that Y0 contains the other preimage of the fixed point,
−α. The image of Y0 under Pc covers all Yj, for 0 ≤ j ≤ q − 1. We may relabel
the these components so that Pc(Yj) = Yj+1, for 1 ≤ j ≤ q − 2, and Pc(Yq−1) = Y0.
Thus, the critical point is mapped into Y1 in one iterate of Pc, and is mapped back
into Y0 under q iterates of Pc.

Fix r > 1. The equipotential Er
c divides each piece Yj, for 0 ≤ j ≤ q − 1, into

two connected components. We denote by Y 1
j , for 0 ≤ j ≤ q − 1, the interior of the

bounded connected component of Yj \ Er
c . These are puzzle pieces of level 1. The

connected components of P−ic (Y 1
j ), for i ∈ N and 0 ≤ j ≤ q− 1, are puzzle pieces of

level i. They form nests of pieces breaking the Julia set into components.
If the orbit of 0 under iterates of Pc lands on α, Pc is critically non-recurrent

and we have Lemma 5.1. Thus we may assume from now on that the orbit of 0
never lands at α. This guarantees that at every level there is a unique puzzle piece
containing 0.

Since Pc(Y0) covers ∪q−1
j=0 int Y 1

j , the connected components of P−1
c (Y 1

j ), for 0 ≤
j ≤ q − 1, which are contained in Y0 divide Y0 into q pieces. We denote the one
containing 0 by Z2

0 and the remaining ones by Z2
j , for 1 ≤ j ≤ q − 1. Recall that

P ◦qc (0) ∈ Y 1
0 , and therefore belongs to one of Z2

j , for 0 ≤ j ≤ q − 1.
We must have one of the following two possibilities:

A: P
◦(nq)
c (0) ∈ Z2

0 , for all n ∈ N;

B: there exists n ∈ N such that P
◦(nq)
c (0) ∈ Z2

j , for some 1 ≤ j ≤ q − 1.
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Lemma 5.3. If A occurs for some c ∈ M , the map P ◦qc : Z2
0 → Z1

0 is a proper
branched covering of degree two. The nest of puzzle pieces containing 0 do not
shrink to the critical point.

Proof. There are two different ways to prove this. One way is to who that all puzzle
pieces containing zero also contain α and −α on their boundary. In particular, they
may not shrink to a point. The other approach is use the double covering property
and the argument principle to first show that P

◦(nq)
c (0) ∈ Z2

0 must have a fixed point
in Z2

0 , and since it is a double cover the is also the other pre-image of this fixed
point Z2

0 distinct from the fixed point. Then all pre-images of Z2
0 containing 0 also

contain the fixed point and its pre-image. In particular, since all puzzle pieces are
either nested or disjoint, one concludes that the diameters of puzzle pieces of Pc
containing 0 may not shrink to 0.

For a parameter c ∈ M such that all periodic points of Pc are repelling and
property A holds, the map Pc is called satellite renormalizable, and P ◦qc : Z2

0 → Z1
0

is called the first renormalization of Pc. More precisely, it may be called satellite
renormalizable of type p/q, where p/q is the combinatorial rotation of α.

If B occurs for some c ∈M , there is the smallest n ∈ N such that P
◦(nq)
c (0) ∈ Z2

j ,
for some 1 ≤ j ≤ q − 1. Let V 1 denote the connected component of P−nqc (Z2

j )
containing 0 that is obtained by pulling back along the orbit 0, Pc(0), . . . , P ◦nqc (0).
If the orbit of 0 under Pc never enters V 1, then the orbit of the critical point of Pc
is not recurrent, and the dynamics of Pc is described in Lemma 5.1. Thus, we may
assume that there is the smallest j1 ∈ N such that P ◦j1c (0) ∈ V 1. We must have
j1 > nq.

Denote by V 2 the component of P−j1c (V 1) that is obtained by pulling back along
the orbit 0, Pc(0), . . . , P ◦j1c (0). Here, P ◦j1c : V 2 → V 1 is a proper branched covering
of degree two. If Pc is topologically recurrent, we may inductively define domains
V 1 ⊃ V 2 ⊃ V 3 ⊃ . . . , and positive integers j1, j2, j3, . . . such that each jm is the
smallest positive integer with P ◦jmc (0) ∈ V m, and V m+1 is the pull-back of V m along
the orbit 0, Pc(0), . . . , P ◦jmc (0). For example, it is possible that P ◦j1c (0) ∈ V 2, and
then j2 = j1.

Lemma 5.4. For c as above and every integer m ≥ 2, V m is compactly contained
in V m−1 and P ◦jmc : V m → V m−1 is a proper branched covering of degree two.

Proof. The first part is because, the closure of every two puzzle piece only intersect
at equipotentials and closures of rays. Puzzle pieces of different levels may not
intersect at equipotentials. On the other hand if the rays bounding V m and V m−1

intersect, there must be a periodic point on the boundary of V m (and also V m−1).
But this is not possible since the rays bounding V m are mapped to the rays landing
at α.

Now we consider two possibilities.

B1: ∃m ≥ 2, such that the orbit of 0 under P ◦jmc : V m → V m−1 remains in V m.

B2: ∀m ≥ 2, the orbit of 0 under P ◦jmc : V m → V m−1 leaves V m.
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Note that when B1 occurs, the sequence jk is eventually constant, but when B2

occurs, the sequence jk tends to infinity.

Lemma 5.5. If B1 occurs for some c ∈M , then the nest of puzzle pieces containing
the critical point does not shrink to the critical point.

Proof. The proof is similar to the one for Lemma 5.4.

For a parameter c ∈ M such that all periodic points of Pc are repelling and
property B1 holds, the map Pc is called primitive renormalizable, and the map
P ◦jmc : V m → V m−1 is called the first renormalization of Pc.

For a parameter c ∈ M such that all periodic points of Pc are repelling and
property B2 holds, the map Pc is called non-renormalizable.

In general, Pc is called quadratic-like renormalizable, or sometimes Douady-
Hubbard renormalizable, if it is either satellite or primitive renormalizable. The
satellite renormalizable is sometimes called immediately renormalizable, since it hap-
pens immediately.

Theorem 5.6 (Yoccoz). If c ∈ M such that all periodic points of Pc are repelling
and Pc is not quadratic-like renormalizable, then every nest of puzzle pieces shrinks
to a single point. In particular, J(Pc) is locally connected.

Mini-project 6. Detail a proof of the above theorem.

The above theorem has some important consequences. For example,

Theorem 5.7 (Lyubich, Shishikura). If c ∈ M such that all periodic points of Pc
are repelling and Pc is not renormalizable, then J(Pc) has zero area.

Mini-project 7. Detail a proof of the above theorem.

Quadratic-like mappings and straightening

Now we study what happens to the intersection of the nest of puzzle pieces containing
the critical point for parameters satisfying properties A and B1 above. Before we
do that we need some definitions from quasi-conformal mappings.

For a differentiable function ϕ : U ⊆ Ĉ→ Ĉ and a coordinate z = x + iy on U ,
with x and y real, let us denote the complex partial derivatives of ϕ as follows

ϕz =
1

2
(ϕx − iϕy), ϕz =

1

2
(ϕx + iϕy),

where ϕx and ϕy denote the first partial derivatives of ϕ with respect to x and y,
respectively. In particular, if ϕ is a holomorphic function, then ϕz = ϕ′ is the usual
derivative, and ϕz ≡ 0 on the domain of ϕ.

A homeomorphism ϕ : U → V between open subsets of Ĉ is called quasi-
conformal if

• ϕ has distributional partial derivatives ϕz and ϕz of class L1
loc

• there exists k ∈ [0, 1) such that |ϕz(z)| ≤ k|ϕz(z)| for almost every z ∈ U .
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We shall abbreviate quasi-conformal as qc from now on.
The second condition implies that a qc map is orientation preserving. A home-

omorphism is called K-qc if it is qc with constant k = K−1
K+1

, K ≥ 1. By Weyl’s
lemma, a qc homeomorphism such that ϕz = 0 almost everywhere is conformal.

A quadratic-like mapping is a proper branched covering holomorphic map f
from U to V of degree 2, where U and V are simply connected domains with U
compactly contained in V . For example, the restriction of any quadratic polynomial
P to P−1(B(0, R)), for sufficiently large R, is a quadratic-like map.

One may define the filled Julia set and the Julia set of a quadratic-like map in
the same fashion;

K(f) := {z ∈ U | f ◦j(z) ∈ U,∀j ∈ N}, J(f) := ∂K(f).

By a similar proof one can show that K(f) and J(f) are connected iff the orbit of
the critical point of f remains in U .

Two quadratic-like mappings f : U → V and g : U ′ → V ′ are qc conjugate if
there is a qc map h : V → V ′ such that g ◦ h = h ◦ f on U . They are called hybrid
conjugate if they are qc conjugate and the qc conjugacy h between them may be
chosen so that ∂h = 0 on K(f). A remarkable result of Douady and Hubbard is that
the dynamics of a quadratic-like map is similar to the dynamics of some quadratic
polynomial.

Theorem 5.8 (Douady-Hubbard). Every quadratic-like map is hybrid conjugate to
an appropriate restriction of some quadratic polynomial. Moreover, if the Julia set
of the quadratic-like map is connected, then the corresponding quadratic polynomial
is unique.

Although the hybrid conjugacy h in the above theorem is not unique, h is
uniquely determined on J(f). For example, it is uniquely determined on the α
fixed point and all its pre-images.

quadratic-like renormalization

When Pc is primitive renormalizable, the map P ◦jmc : V m → V m−1 is quadratic-like
with connected Julia set. In particular, by the above theorem, there is a unique
quadratic polynomial Pc′ , c

′ ∈ M , such that P ◦jmc : V m → V m−1 is conjugate to
Pc′ restricted to a neighborhood of its filled Julia set. Moreover, as the conjugacy
is hybrid, fine scale geometric properties of the dynamics of the two maps are pre-
served to some extent. It turns out (requires a lot of work) that when Pc varies
among all primitive renormalizable maps with the same combinatorial behavior as
in Pc upto level m, the map Pc′ covers M . This correspondence is one to one and
continuous. Douady and Hubbard used this technique to explain the appearance of
little Mandelbrot copies with in the Mandelbrot set.

When Pc is satellite renormalizable, the map P ◦qc : Z2
0 → Z1

0 is almost quadratic-
like with connected Julia set, except that the domain is not compactly contained
in the range. To fix this problem we slightly “thicken” the domain and range
of this map. That is, using |P ′c(α)| > 1 and that Pc is expanding on the com-
plement of K(Pc) in the Botcher coordinate, there is a simply connected domain
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Z̃2
0 containing the closure of Z2

0 such that P ◦qc (Z̃2
0) contains the closure of Z̃2

0 and
P ◦qc : Z̃q

0 → P ◦qc (Z̃2
0) is a proper branched covering of degree two. Note that the

orbit of the critical point under iterates of P ◦qc remains in Z̃2
0 . Then, as in the

above paragraph, the dynamics of P ◦qc is hybrid conjugate to the dynamics of some
quadratic polynomial on a neighborhood of its filled Julia set.

Similar to the primitive case, each satellite renormalizable Pc gives rise to a home-
omorphic copy of the Mandelbrot set. These copies are attached to the boundary
of the main hyperbolic copy of the Mandelbrot set.
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Lecture 6

Periodic points in the Julia set

Density of hyperbolicity

Recall that a rational map is called hyperbolic if the orbit of all its critical points
tend to attracting cycles of the map. We showed that a hyperbolic rational map
has zero area Julia set and is expanding on a neighborhood of its Julia set. Thus,
the orbit of almost every point on the Riemann sphere under iterates of the map is
asymptotic to one of a finite number of periodic cycle. A rational map of degree d
may have at most 2d− 2 attracting cycles.

The space of all rational maps of degree d may be considered as a subset of
C2d+2, and the space of polynomials of degree d naturally embeds into Cd+1. In
particular, it is meaningful to talk about convergence of sequences in these spaces.
In any continuous family of rational maps, the hyperbolic ones form an open subset
of the family. A central problem in complex dynamics, which goes back to Fatou, is
that the hyperbolic maps are also dense in any non-trivial family of rational maps.

Conjecture 6.1. The set of hyperbolic maps is dense in the space of rational maps
of any given degree. Also, the set of hyperbolic maps is dense in the space of all
polynomials of any given degree.

The above conjecture has been extensively studied for many families of maps,
but it has not been confirmed even in the quadratic family.

Conjecture 6.2. The set of c ∈ C such that the map z 7→ z2 + c is hyperbolic forms
a dense (and open) subset of C.

We shall study the Fatou’s efforts in studying Conjecture 6.1, and study some
recent advances on this conjecture using quasi-conformal mappings.

Global linearizations in the basins of attraction

Theorem 6.3. Let f : Ĉ → Ĉ with deg f ≥ 2 and p ∈ Ĉ with f(p) = p and
|f ′(p)| ∈ (0, 1)). Then, there exists a holomorphic map ϕ : A → C, where A is the
immediate basin of attraction of p, such that ϕ(f(z)) = f ′(p)ϕ(z), for all z ∈ A.
Moreover, f has at least one critical point in A.
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Proof. By making a Mobius change of coordinate we may assume that p = 0. Let
λ = f ′(0) and choose c ∈ R with c2 < λ < c.

Choose r > 0 such that for all z ∈ B(0, r) we have |f(z)| ≤ c|z|. By Taylor’s
expansion theorem, there is C > 0 such that |f(z)− λz| ≤ C|z|2 for all z ∈ B(0, r).
Define the sequence of maps ϕk : B(0, r)→ C as ϕk(z) = f ◦k(z)/λk. We have

|ϕk+1(z)− ϕk(z)| ≤ | 1

λk+1
f ◦k+1(z)− 1

λk
f ◦k(z)|

≤ 1

λk+1
C|f ◦k(z)|2 ≤ 1

λk+1
Cr2c2k ≤ Cr2ck−1.

Then, ϕk form a Cauchy sequence on B(0, r). In particular, the sequence of univalent
maps ϕk converges to a holomorphic map ϕ : B(0, r)→ C that is either univalent or
constant. However, since ϕ′k(0) = 1, for all k, ϕ′(0) = 1 and can not be a constant
map. By definition, we have ϕ(f(z)) = λϕ(z), for all z ∈ B(0, r).

Now extend ϕ onto the immediate basin of attraction of 0, A. Let z ∈ A and
choose n ∈ N such that f ◦n(z) ∈ B(0, r). Define, ϕ(z) = ϕ(f ◦n(z))/λn. To see that
this gives a well-defined holomorphic map on A, assume n1 > n2 be two integers
with f ◦n1(z) ∈ B(0, r) and f ◦n2(z) ∈ B(0, r). Then,

ϕ(f ◦n1(z))

λn1
=
ϕ(f ◦(n1−n2) ◦ f ◦n2(z))

λn1
=
λn1−n2ϕ(f ◦n2(z))

λn1
=
ϕ(f ◦n2(z))

λn2
,

by applying the functional equation ϕ(f(z)) = λϕ(z), n1 − n2 times on B(0, r). By
definition, the extended map satisfies the desired functional equation.

Assume in the contrary that f has no critical point in A. We define a non-
constant holomorphic map ψ : C→ A, which is not possible by Liouville’s theorem.

For small enough ε > 0, there is an inverse branch ψ of ϕ defined on B(0, ε),
with ψ(0) = 0. Let r be the supremum of all ε such that ψ extends as a univalent
holomorphic map on B(0, ε). If r =∞, then we are done. Otherwise, choose r′ > 0
with |λ|r < r′ < r, and let U = ψ(B(0, r′)) ⊆ A. Since ψ is univalent on B(0, r), U
is simply connected. On the other hand f has no critical value on U . This implies
that there is a univalent inverse branch g of f defined on U . We extend ψ univalently
onto B(0, r′/|λ| as ψ(z) = gψ(zλ). This contradicts r being finite.

Theorem 6.4. Let f : Ĉ → Ĉ with deg f ≥ 2 and assume that f has a parabolic
fixed point p of multiplier +1. Then, there exists a holomorphic map ψ : B → BBC,
where B is the immediate basin of attraction of p, such that f(ψ(w)) = ψ(w + 1),
for all w ∈ C. Moreover, f has at least one critical point in B.

Proof. Let us put the parabolic fixed point of f at 0 using a a Mobius change of
coordinate. Then, f near 0 has power series expansion

f(z) = z + azk+1 + · · · ,

with a 6= 0. Let v denote the attraction direction in the attracting basin B. Recall
that the map ϕ(z) = −1/(nazk) maps the immediate basin of attraction B to an
open set containing some right-half plane

HR = {w ∈ C | Rew > R}.

35



Moreover, f on a neighborhood of 0 lifts under ϕ to a univalent map F defined on
HR, where F (w)− (w + 1)| ≤ 1/2. A careful calculation gives

|F (w)− (w + 1)| ≤ C

|W |1/k
,

on HR. Define the sequence of maps βk on HR as βk(w) = F ◦k(w)−k. It follows that
βk forms a Cauchy sequence converging to some univalent map β on HR. Further
calculations are left to the reader.

Let U denote the connected component of ϕ−1(HR) containing 0 on its boundary.
We may define ψ = β ◦ϕ on U . Since ϕ conjugates the iterates of f to iterates of F ,
and β conjugates iterates of F to the iterates of the translation by +1, ψ conjugates
the iterates of f to the iterates of the translation by +1 on U .

One uses the functional equation ψ(f(z)) = ψ(z) + 1 on U to extend ψ onto all
of B. That is, for z ∈ B, by Proposition 2.1, there is n ∈ N such that f ◦n(z) ∈ U .
Then, define ψ(z) = ψ(f ◦n(z)) − n. Let n1 > n2 be integers with f ◦n1(z) ∈ U and
f ◦n2(z) ∈ U . Then

ψ(f ◦n2(z))− n2 = ψ(f ◦n2+1)− n2 − 1 = ψ(f ◦n2+2)− n2 − 2 = . . .

= ψ(f ◦n1)− n− 1.

That is, ψ is a well-defined map on B.

First note that there is ε > 0 such that there is a univalent inverse branch of
ψ, say η defined on Hε. Then let R be the infimum of all R such that there is
a univalent extension of η defined on HR. If R = −∞, then we are done, other
wise let R′ = R − 1/2 and V = η(HR′). Note that V ⊆ B is simply connected
and contains no critical value of f . Therefore there is an inverse branch of f , say
g, defined on V such that g(z) → 0 as z → 0 in V . On HR′ we may extend η as
η(w) = g ◦ η(w + 1).

The above results naturally extend to an statement for periodic points as in the
following corollary.

Corollary 6.5. Let f be a rational map of degree d ≥ 2. Then, the basin of at-
traction of every attracting and parabolic periodic point contains at least one critical
point. In particular, a rational map of degree d ≥ 2 has at most 2d− 2 cycles which
are either attracting or parabolic.

Proof. Let z be an attracting or parabolic fixed point of f of period p. Then, z is
an attracting or parabolic fixed point of f ◦p, and therefore by the above theorems,
the immediate basin of attraction of z contains a critical point of f ◦p. By the chain
rule, f must have a critical point of f in the basin of attraction p.

Clearly the basins of attractions of distinct periodic cycles are disjoint. As a
rational map of degree d has at most 2d−2 critical points, the number of attracting
and parabolic cycles of f is bounded by 2d− 2.
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Persistent cycles

Let M be an n dimensional complex manifold and F : M×Ĉ→ Ĉ be a holomorphic
map. For each m ∈ M , the map z 7→ F (m, z) is a rational map of Ĉ, which we
denote by fm. Assume for some m0 ∈ M the map fm0 has a fixed point at z(m0)
with multiplier λ0 6= 1. By implicit function theorem, there is a neighborhood
U ⊆ M of m0 and a holomorphic map z : U → Ĉ such that for all m ∈ U we
have fm(z(m)) = z(m). That is, fixed points of multiplier different from one persist
under small perturbations of the map. The same argument applies to see that
every periodic point of multiplier different from 1 persists under perturbation. In
particular, in any holomorphic family of rational maps, the repelling periodic point
of a map in the family persists as long as it remains repelling.

Lemma 6.6. For a rational map of degree d ≥ 2, the number of indifferent cycles
with multiplier λ 6= 1 is at most 4d− 4.

Shishikura gives the optimal upper bound of 2d−2 in the above lemma. However,
the bound 4d − 4 (or any bound depending on degree) is enough for our purposes.
The proof we present here is due to Fatou. The idea is that one may perturb the
map in such a way that at least half of its indifferent cycles with multiplier 6= 1
become attracting.

Proof. If f(z) = zd, then the map has no indifferent cycle and there is nothing to
prove. So below we assume that f(z) is not identically equal to zd.

Let f(z) = p(z)/q(z), where p and q are polynomials with no common divisor,
and where at least one of them has degree d. We consider the one parameter family
of maps

ft(z) =
p(z)− tzd

q(z)− t

for t ∈ Ĉ. We have f0(z) = f(z) and f∞(z) = zd.
If t̂ ∈ Ĉ is a parameter such that ft̂ has degree strictly less than d, then for this

value of parameter the numerator and the denominator of ft̂ must have common
roots, say ẑ. It follows that ẑ must be a solution of the equation ft̂(ẑ) = ẑd. In
particular, these points are independent of t̂ and there are a finite number of them.
If ẑ 6=∞, then the value of t̂ is determined by q(ẑ)− t̂ = 0. If ẑ =∞, then t̂ is the
unique solution of t̂ = p(ẑ)/ẑd, interpreting this quotient as the leading coefficient
of the polynomial p(z) when ẑ = ∞. Removing these finite values of t from the
parameter space, the maps ft have degree equal to d and depend smoothly on t.

Assume f = f0 has k distinct indifferent cycles with multipliers λj 6= 1, for
1 ≤ j ≤ k. We need to show that k ≤ 4d − 4. In each of these cycles choose a
representative zj. By implicit function theorem, we may follow all these cycles in a
neighborhood of f0. That is, there is T such that for |t| ≤ T there are holomorphic
maps zj(t) with multiplier λj(t) which depend holomorphiccally on t. We shall show
that there is a parameter t in this neighborhood such that at least half of |λj(t)| are
strictly less than 1.

Sublemma 6.7. For all j, the map t 7→ λj(t) is a non-constant function on |t| ≤ T .
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Proof. Choose an angle θ such that the ray

r 7→ γ(r) = reiθ, r ∈ [0,∞]

avoids all the finite exceptional parameters t where the family fails to be a smooth
degree d map.

Now assume some map t 7→ λj(t) is constant on some small neighborhood of
0. Let A be the set of r ∈ [0,∞] such that fγ(r) has a periodic point of multiplier
λj(0) and period the same as periodic of zj(0). The set A is closed, and contains
a neighborhood of 0. On the other hand, by Implicit Function Theorem, the set
A is also open. Hence, A = [0,∞]. This implies that fγ(∞)(z) = zd must have an
indifferent periodic cycle. However, the only multipliers of the map z 7→ zd are 0
and 2k, for k ≥ 1. This is a contradiction.

Let us expand the multipliers λj, for 1 ≤ j ≤ k, for |t| ≤ T , as

λj(t)/λ0(t) = 1 + ajt
nj + o(tnj),

for aj 6= 0 and nj ≥ 1. Hence,

|λj(t)| = 1 + Re(ajt
nj) + o(|t|nj).

Let us define the functions σj(θ) as the sign of Re(aje
iθnj). Evidently, if σj(θ) = +1

then, |λj(reiθ)| > 1 for small enough r, and if σj(θ) = −1 then, |λj(reiθ)| < 1 for
small enough r. There are nj sectors in C where σj is +1 and nj complimentary
sectors where σj becomes −1. There are 2nj points where σj has jump discontinuity.
Moreover,

1

2π

∫ 2π

0

σj(θ)dθ = 0.

The function σ = σ1 + σ2 + · · · + σk is a step function with a finite number of
jump discontinuities. Moreover, it has zero average on the interval [0, 2π].

If k is even, then σ takes even values at almost every point. If σ(θ) = 0 for
almost every θ ∈ [0, 2π], then half of the σj(θ) must be −1 at almost every point.
Otherwise there is θ ∈ [0, 2π] such that σ(θ) < 0. It follows that at least k/2 of the
functions σj(θ) are equal to −1.

If k is odd, then σ takes odd values at all points except at the finite jump
discontinuities. Then, there is θ ∈ [0, 2π] such that at least (k + 1)/2 of σj(θ), for
1 ≤ j ≤ k, are −1.

The above two paragraphs imply that for small enough r, the map ft with t = reiθ

has at least k/2, when k is even, or (k + 1)/2, when k is odd, attracting periodic
cycles. By the previous corollary, we have k ≤ 4d− 4.

Repelling cycles are dense

Finally, we prove the main statement we need.

Theorem 6.8. Let f be a rational map of Ĉ of degree at least 2. Then, the set of
repelling periodic points of f is dense in J(f).
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The property in the above theorem may be taken as an alternative definition of
the Julia set.

Proof. Let z0 be a point in the Julia set which is not a fixed point or a critical value
of f . Then, f−1(z0) has d distinct elements zj, for j = 1, 2, . . . , d that are disjoint
from z0. As f is univalent on some neighborhood of each zj, there is a neighborood U
of z0 and holomorphic maps ϕj defined on U such that f ◦ϕj(z) = z and ϕ(z0) = zj.

We claim that for some z ∈ U and some positive integer n the map f ◦n(z) takes
one of the values z, ϕ1(z), or ϕ2(z). If this does not happen, then the family of
maps

gn(z) =
(f ◦n(z)− ϕ1(z))(z − ϕ2(z))

(f ◦n(z)− ϕ2(z))(z − ϕ1(z))

defined on U does not take the three values 0, 1, ∞. Thas is, {gn}n forms a
normal family. This implies that the family f ◦n is a normal family on U , which is
a contradiction since z0 ∈ J(f). Therefore, we can find z ∈ U such that f ◦n(z) is
equal to z, ϕ1(z), or ϕ2(z). Providing us with a period point of period n or n+ 1.

Recall that J(f) has no isolated point. Thus, for every z ∈ J(f) there is a
sequence of points in J(f) that tends to z. Not all points in the sequence may be
fixed or critical value. Hence, by the above argument, there is a sequence of periodic
points tending to z. Since, by Theorems 6.5 and 6.6, a rational map of degree d has
at most 6d− 6 attracting or neutral cycles, most of these periodic points tending to
z must be repelling. This finishes the proof of the theorem.
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Lecture 7

Holomorphic motions and invariant line fields

Holomorphic motions

Let E be a subset of Ĉ, and Λ be a connected complex manifold with a base point λ0.
A holomorphic motion of E parametrized by (Λ, λ0) is a family of maps ϕλ : E → Ĉ,
for λ ∈ Λ, that satisfies

• for every λ ∈ Λ, the map ϕλ : E → Ĉ is injective,

• for every fixed z ∈ E, the map λ→ ϕλ(z) is holomorphic on Λ,

• ϕλ0 is the identity map on E.

A rather surprising property of the holomorphic motions is given by the following
lemma.

Lemma 7.1 (λ-lemma of Mañe-Sad-Sullivan). Let Λ be a complex manifold and
E ⊆ Ĉ. Let ϕ : Λ× E → Ĉ be a holomorphic motion of E parametrized by (Λ, λ0).
Then, ϕ : Λ×E → Ĉ is continuous and has continuous extension to a holomorphic
motion ψ : Λ × E → Ĉ. Moreover, for each λ ∈ Λ, the map z 7→ ψ(λ, z) is a qc
mapping on E.

Although the notion of quasi-conformality we gave in the previous section does
not make sense if the map is not defined on an open set, there is an equivalent def-
inition of quasi-conformality that makes sense for arbitrary subsets of the Riemann
sphere. The following extension of the λ-lemma is meaningful for the definition we
have presented. However, one has to impose an strong condition on the parameter
space Λ.

Theorem 7.2 (Slodkowski). Let E be a subset of Ĉ. Any holomorphic motion
ϕ : D× E → Ĉ extends to a holomorphic motion ψ : D× Ĉ→ Ĉ.

In particular the fiber maps z 7→ ψ(λ, z), for each fixed λ ∈ D, of the extended
motion obtained in the above theorem, are qc mappings of the Riemann sphere.
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Beltrami coefficients

Let f be an orientation preserving homeomorphism of C or Ĉ that has first order
partial derivatives ∂xf and ∂yf defined almost everywhere and belong to L1

loc. The
complex partial derivatives

∂zf =
1

2
(∂xf − i∂yf), ∂zf =

1

2
(∂xf + i∂yf),

are defined almost everywhere. Then, for every α ∈ [0, 2π], the derivative of f in
the direction eiα, Df · eiα, is equal to ∂zf +∂zfe

−2iα. In particular, if f is conformal
at some point, then ∂zf = 0 and all directional derivatives of f at z are equal to
∂zf(z). Moreover,

max
α
|Df(z) · eiα| = |∂zf(z)|+ |∂zf(z)|,

min
α
|Df(z) · eiα| = |∂zf(z)| − |∂zf(z)|.

Since the Jacobian of the orientation preserving homeomorphism f , given by Jf (z) =
|∂zf(z)|2 − |∂zf(z)|2, is positive, the difference |∂zf(z)| − |∂zf(z)| must be positive
almost everywhere. In particular the dilatation quotient

Kf (z) =
maxα |Df(z) · eiα|
minα |Df(z) · eiα|

=
|∂zf(z)|+ |∂zf(z)

|∂zf(z)| − |∂zf(z)|

is a finite number. Clearly, the dilatation quotient is conformally invariant. That is,
if g and h are conformal mappings where s = g ◦ f ◦ h is defined then, Kf (h(z)) =
Ks(z).

One can see that the condition

max
α
|Df(z) · eiα| ≤ K min

α
|Df(z) · eiα|,

for some constant K, is equivalent to the condition

|∂zf(z)| ≤ K − 1

K + 1
|∂zf(z)|.

The function

µ(z) =
∂zf(z)

∂zf(z)

is called the complex dilatation of f at z. On the other hand, if f is a qc mapping,
Kf (z) ≤ K, almost everywhere.

By a direct calculation, when µ(z) 6= 0, the maximal stretching of f at z, i.e.
maxα |Df(z) · eiα|, occurs when α = arg µ(z)/2.

It turns out that the correspondence f 7→ µ is a “good” way to represent qc
mappings. This is confirmed by the following classical theorem.

Theorem 7.3 (Measurable Riemann Mapping Theorem). Let µ : C → D be a
measurable function with ‖µ‖∞ < 1. There exists a qc mapping f : C → C such
that ∂zf(z) = µ(z)∂zf(z), for almost every z ∈ C.

Moreover,
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• the normalized solution leaving 0, 1, and ∞ fixed is unique.

• Let Λ be a complex manifold and µλ : C→ D be an analytic family of measur-
able functions with ‖µλ‖∞ < 1, for all λ ∈ Λ. Then, the normalized solutions
fλ, for λ ∈ Λ, depends analytically on λ (for each fixed z ∈ C).

The equation ∂zf = µ∂zf is called the Beltrami equation and the function µ is
called the Beltrami coefficient of the equation. Intuitively, the Beltrami coefficient
µ determines a measurable ellipse field defined on C. The ratio of the major axis to
the small axis of the ellipse at each z is given by |µ(z)|, and the angle of the major
axis is given by arg µ(z)/2. The measurable Riemann mapping theorem states that
given any measurable ellipse field on C with uniformly bounded eccentricities, then
there is a qc mapping that straightens the field. When µ is zero, the solutions
are holomorphic, and if µ is constant almost everywhere, the solution is an affine
mapping on C. The study of the above equation has a long history going back to
Gauss. The above version is proved in 1960 by Ahlfors and Bers.

As in the holomorphic case, it is useful to have a simple criterion for normality
of a family of qc mappings.

Proposition 7.4. Let {fa}a be a family of quasi-conformal mappings of Ĉ with
|∂zfa/∂zfa| ≤ k < 1 and normalized by mapping three distinct points on Ĉ to three
distinct points on Ĉ. Then, the family {fa}a is normal.

Invariant line fields

A line field on a measurable set E ⊆ Ĉ is a measurable function Θ : E → [0, 2π]/ ∼,
where θ1 and θ2 in [0, 2π] are equivalent if θ1−θ2 ∈ πZ. In other words, a line field on
E assigns a line in the tangent space at each point in E that depends in a measurable
fashion on the point in E. Note that a measurable function may be defined only
almost everywhere on E. For example, if f is a quasi-conformal mapping defined on
a neighborhood of a measurable set E, the map z 7→ arg µ(z)/2 defines a line field
on E that determines the directions of maximal stretching of f on E.

Let E ⊆ Ĉ be a measurable set and g : Ĉ → Ĉ a rational map such that
g−1(E) = E. A line field Θ on E is called invariant under g, if for almost every
z ∈ E we have Θ(g(z)) ∼ Θ(z) + arg g′(z). In other words, the action of g′ on the
tangent space maps the line field Θ to itself.

The quadratic family

Let M denote the Mandelbrot set.

Theorem 7.5. The following two conditions are equivalent.

(1) the set of c ∈ C such that Pc(z) = z2 + c is hyperbolic is dense in C;

(2) there is no c ∈ C such that J(Pc) has positive area and supports an invariant
line field.

We shall prove the above theorem in a several steps.
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Proposition 7.6. The boundary of the Mandelbrot set is equal to the set of c ∈ C
such that the family of maps {c 7→ P ◦nc (0)}n is not normal.

Proof. For c0 in C \ M , as M is closed, there is a neighborhood of c0 on which
the family of maps P ◦nc (0) converges uniformly to the constant map ∞. For c0

in the interior of M , there is a neighborhood of c0 on which the iterates P ◦nc (0)
remain uniformly bounded. Hence by Montel’s normal family theorem, the family
is normal on that neighborhood. If c0 belongs to the boundary of M , then on any
neighborhood of c0 there are points generating an orbit that tends to infinity, and
there are points generating uniformly bounded values. Hence, no subsequence of the
family may converge to a holomorphic map.

Proposition 7.7. Let c ∈ C such that Pc has an indifferent cycle. Then, c ∈ ∂M .

Proof. Let zc be the indifferent periodic point of Pc with period q and multiplier
λ. First note that c must be in the Mandelbrot set. Otherwise, the orbit of the
critical point tends to the supper attracting fixed point at infinity and the map is
hyperbolic. In particular, it can not have a neutral cycle.

Assume to the contrary that c is in the interior of the Mandelbrot set. Let W
be the connected component of M containing c. By the previous proposition, there
is a sequence nj ∈ N such that b 7→ P

◦nj

b (0) converges to some holomorphic map g
uniformly on compact subsets of W . We consider two cases A and B belo

(A): λ 6= 1.

By implicit Function theorem, there is a connected neighborhood V ⊆ W of c
and a holomorphic map η : V → C such that η(c) = zc and for all c′ ∈ V , η(c′) is a
period point of Pc′ with period q.

We consider two sub-cases.

(A1): (P ◦qb )′(η(b)) is constant on V .

As b tends to a point on the boundary of V , η(b) remains uniformly bounded
in C. Then, every convergent subsequence of thus a sequence tends to a point that
is periodic of period q and multiplier λ. In other words, the connected component
containing c of b ∈ C such that Pb has a periodic cycle of period q and multiplier λ
is both open and closed in C. Therefore, this component must be the whole C. But
P0 has no indifferent cycle. (Note that this argument does not work if λ = 1.)

(A2): (P ◦qb )′(η(b)) is not identically constant on V .

By open mapping property of holomorphic maps, there are a and b in V such that
η(a) is an attracting periodic point of Pa and η(b) is a repelling periodic point of Pb.
Since the attracting periodic point must attract the whole orbit of 0, g(a′) = η(a′)
on a neighborhood of a. Hence, η ≡ g on V , and this holds for the limiting map g
of any convergent subsequence of t 7→ P

◦nj

t (0). It follows that, the orbit of 0 under
Pb must tend to the repelling cycle η(b), which is impossible.

(B): λ = 1.

Let Xj denote the set of a ∈ W such that Pa has a periodic point of period j
with multiplier +1. We consider two sub-cases again.

(B1): For all i ∈ N, Xi has no accumulation point in W .
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Fix i ∈ N such that Xi is not empty (we know that at least Xq is not empty),
and fix y in Xi. First assume that there is x ∈ W such that Px has an attracting
periodic point of period i. Choose a smooth closed curve γ in W \Xi separating y
from the rest of Xi and passing through x. By Part A above, Pb has no indifferent
cycle of period i on γ. Thus, there is a holomorphic motion wb of the attracting
cycle of Pb, for b ∈ γ. We have g(b) = wb on a neighborhood of γ. The holomorphic
map b 7→ (P ◦ib )′(g(b)) is defined on W and is strictly contained in the unit disk
on a neighborhood of γ. By the maximum principle, |(P ◦iy )′(g(y))| < 1. This is a
contradiction, since g(y) is the parabolic cycle of Py.

By the above paragraph, all periodic points of Pb of period i are repelling for
b ∈ W \Xi. Thus, there is a holomorphic motion of every repelling cycle of period
i on an omitted neighborhood of y. It follows that at least one of these repelling
cycles, say wb, must become neutral at y. Then, y is a removable singularity of wb.
By the open mapping property of holomorphic maps, Pb must have an attracting
cycle near y. This is a contradiction.

(B2): There is i ∈ N such that Xi has an accumulation point in W .

At every b ∈ Xi, Pb has a parabolic periodic point that must attract the orbit
of 0. Hence, g(b) is equal to a point in the parabolic cycle of multiplier +1. The
holomorphic maps b 7→ (P ◦ib )′(g(b)) and P ◦ib (g(b)) − g(b) are defined on W and are
equal to +1 and 0 on Xi, respectively. Hence, they must be identically constant
maps. That is, g(b) is a parabolic cycle of Pb of multiplier +1 and period i, for all
b ∈ W . By Hartog’s extension theorem, this implies that for all b ∈ C, Pb must
have a parabolic point of multiplier +1. But, for large values of |b|, Pb has no such
cycle.

Let M o denote the interior of M . If W is a connected component of M o and
there is c ∈ W such that Pc is hyperbolic, by the above proposition, for all c′ ∈ W ,
Pc′ is hyperbolic. Any component W of M o consisting of hyperbolic parameters is
called a hyperbolic component of the Mandelbrot set. Let Mhyp denote the union of
all hyperbolic components of the Mandelbrot set, and M queer denote the union of
the remaining components. Clearly, the density of hyperbolicity conjecture in the
quadratic family is equivalent to the statement that M queer is empty.

Proof of Theorem 7.5.

¬(1) ⇒ ¬(2): Assume that there is a non-empty component W of M queer. We
want to show that there is c ∈ W such that J(Pc) has positive area and carries an
invariant line field.

By Proposition 7.7, for all c ∈ W all cycles of Pc are repelling. Then, for all
c ∈ W , Pc has no parabolic or basin of attraction or a Siegel disk. Also, Pc may
not have any basin of attraction of an attracting cycle, as W is a queer compo-
nent. Polynomials have no Herman ring by the maximum principle. Thus, by the
classification of Fatou components, the only Fatou component of Pc, for c ∈ W , is
the basin of attraction of ∞. This implies that the interior of the filled Julia set is
empty, for all c ∈ W .

Fix c ∈ W . Recall that Botcher coordinate ϕb : C \ J(Pb)→ C \ D conformally
conjugates Pb to z 7→ z2 on the complement of the Julia set. Therefore, for all c′ in
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W , the map
ψc′ = ϕ−1

c′ ◦ ϕc : C \ J(Pc)→ C \ J(Pc′),

is a univalent map conjugating Pc′ to Pc on the complement of their Julia sets. It
easily follows that the above map depends holomorphically on c′ ∈ W . The above
family is a holomorphic motion of the the complement of J(Pc), parametrized by
(W, c). As J(Pc) has no interior point, by the λ-lemma, the above holomorphic
motion extends to a holomorphic motion of the whole complex plane. We denote
the extended motion by the same notion ψc′ .

By definition, ψc′ ◦ Pc = Pc′ ◦ ψc′ on C \ J(Pc). By the continuity of ψc′ on Ĉ,
this relation must hold on J(Pc) as well.

Fix b ∈ W distinct from c. As ψb is qc, its complex dilatation µ is defined almost
everywhere on J(Pc), and then defines a line field on J(Pc). The conjugacy relation
on J(Pc) implies that µ is invariant under Pc.

We claim that J(Pc) has positive area. The qc mapping ψb is conformal outside
J(Pc) and conjugates the two maps on their Julia sets. If J(Pc) has zero area, by
Weyl’s Lemma ψb is a conformal map. On the other hand, the only conformal maps
of C are linear maps. It follows that c = b.

¬(2) ⇒ ¬(1): Assume that J(Pc) has positive area and supports an invariant
line field. We shall show that M has a non-empty queer component.

For t ∈ D define the Beltrami coefficient µt on J(Pc) as teiΘ, where Θ is the
argument of the invariant line field on the Julia set. Extend µt onto C \ J(Pc) by 0.
The Beltrami coefficient µt is invariant under Pc.

By the measurable Riemann Mapping theorem, there are qc mappings ϕt solving
the Beltarmi equation with coefficient µt. We normalize this solution by requiring
that 0 is mapped to 0, ∞ is mapped to ∞, and ϕt is tangent to the identity at ∞.

Consider the map Qt = ϕt ◦ Pc ◦ ϕ−1
t , for t ∈ D. Each Qt has zero complex

dilatation almost everywhere on C. Therefore, it must be holomorphic on C. On the
other hand, since it has degree two, and has a supper attracting fixed point at infinity,
it must be a quadratic polynomial. That is, for all t ∈ D, Qt(z) = ct+ btz+atz

2. As
Qt is tangent to the identity at infinity, we must have at = 1. The, since it is locally
a double cover at 0, it must have a critical point at 0. This implies that bt = 0.
Hence, Qt(z) = z2 + ct, for some ct ∈ C.

We claim that t 7→ ct is an injective function on D. If not, let t and s be distinct
points in D with ct = cs. Then J(Pcs) = J(Pct) and ϕs ◦ ϕ−1

t conjugates these two
maps on their Julia sets. However, since this map is identity on the complement of
the Julia set, it must be identity on all of C. Therefore, tµ = sµ on the Julia set.
As the Julia set has positive area and µ is non-zero, this can only happen if t = s.

The map Qt depends holomorphically on t ∈ D (by λ-lemma). This implies that
t 7→ ct = Qt(0) is a holomorphic and injective map on D. Moreover, the values of
this function lie in M . Therefore, c0 = c lies in the interior of the Mandelbrot set.
On the other hand, since J(Pc) has positive area, Pc is not hyperbolic. Therefore, c
must lie in a queer component of M o.
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Lecture 8

Density of hyperbolicity

In this lecture we study the problem of invariant line fields for a class of infinitely
renormalizable quadratic polynomials.

Finitely renormalizable quadratic polynomials

Recall that by Theorem 7.5, the density of hyperbolicity in the quadratic family is
equivalent to the absence of quadratic polynomials with positive area Julia set that
support an invariant line field. The latter statement has been understood for several
classes of maps, listed below.

• If Pc has an attracting or a parabolic cycle, then it has zero area Julia set.

• If Pc has a non-recurrent critical point then its Julia set has zero area.

• If Pc has an irrationally indifferent cycle, by Proposition 7.6 and the proof of
Theorem 7.5, either J(Pc) has zero area or it can not support an invariant line
field.

• If Pc is not renormalizable, then its Julia set has zero area; Theorem 5.7.

Let Pc be renormalizable of either satellite or primitive type. That means there
are simply connected domains U1 and V1, U1 b V1, and a positive integer n1 such
that P ◦n1

c : U1 → V1 is a proper branched covering of degree two with P
◦(in1)
c (0) ∈ U1,

for all i ∈ N. By the straightening theorem there is a qc mapping S1 : V1 → C and
a parameter c1 in the Mandelbrot set M such that Pc1 ◦S1 = S1 ◦P ◦n1

c holds on U1.
Let R(Pc) = P ◦n1

c : U1 → V1.
If Pc1 is also renormalizable, we say Pc is twice renormalizable. By definition,

there are data U ′2, V ′2 , and n′2 ∈ N for the renormalization of Pc1 . There is a qc
mapping S2 and a parameter c2 ∈M straightening the renormalization of Pc1 , that

is, Pc2 ◦ S2 = S2 ◦ P
◦n′

2
c1 on U ′2. We may assume that V ′2 is contained in the image of

S1. Otherwise, we may replace V ′2 by the connected component of P ◦−n2i
c1

(V ′2), for
some i ∈ N, that contains 0 in its interior such that it is contained in the image of
S1. Then, U ′2 is the connected component of P ◦−n2

c1
(V ′2) containing 0 and compactly

contained in V ′2 . Define, U2 = S−1
1 (U ′2), V2 = S−1

1 (V ′2), and n2 = n1n
′
2. It follows

that S2 ◦S1 conjugates P ◦n2
c on U2 to Pc2 on a neighborhood of its Julia set. That is,
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S2 ◦S1 ◦P ◦n2
c = Pc1 ◦S2 ◦S1. Note that S2 ◦S1 is also a qc mapping, with dilatation

quotient bounded by the product of the dilatation quotients of S1 and S2. It follows
that R◦2(Pc) = P ◦n2

c : U2 → V2 is a proper branched covering of degree 2 such that
the orbit of 0 under R◦2(Pc) remains in U2. The map R◦2(Pc) is called the second
renormalization of Pc.

In general, one may continue the above process of renormalization for at most
finite or infinitely many times. In the former case Pc is called finitely renormalizable,
or k times renormalizable if k is the largest integer for which the renormalization
process may be carried out k times. In the latter case, Pc is called infinitely renor-
malizable.

Let Pc be k times renormalizable, where k is a finite number or infinity. By
the above construction, for each j with 1 ≤ j < k + 1, there are simply connected
domains Uj and Vj, Uj b Vj, as well as nj ∈ N such that

R◦j(Pc) = P ◦nj
c : Uj → Vj

is a proper branched covering of degree two and for all m ∈ N, R◦(jm)(0) ∈ Uj. Fix
a j with 1 ≤ j < k + 1, and consider the orbit 0, Pc(0), P ◦2c (0), . . . , P

◦nj
c (0). Note

that by the definition of renormalization, 0 and P
◦nj
c (0) belong to Uj, while for all i

with 1 ≤ i ≤ nj−1, P ◦ic (0) does not belong to Uj. That is, P
◦nj
c (0) is the first return

of 0 back to U after leaving U . Define Uj,0 = Uj and Vj,0 = Vj. Then, inductively
we define the simply connected domains Uj,i and Vj,i, for 1 ≤ i ≤ nj − 1, as follows.
Since, Pc(0) does not belong to Vj,0, there is a univalent Pc-preimage of Vj,0 and

Uj,0 containing P
◦nj−1
c (0). We denote these components by Uj,nj−1 and Vj,nj−1,

respectively. It follows that Pc(0) does not belong to Uj,nj−1 and Vj,nj−1. Then, there

is univalent preimage of these domains under Pc containing P
◦nj−2
c (0), which are

denotes by Uj,nj−2 and Vj,nj−2, respectively, and so on. For each i, P
◦nj
c : Uj,i → Vj,i

is conjugate to P
◦nj
c : Uj,0 → Vj,0 via the univalent map P

◦nj−i
c on Uj,i. Thus, for each

i, P
◦nj
c : Uj,i → Vj,i is a proper branched covering of degree 2 with a son-escaping

critical point.
For every i and j with 1 ≤ j < k + 1 and 0 ≤ i ≤ nj − 1 define the Julia sets

Jj,i = J(P ◦nj
c : Uj,i → Vj,i).

We have, Pc(Jj,i) = Jj,i+1, where the second subscript is considered module nj.
These are called the little Julia sets of the j-th renormalization of Pc. Let us define

Jj = ∪nj−1
i=0 Jj,i.

Proposition 8.1. If Pc is k times renormalizable, where k ∈ N ∪ {∞}, for every
1 ≤ j < k + 1, we have

area
(
J(Pc) \ ∪∞i=0P

−i
c (Jj)

)
= 0.

Proof. Fix j and let U = ∪nj−1
i=0 Uj,i. By the definition of renormalization, the post-

critical set of Pc is contained in U . Then, by Theorem 3.8, the orbit of almost
every point in J(Pc) eventually remains in U . However, the only points of U whose
orbits remain in U under iterates of Pc are contained in Jj (look at two possibilities
of satellite and primitive renormalizations). In other words, J(Pc), up to a set of
measure zero, is equal to the union of the pre-images of Jj.
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Corollary 8.2. If Pc is finitely renormalizable, then J(Pc) has zero area.

Proof. Let k be the largest integer such that Pc is k times renormalizable with the
last renormalization given by R◦k(Pc) = P ◦nk

c : Uk,0 → Vk,0. By the straightening
theorem, R◦k(Pc) is conjugate to a non-renormalizable quadratic polynomial Pc′
by a qc mapping. As J(Pc′) has zero area, Theorem 5.7, and qc mappings map
sets of positive area to sets of positive area, Jk,0 must have zero area. It follows
that for all i, Jk,i has zero area. The statement of the proposition follows from
Proposition 8.1.

Compactness in the family of quadratic-like mappings

Proposition 8.3. For every M > 0 there is K > 1 such that if f : U → V is a
quadratic-like mapping with mod (V \U) ≥M , the qc mapping S in the straightening
theorem may be chosen such that the dilatation quotient of S is bounded from above
by K.

Moreover, for any M > 0, the set of quadratic-like mappings f : U → V , upto
affine conjugacy, with connected Julia set and mod (V \U) ≥M is a compact class.

Proof. This follows from the Koebe distortion theorem, the compactness of the
Mandelbrot set, and Theorem 7.4. We leave further details to the reader.

Let Pc be infinitely renormalizable. For each k ∈ N, we may define

mod (R◦k(Pc)) = sup
U,V

mod (V \ U),

where the supremum is taken over all simply connected domains U and V with
U b V and R◦k(Pc) is a proper branched covering from U to V with a non-escaping
critical point. An infinitely renormalizable Pc is said to have a priori bounds, if
there is ε > 0 such that mod (R◦k(Pc)) ≥ ε, for all k ∈ N. It follows from the
above proposition that for every infinitely renormalizable Pc, the renormalizations
{R◦k(Pc)}k, up to affine conjugacy, is contained in a compact class of maps.

For some classes of maps the a priori bounds have been established. For ex-
ample, when c is real and also, when Pc is infinitely renormalizable with all its
renormalizations of certain primitive type. However, it is also known that there are
examples of infinitely renormalizable maps that do not have a priori bounds. This
problem is widely open at this stage.

An infinitely renormalizable Pc is said to have unbranched a priori bounds, if
there is ε > 0 such that for all k ∈ N, the domains U and V for R◦k(Pc) may be
chosen in such a way that mod (V \ U) ≥ ε and PC(Pc) ∩ (V \ U) = ∅.

Proposition 8.4. For every infinitely renormalizable Pc with unbranched a priori
bounds, ∩∞j=0Jj has zero area.

Proof. We want to show that ∩∞j=0Jj has no Lebesgue density point.
By the definition of a priori bounds, there is ε > 0 such that for each j ∈ N and

0 ≤ i ≤ nj there are simply connected domains Uj,i b Vj,i such that J(P
◦nj
c : Uj,i →

Vj,i) = Jj,i and mod Vj,i \ Uj,i ≥ ε. We claim that there is M < 1 depending only
on ε such that areaUj,i ≤M areaVj,i.
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Let ϕ : B(0, e2πε) \ B(0, 1) be an injective homorphic map into Vj,i \ Uj,i. Let γ
be the circle of radius e2πε/2. Then, there must be z on γ such that |ϕ′(z)|πe2πε ≥
diam Uj,i. Applying Koebe distortion theorem finite number of times (depending
on ε) on circles of radius e2πε − 1 we conclude that there is m > 0 such that for all
z ∈ γ, |ϕ′(z)| ≥ m diam (Uj,i). Invoking Koebe distortion theorem once more time
on circles of radius e2πε − 1, we conclude that there is m′ > 0, depending only on ε
such that |ϕ′(z)| ≥ m′ diam Uj,i, for all z ∈ B(0, 3e2πε/4) \ B(0, e2πε/4. Integrating
the Jacobian of ϕ on this annulus, one has area(Vj,i \ Uj,i) ≥ m′ diam U2

j,i. On the
other hand by the isoperimetric inequality, the area enclosed by a curve of length L
is at most L2/(4π). This finishes the proof of the lemma.

Corollary 8.5. Let Pc be infinitely renormalizable with a priori bounds. Then, for
almost every z ∈ J(Pc) we have

• the forward orbit of z does not meet ∩∞j=0Jj,

• ‖(P ◦nc )′(z)‖ → ∞, with respect to the Poincare metric on Ĉ \ PC(Pc).

• for any n ∈ N, there is k ∈ N such that P ◦kc (z) ∈ Jn.

• for any k ∈ N, there is n ∈ N such that P ◦kc (z) /∈ Jn.

Robust infinitely renormalizable quadratics

Let Pc be a quadratic polynomial, and let Θ : J(Pc) → [0, 2π] be a measurable
invariant line field on J(Pc). Define, µ(z) = eiΘ. On may extend µ as 0 onto Ĉ\J(Pc)
to obtain an invariant measurable function under the action of the derivative of Pc
on the tangent space.

We need the following classical result on the regularity of measurable functions.

Theorem 8.6. Let µ : Ĉ→ C belong to L1(Ĉ) (L1
loc is enough). Then, for all ε > 0,

and almost every z ∈ Ĉ,

lim
r→0

area{w ∈ B(z, r) | |µ(z)− µ(w)| ≤ ε}
areaB(z, r)

= 1.

For a measurable function µ : Ĉ → C, we say that µ is almost continuous at
some point z in Ĉ if the limit in the above theorem is +1 for all ε > 0. It follows
that µ is almost continuous at almost every point in Ĉ.

Theorem 8.7 (McMullen). Let Pc be an infinitely renormalizable map with un-
branched a priori bounds. Then, there is no invariant line field supported on the
Julia set of Pc.

A line field µ on an open subset U ⊆ C is called univalent line field, if there is a
holomorphic map h : U → C such that µ is the pull back of the horizontal line field
on C under h. That is, µ(z) = (h−1)′(h(z))/|(h−1)′(h(z))|.

Lemma 8.8. Let f : U → V be a quadratic like map. Then, there is no univalent
invariant line field on V .
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Proof. The critical point in the domain of f implies that the holomorphic map
inducing the univalent line field must have a critical point in its domain of definition.
Hence, the map may not be univalent.

Proof of Theorem 8.7. We shall show that if Pc has a measurable invariant line field
µ on J(Pc), then some quadratic-like map must have a univalent invariant line filed,
which is not possible by the above lemma.

Fix z ∈ J(Pc) such that µ is almost continuous at z and we have the properties in
Corollary 8.5. By multiplying µ by a constant on C, we may assume that µ(z) = 1.

For every j ∈ N let k(j) be the smallest positive integer with P
◦k(j)
c (z) ∈ Jj.

Then, as j → ∞, k(j) → ∞. As k(j) is the smallest integer with this property,

P
◦k(j)
c (z) must belong to one of little Julia sets Jj,i(j), for some i(j) 6= 1 between

0 and nj. Let Ej denote the connected component of P
−k(j)
c (Uj,i(j)) containing z.

Then, P
◦k(j)
c : Ej → Uj,i(j) is univalent. Also, P

◦nj−i(j)
c : Uj,i(j) → Uj,0 is a univalent

map. Thus, we have a univalent onto map P
◦k(j)+nj−i(j)
c : Ej → Uj,0. Let us denote

this map by hj, that is hj : Ej → Uj,0, is an iterate of Pc that is univalent. We have,
|h′j(z)| → ∞, since z belongs to the Julia set. By Koebe distortion theorem, this
implies that diam Ej → 0.

Define the rescaling maps Aj(z) = z/ diam (Jj,0), and consider the quadratic-like
maps gj = Aj ◦ P

◦nj
c ◦A−1

j . Then, each gj is a quadratic-like map with a connected
Julia set, and modulus at least ε, where ε is the bound guaranteed by the a priori
bounds.

Let us define the line fields ηj as the push forward of µ under Aj. As µ is
invariant under P

◦nj
c , and Aj is a conjugacy, ηj must be invariant under gj. By

Proposition 8.3, there is a subsequence of gj converging to some quadratic-like map
g : U ′ → V ′. On the other hand, since µ on Ej tends to the constant line field 1 in
measure, the corresponding subsequence of ηj converges to a univalent line field η
invariant under g. This finishes the proof of the theorem.
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