Combinatorial rigidity of infinitely renormalization unicritical polynomials

Davoud Cheraghi

University of Warwick
Roskilde, Denmark, Sept 27- Oct 1, 2010

Let $f_{c}(z)=z^{d}+c, c \in \mathbb{C}$ and $d \geq 2$, with Julia set denoted by $J\left(f_{c}\right)$.
The problem is to show that the dynamics of f_{c} on $J\left(f_{c}\right)$ is combinatorially rigid! In particular, the geometry of orbits on $J\left(f_{c}\right)$ are uniquely determined by some combinatorial data!

$$
\mathcal{M}^{(d)}:=\left\{c \in \mathbb{C}: J\left(f_{c}\right) \text { is connected }\right\}
$$

We only consider the third case in

1. f_{c} has an attracting periodic point
2. f_{c} has a neutral periodic point
3. all periodic points of f_{c} are repelling

The puzzle pieces in the cubic case

The puzzle pieces in the cubic case

By Yoccoz in 1990 for $d=2$ and by
Kahn-Lyubich in 2005 for $d \geq 2$, the nests of puzzle pieces shrink to points unless the map is
renormalizable
renormalization and straightening, repeating the process

The combinatorics of an infinitely renormalizable map

$\operatorname{Com}(\mathrm{c}):=\left\langle\mathcal{M}_{i}^{d}\right\rangle_{i=1,2,3, \ldots}$
Conjecture (combinatorial rigidity)
If $\operatorname{Com}(c)=\operatorname{Com}\left(c^{\prime}\right)$, then $c=\lambda c^{\prime}$, for some λ with $\lambda^{d-1}=1$.

Secondary limbs

- Secondary limbs condition: all \mathcal{M}_{i}^{d} belong to a finite number of secondary limbs.
- A priori bounds: the moduli of the fundamental annuli are uniformly away from zero.

Theorem (Rigidity)

For every $d \geq 2$, if f_{c} and $f_{c^{\prime}}$ satisfy a priori bounds and secondary limbs conditions, then Com (c)=Com(c^{\prime}) implies $c=\lambda c^{\prime}$ for some ($d-1$)-th root of unity λ.
Earlier results

- for $d=2$ by Lyubich; His proof uses linear growth of moduli and does not work for arbitrary degree.
- for $d=2$ and real maps by Graczyk-Swiatek; This also uses linear growth of moduli and, because of symmetry, no homotopy argument is needed.
- for real polynomials by Kozlovski-Shen-van Strien; Arbitrary number of critical points are involved, but the symmetry of the map is used.

Combinatorial equivalence
local connectivity of Julia sets by A. Douady and Y. Jiang

Quasi-conformal conjugacy

Open closed argument, or no invariant line fields by McMullen
Conformal conjugacy
f_{c} is Thurston equivalent to $f_{c^{\prime}}$ if there exists a q.c. mapping $H: \mathbb{C} \rightarrow \mathbb{C}$ which is homotopic to a topological conjugacy ψ between f_{c} and $f_{c^{\prime}}$, relative the post-critical set of f_{c}.

Lemma (Thurston-Sullivan?)

Thurston equivalence implies q.c. equivalence
Proof.

The multiply connected regions and buffers for gluing:

Building a Thurston equivalence;
Depending on the type of renromalization on level n and maybe on level $n+1$ as in
A: on level n primitive type;
B: on level n satellite type, and on level $n+1$ primitive type;
C: on level n satellite type, and on level $n+1$ also satellite type.
we define the q.c. mappings between multiply connected regions.
The second case (naturally) imposes the $\mathcal{S} \mathcal{L}$ condition on us, as there may be bad scenarios.

The right number of twists for gluings

