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Abstract. — We study the post-critical set of a class of holomorphic maps with an irra-
tionally indifferent fixed point. We prove a trichotomy for the topology of the post-critical
set based on the arithmetic of the rotation number at the fixed point. The only possibili-
ties are Jordan curve, one-sided hairy Jordan curve, and Cantor bouquet. This explains the
degeneration of the closed invariant curves inside the Siegel disks, as one varies the rotation
number.

Résumé (Topologie des attracteurs irrationnellement indifférents)

Nous étudions ’ensemble post-critique d’une classe d’applications holomorphes avec
un point fixe indifférent irrationnel. Nous prouvons une trichotomie pour la topologie de
I’ensemble post-critique basée sur ’arithmétique du nombre de rotation au point fixe. Les
seules options sont une courbe de Jordan, une courbe de Jordan velue unilatérale et un
bouquet de Cantor. Cela explique la dégénérescence des courbes invariantes fermées a
I'intérieur des disques de Siegel, lorsque ’on fait varier le nombre de rotation.

1. Introduction

1.1. Irrationally indifferent attractors. — Let
(1.1) f(z) = ™2 4 O(2?)

be a germ of a holomorphic map defined near 0 € C, with « € R\ Q. The fixed point at 0
is called irrationally indifferent. It is known that the local dynamics of f near 0 depends
on the arithmetic nature of « in a delicate fashion. By classical results of Siegel [Sie42]
and Brjuno [Brj71], if « satisfies an arithmetic condition, now called Brjuno type, f is
conformally conjugate to the rotation by 2w« near 0. The maximal domain of linearisation
(conjugacy) is called the Siegel disk of f at 0, and is denoted by A(f) here. Within A(f),
the local dynamics is trivial; any orbit in A(f) is dense in an invariant analytic Jordan curve.
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On the other hand, in a remarkable development [Yoc95b], Yoccoz showed that if a is not
a Brjuno number, the quadratic polynomial

P,(z) = erio, 4 52

is not linearisable at 0. Despite that, Perez-Marco [PM97a] showed that there remains a
non-trivial local invariant set at 0. However, the topology of the local invariant set, and the
local dynamics near 0 remained mysterious, even for P,. In this paper, for the first time, we
explain the delicate topological structure of the (local) attractor, and the dynamics of the
map on it.

When f is a polynomial or a rational function, the irrationally indifferent fixed point at
0 influences the global dynamics of f. By the classical results [Fat19, Man87]|, there is at
least a recurrent critical point of f which “interacts” with the fixed point at 0. For any such
critical point c¢, we define

Aey) = Ui21foz(cf)-
When f is linearisable at 0, the boundary of A(f) is contained in A(cy), and when f is not
linearisable at 0, then 0 € A(cy). The set A(cy) is part of the post-critical set of f, which
is the closure of the orbits of all critical values of f. By a general result in holomorphic
dynamics [Lyu83], unless the Julia set is equal to the whole Riemann sphere, for Lebesgue
almost every z in the Julia set of f, the spherical distance between f°%(z) and the post-critical
set of f tends to 0 as k — oo.

For “badly approximable” a, A(cy) is well understood over the last four decades. The
main method is an ingenious surgery procedure, which is introduced by Douady [Dou87] for
quadratic polynomials, Zakeri [Zak99] for cubic polynomials, Shishikura (unpublished work)
for all polynomials, and Zhang [Zhal1] for all rational functions. Through the surgery, the
problem is linked to the dynamics of analytic circle maps, where the works of Herman, Yoccoz
and Swianek [Her79, Yoc84, Swi98] play a key role. The culmination of those works shows
that when « is bounded type and f is a rational function, ¢y € JA(f) and A(cy) = OA(f) isa
quasi-circle (a Jordan curve with controlled geometry). In [McM98], McMullen developed a
renormalisation method to show that, among other features, when « is an algebraic number,
A(cy) enjoys rescaling self-similarity at c¢,. In a far reaching generalisation in the quadratic
case, Petersen and Zakeri [PZ04] employed trans quasi-conformal surgery to show that for
almost every a, ¢y € OA(f) and A(ep,) = OA(P,) is a David circle (a generalisation of
quasi-circle).

For “well-approximable” «, the structure of A(cy) remained mostly mysterious, despite
few sporadic surprising results such as [PM97b, ABCO04]. Computer simulations suggest
that large entries in the continued fraction of « result in oscillations of the invariant curves
in A(f). The size of an entry and its location in the continued fraction of «, as well as
non-linearity of large iterates of f, result in an intricate oscillation of the invariant curves
in A(f). See Figure 1. For o with infinitely many extremely large entries, the consecutive
oscillations may degenerate the closed invariant curves. For a class of maps, we explain the
degeneration of invariant curves under perturbations of a.

1.2. Statements of the results. — Inou and Shishikura in [IS06] introduced a sophis-
ticated renormalisation scheme (F,R), where F is an infinite dimensional class of maps as
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FiGURE 1. Left image: computer simulations of the orbit of cp, for rotation
numbers o = [2,2,2], [2,2,10%,2], [2,2,10%,2], and [2,2,10%,2]. Right image:
computer simulations of the orbit of cp, for a = [2,2,2], [2,2,10% 2], and
[2,2,10%,108,2].

in (1.1), and R : F — F is a renormalisation operator. Every f € F has a certain covering
structure, and a (preferred) critical point c;. The set F contains (the restriction to a neigh-
bourhood of 0 of) some polynomials and rational functions of arbitrarily large degrees. The
scheme requires « to be of sufficiently high type, that is, a belongs to the set

HTN = {50/(a0+€1/(a1 +52/(a2+ ))) | Vn Z O,Gn Z N,En = :l:l},

for a suitable N. In HTy, there are o of bounded type, as well as a with arbitrarily large
entries.

The scheme (F,R) was successfully employed by Inou and Shishikura to trap the orbit
of ¢; in a dynamically defined neighbourhood of 0. Moreover, they showed that the orbit of
¢y is infinite, there are no periodic points in A(cy), and in particular, A(cp, ) is not equal to
the Julia set of P,.

In [Chel3, Chel9] we carried out a detailed quantitative analysis of the renormalisation
scheme (F,R), and obtained fine estimates on the changes of coordinates which appear in
the renormalisation. In [Che23], we built a toy model for the renormalisation of maps with
an irrationally indifferent fixed point. We employ those methods to explain the delicate
structure of A(cy).

Theorem A (trichotomy of irrationally indifferent attractors)
There is N > 2 such that for every o € HT n and every f(z) = €™z + O(2?) in the
Inou-Shishikura class F, one of the following holds:

(1) « is Herman type, and A(cy) is a Jordan curve enclosing 0,
(i) « is Brjuno but not Herman type, and A(cy) is a one-sided hairy Jordan curve enclosing
0,
(iii) « is not Brjuno type, and A(cy) is a Cantor bouquet at 0.
The trichotomy also holds for the quadratic polynomials P,, when o € HT .
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The set of Herman numbers was discovered by Herman and Yoccoz [Her79, Yoc95a]
in their landmark studies of the dynamics of analytic circle diffeomorphisms. In this paper we
do not make any connections to circle maps — the Brjuno and Herman types naturally come
up. The set of Herman numbers is complicated to characterise in terms of the arithmetic
of «; see Section 2. But we note that the set of Herman numbers is contained in the set
of Brjuno numbers, and both sets have full Lebesgue measure in R. However, the set of
non-Brjuno numbers, and the set of Brjuno but not Herman numbers, are both uncountable
and dense in R. Similarly, the set of « corresponding to each of the cases in Theorem A is
uncountable and dense in HT .

Cantor bouquets and hairy Jordan curves are universal topological objects like the Cantor
sets; they are characterised by some topological axioms [AO93]. Roughly speaking, a Cantor
bouquet is a collection of arcs landing at a single point, such that every arc is accumulated
from both sides by arcs in the collection. A (one-sided) hairy Jordan curve is a collection
of arcs landing on a dense subset of a Jordan curve such that every arc in the collection is
accumulated from both sides by arcs in the collection. Both sets have empty interior, and
necessarily have complicated topologies; have uncountably many hairs and are not locally
connected. See Section 3.4 for the definitions.

In Theorem A, in cases (ii) and (iii), ¢s is an end point of a hair of A(cy). We also show
that in case (iii), the arcs in A(cy) land at 0 at well-defined (distinct) angles.

Theorem A explains the degeneration of the boundaries of Siegel disks as one varies
a € HT . Either the oscillations diminish and no degeneration occurs, or the oscillations
build up and reach 0 in the limit, collapsing onto uncountably many arcs landing at 0 (case
(iii)); or oscillations remain short of 0, but collapse onto uncountably many arcs landing on
a closed invariant curve (case (ii)). These phenomena also happen to the invariant curves
within the Siegel disks, which give rise to a one-parameter family of closed invariant sets in
A(cy), all with the same topology.

Theorem B (degeneration of closed invariant curves). — For every o € HT y there
is 7o, > 0 such that for every f(z) = >z + O(2?) in the class F, there is a map

o5 :0,70] = {X C A(cy) | X is non-empty, closed and invariant},

which is a homeomorphism with respect to the Hausdorff metric on the range. Moreover,

(1) ¢y is strictly increasing on [0, ry], with respect to the inclusion in the range;
(ii) if @ is not a Brjuno number, ¢;(t) is a Cantor bouquet for every t € (0,ry], ¢5(0) =
{0}, and ¢s(ro) = Aley);
(i) if a is a Brjuno but not a Herman number, ¢5(t) is a hairy Jordan curve for all
t € (0,7a], ¢7(0) is a Jordan curve, and ¢5(ro) = A(cy).

The above theorem, and the next results, all apply to the quadratic polynomials P,,
provided o € HT . Evidently, in Theorem B, r, = 0 when « is a Herman number, and
otherwise r,, > 0. We also characterise the non-empty closed invariant subsets of A(cy).

Theorem C (invariant sets in irrationally indifferent attractors)
For every a € HTy and every f(z) = e*™ 2 + O(2%) in F, f: A(cg) — A(cy) is a
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topologically recurrent homeomorphism. Moreover, every non-empty closed invariant set in
A(cy) is equal to the closure of the orbit of some z € A(cy).

A partial result in the direction of Theorem A is obtained by Shishikura and Yang [SY]
around the same time. They prove that if « is a Brjuno number of high type, OA(f)
is a Jordan curve, and ¢y € OA(f) iff a is a Herman number. These results also follow
immediately from Theorem A. In both cases (i) and (ii), the region inside the unique Jordan
curve in A(cy) is invariant by f, and hence it must be A(f). In case (i), since ¢; is recurrent,
¢y € Aley) = OA(f), and in case (ii), ¢y ¢ OA(f) (otherwise the orbit of ¢f remains in

IA(f))-

Corollary D. — For any Brjuno o € HTy and any f(z) = 2™z + O(2?2) in F, the
boundary of the Siegel disk of f at 0 is a Jordan curve.

Corollary E. — For any Brjuno o € HT N and any f(z) = e*™ @z + O(22) in F, the
boundary of the Siegel disk of f at O contains a critical point of f if and only if o is a
Herman number.

The above corollaries partially confirm conjectures of Herman and Douady on the Siegel
disks of rational functions, [Her85, Dou87]. In [Her85|, Herman employs a conformal
welding argument of Ghys [Ghy84] to show that if « is a Herman number, cp, € 0A(P,). On
the other hand, Ghys and Herman [Ghy84, Her86] gave the first examples of polynomials
having a Siegel disk with no critical point on the boundary. Based on these results, Herman
conjectured in 1985 that Corollary E holds for all rational functions f of degree > 2 and
all irrational numbers a. Using an elegant Schwarzian derivative argument, Graczyk and
Swiatek in [GS03] proved a general result, which implies in particular that if f is a rational
function or an entire function with degree > 2 and « is bounded type, there must be a critical
point on the boundary of A(f). The result of Herman is extended to cubic polynomials in
[CR16]. We note that Shishikura and Yang in [SY] have a fundamentally different approach
to the proofs of Corollaries D and E. They work directly in the renormalisation tower of f.
Those corollaries were not the main purpose of this paper, but a bi-product of studies towards
explaining the global dynamics of non-linearisable maps.

In [Che23] we conjectured that the trichotomy in Theorem A, as well as the dynamical
features in Theorems B and C hold for all irrational numbers « and all rational functions
f. In particular, the conjectures of Douady and Herman follow from the conjecture on the
trichotomy of the irrationally indifferent attractors. See Section 1.3 for some justification of
our conjectures.

By a general result of Perez-Marco [PM97a], the invariant sets within Siegel disks do not
disappear under perturbations of «. That is, for every f as in (1.1), there are non-trivial,
compact, connected, invariant sets containing 0, called Siegel compacta or hedgehog. They
built examples of non-linearisable f with interesting pathological behaviour, such as examples
with no small cycles [PM93], and examples with uncountably many conformal symmetries
[PM95]. In [Chell], Cheritat uses similar methods to build an example with OA(f) non-
locally connected. In [Bis16, Bis08], Biswas builds hedgehogs with empty interior but
positive area, and also hedgehogs with Hausdorff dimension 1. Such behaviours are not
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expected for rational functions. Indeed, by [Man87], when f is a polynomial or a rational
function, every Hedgehog of f is contained in the post-critical set of f. This also holds for
maps in F, [AC18]. By explaining the topology of the post-critical set, we have shown that
those pathological behaviours do not occur for many classes of rational functions.

The renormalisation scheme (F,R) is a sophisticated but powerful tool. It has helped
with making substantial progress in our understanding of the dynamics of maps with an
irrationally indifferent fixed point. In [BC12], this was employed to prove the upper simi-
continuity of A(cy) at every f € F with bounded type rotation number . That was a
main ingredient in the remarkable work of Buff and Cheritat on the existence of P, with
positive area Julia sets. In [Chel3, Chel9], we proved that A(cy) has zero area, and
depends upper simi-continuously at every f € F. Combining those results with the current
paper, we now fully understand the topological behaviour of typical orbits of P,, for all
a € HTy. That is, for almost every z in the Julia set of P,, the set of accumulation
points of the orbit of z is equal to A(cp,). In particular, the basin of attraction of any
closed invariant set strictly contained in A(cp,) has zero area. In [AC18], the statistical
behaviour of the orbits is explained by showing that f : A(cs) — A(cy) is uniquely ergodic.
On the other hand, in [CC15], the Marmi-Mousa-Yoccoz conjecture, which provides a fine
estimate on the sizes of the Siegel disks in terms of the arithmetic of «, is confirmed for
the class F. The flexibility of the scheme (F,R) allows one to make perturbations of «
into complex numbers. In [CS15], the author and Shishikura prove the hyperbolicity of
the renormalisation operator for satellite types, and conclude the local connectivity of the
Mandelbrot set at some infinitely renormalisable parameters of satellite type. In [AL22],
Avila and Lyubich combine the upper semi-continuity of A(cy) in [Chel9] with a random
walk argument to prove the existence of Feigenbaum quadratic polynomials with positive
area Julia sets.

1.3. Methodology. — We implement an alternative point of view on the use of renor-
malisation methods for the study of the dynamics. By employing a toy model for the renor-
malisation scheme (F,R), we avoid cumbersome analytic arguments and error estimates via
geometric constructions.

The toy model consists of a one-parameter family of maps {7, : c Ay — Ag }aer\@, Where
each A, is star-like about 0, and T, is a homeomorphism of the form re? s g(r,0)e!0+2m)
in the polar coordinate. Moreover, T,11 = T, and Aa+1 = Aa, for all @ € R\ Q. The
renormalisation is the action of the modular group, which sends T, c Ay = Ay to T 1a
A*l/a — A*l/a-

To present the alternative point of view, it is necessary to briefly describe how the toy
model is built. It is convenient to carry out the construction in the log coordinate (where
T, is unwrapped). For each o € R\ Q, we start with a sequence of change of coordinates
Y, : H_y — H_4, for n > 0, where H_; is the upper half-plane Imw > —1, with each
Y,, not necessarily surjective. The maps Y,, must satisfy two functional relations in order
to be induced by successive applications of a renormalisation operator. Otherwise, there is
considerable flexibility in choosing them. The collection (Y;,),>0 forms a non-autonomous
dynamical system, as in Figure 2. The set of points in H_; where the infinite composition
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. -oY2_1 OY1_1 oYO_1 is defined corresponds to A,. More precisely, it projects via w — 27w

to define A, . Loosely speaking, T, corresponds to YO(YJ1 + 1) via the same projection.

The maps Y,, are chosen to uniformly contract the Euclidean metric, and map half-infinite
vertical lines in H_; to half-infinite vertical lines; see Figure 3. Then, the non-autonomous
system (Y;,)n>0 exhibits Markov behaviour, which is conveniently used to study the topology
of A, and the dynamics of T, on Ag. The Brjuno and Herman types naturally come up in
this setting.

Y. Y; Y- Y1 Y. Yni1
H <—H  j<~—H ;<= - H_, H_; <—
eZﬂiw //
// Uo U1 U2 Un—l Un,
-
N £ Ty 11 o Thn-1 T Thri1
A, Mo My Mo e =—— My M,
7
UT -
-
~
Alep) UA(S)

FIGURE 2. Conjugacy of the non-autonomous dynamics of the changes of coordi-
nates in two renormalisation schemes. The map Up projects to U : A(cp)UA(f) —
A, which conjugates f on A(cy) to To on 0Aq.

The operator R is based on a geometric construction which involves a coordinate change
(perturbed Fatou coordinate). Successive applications of R at some f € F with f/(0) = e
produces a sequence of changes of coordinate Y, : M,, = M,,_1, for n > 0. When viewed in
the log coordinate (where the dynamics is unwrapped), each M,, is uniformly close to H_q,
and each T,, is either holomorphic or anti-holomorphic, with highly non-linear behaviour.
Despite that, the maps Y,, are uniformly contracting with respect to suitable hyperbolic
metrics on the regions M,,.

The heart of the argument is to show that the non-autonomous dynamics of (Y;,)n>0 is
conjugate to the non-autonomous dynamics of (Y},),>0. That is, a collection of homeomor-
phisms U, as in Figure 2, so that the diagram is fully commutative along solid arrows.
However, in order to induce a conjugacy between f and Ty, (Up)n>0 must satisfy some cir-
cular functional relations due to unwrapping the recurrent dynamics of the underlying maps,
and also due to the presence of critical points in (F,R) but not in the toy model.

To build such a conjugacy (U,)n>0, we need to choose the maps Y;, uniformly close to T,,.
That requires some understanding of the coordinate changes T, obtained in [Chel9]. It is
worth noting that the detailed information about the locations and geometries of relevant
pieces near 0 obtained in [IS06] were not utilised here. More precisely, given a renor-
malisation scheme with the qualitative characteristics of (F,R), one only needs to verify
Proposition 5.2, Proposition 5.3, and Lemma 6.2 about the changes of coordinates in that
renormalisation. Hence, the trichotomy conjecture.

The Markov system (Y,,),>0 provides partitions of the phase spaces H_1, shrinking to
half-infinite vertical lines. We build corresponding partitions for the system (1,),>0, which
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are in the spirit of Yoccoz puzzle pieces with boundary markings. The first parametrised
arc for the partitions is obtained from the limit of certain hyperbolic geodesics (suitably
re-parametrised by the maps Y;,). This gives rise to a collection of curves, one in each M,,,
which collectively enjoy equivariant properties with respect to the dynamics of (Y,),>0 and
(Y3)n>0- By employing the circular functional relations imposed on the conjugacy (U, )n>o0,
further parametrised arcs are built. Those arcs divide the sets M,, into partitions (not
necessarily shrinking to points).

To complete the argument, we build a sequence of partial conjugacies by mapping the
corresponding partition pieces one to another. Contrary to Y,,, the maps Y,, are not confor-
mal, and their long compositions may degenerate the complex structure. This leads to the
degeneration of the sequence of partial conjugacies. However, the degenerations only occur
transverse to the hairs in A(cy), and the partial conjugacies form Cauchy sequences along
the hairs.

There are a number of advantages in explaining the dynamics of f through a toy model.
It allows one to study the delicate role of the arithmetic properties of « in the simpler setting
of the model, while only dealing with the highly distorting coordinate changes in another
setting. The construction of the conjugacy does not require detailed understanding of the
dynamics of the underlying maps, and simultaneously works rotation numbers of different
type. Moreover, the toy model allows us to build puzzle partitions enjoying equivariant
properties with respect to the renormalisation. This paves the way for further progress on
the topic, see for instance, [CdY20].
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2. Arithmetic classes of Brjuno and Herman

In this section we define the arithmetic classes of Brjuno and Herman. The definition
requires the action of the modular group PGL(2,Z) on R. To study the action of this group,
one may choose a fundamental interval for the action of z — z + 1 and study the action of
z + 1/z on that interval. Due to a feature of the near-parabolic renormalisation, it is natural
to work with the fundamental interval (—1/2,1/2) for the translation. That is because, as
we shall see in Section 4, the scheme works for rotation numbers close to 0. This choice of
the fundamental interval leads to a modified notion of continued fractions, which we briefly
present below.

2.1. Modified continued fraction. — Let us fix an irrational number o € R. For x in
R, define d(x,Z) = mingeyz | — k|. Let ap = d(a, Z), and for n > 1, inductively define the
numbers

(2.1) ant1 =d(1/an, 7).

For our convenience in future formulae, we let a_; = 4+1. There are unique integers a,,, for
n>—1, and ¢, € {+1,—1}, for n > 0, such that

(2.2) a=a_1+eoyg and 1/a, =an+Enr1Qnia-
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Evidently, for all n > 0,
(2.3)
+1 if1l/ap € (an,an +1/2),

1/ay € (a, —1/2,a, +1/2), a,>2, and e,11= )
/ ( / /2 + {—1 if 1/an € (an — 1/2,ay).

The sequences a,, and ¢,, provide the infinite continued fraction

€
a=a_1+ 0
€1
ao +
€2
a +———
ag + e
The best rational approximants of «, or the convergents of «, are defined as
€
&:a,1+70, forn > —1.
dn €1
ao +
. En
Sy
429

We assume that p,, and g, are relatively prime, and ¢, > 0.

2.2. Brjuno numbers. — By a careful study of the Siegel’s approach in [Sie42], Brjuno
in [Brj71] showed that the convergence of the infinite series Z:io_l ¢, log qny1 for a is
sufficient for the analytic linearisation of the germs f(z) = €2™®z 4+ O(2?) near 0. Siegel-
Brjuno approach is based on estimating the coefficients of the formal conjugacy, but do not
involve any notion of renormalisation.

Yoccoz in [Yoc95b] carried out a geometric approach to the linearisation problem based
on a notion of renormalisation introduced by Douady-Ghys. Thanks to his work, a natural
way to look into the Brjuno condition is through a function which enjoys remarkable equiv-
ariant properties with respect to the action of PGL(2,Z). That is, the Brjuno function is
defined (by Yoccoz) as

(2.4) B(a) =327 Bn-1log oy’
where 3, = [[;_, a;, for n > —1. The function B is defined on R\ Q, and takes values in
(0, +00]. It satisfies the remarkable relations

B(a) = Bla+1) = B(—a), for a € R\ Q,

(2:5) B(a) = aB(1/a) +logl/a, for a € (0,1/2)\ Q.

As shown by Yoccoz, |32 | g 11og gn1 — B()] is uniformly bounded from above inde-
pendent of . Thus, an irrational number « is a Brjuno number iff B(a) < +co.

For a generic choice of a@ € R, B(a) = 4+00. The function B is highly irregular. One
may refer to [MMY97, MMYO01, JM18], and the extensive list of references therein, for
detailed analysis of the regularity properties of the Brjuno function. The irregularity features
of the Brjuno function is somehow reflected in the sizes of the Siegel disks as a function of
the rotation number, as suggested in [MMY97] and studied in [BC06, CC15].
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Remark 2.1. — Besides the quadratic polynomials, the optimality of the Brjuno condition
has been (re)confirmed for several classes of maps in [PM93, PMO01, Gey01l, BCO04,
Oku04, Oku05, FMS18, Chel9]. But in its general form for polynomial and rational
functions remains a significant challenge. For progress on the linearisation problem in higher
dimensions one may refer to [Sto00, Gen07, Ron08, YG08, Rail0, BZ13, GLS15], for
twist maps refer to [BGO01, Pon10], see also [CMO00, Lin04, MS11] and the references
therein.

2.3. Herman numbers. — The problem of analytic linearisation of orientation-preserving
diffeomorphisms of the circle R/Z was first successfully studied by Arnold [Arn61] for maps
close to rigid rotations. In [Her79], Herman presented a systematic study of the problem,
and presented a rather technical arithmetic condition which guaranteed the analytic lineari-
sation. Later, Yoccoz made improvements in the work of Herman and identified the optimal
arithmetic condition for the linearisation, which he called Herman type, in honour of the
work of Herman.

In [Yoc02], Yoccoz gives several characterisations of the Herman numbers. We present
the most relevant of those in our setting. To do that, we need to consider the functions
hy : R — (0, +00), for r € (0,1):

r~Y(y —logr=t+1) ify>logr=1i,

hT (y) = . —1

eY if y <logr™.

Each h, is a C' monotone map, which satisfies y + 1 < h,.(y) < e¥ for all y € R, and

hl(y) > 1 for all y > 0. An irrational number « is a Herman number if and only if for all
n > 0 there is m > n such that

he,,_, 0 0hq, (0) > Blanm).

In the above definition, the composition hq,, ,
when m = n, and as h,,, when m =n+ 1.

The arithmetic characterisation of the Herman numbers by Yoccoz in [Yoc02] uses the
standard continued fraction. That is, he works with the interval (0,1) for the action of
z — z + 1. The above form of the Herman numbers in terms of the modified continued
fractions is established in [Che23].

One may see that every Herman number is a Brjuno number, the set of Herman numbers
is invariant under the action of PGL(2,Z), and every Diophantine number is of Herman type.
In particular, the set of Herman numbers and the set of Brjuno numbers have full Lebesgue
measure in R. On the other hand, there is an uncountable dense set of irrational numbers
which are of Brjuno but not Herman type.

Although Herman did not have the optimal characterisation for the linearisation of ana-
lytic circle diffeomorphisms, he used the linearisation property of circle maps to show that if
o satisfies that optimal condition, the critical point of e?™®z 4 22 must lie on the boundary
of the Siegel disk [Her85]. His argument also applies to polynomials with a single critical
point of higher orders. This result has been extended to cubic polynomials in [CR16]. On
the other hand, Ghys and Herman built the first examples of polynomials with a Siegel disk
whose boundary does not contain any critical points. Until this paper, and [SY], it was not

0---0hg, is understood as the identity map
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known how the arithmetic condition of Herman is related to the presence of critical points
on the boundary of Siegel disks.

Remark 2.2. — The set of high type numbers HT y in the modified continued fraction may
be strictly larger than the set of high type numbers in the standard continued fraction. To
be precise, let HT}; denote the set of irrational numbers « whose entries a,, in the standard
continued fraction are at least IV, for all n > 0. If a,, > 2 for all n > 0, then a,, = a,, and
en = +1, for all n > 0. This shows that for N > 2, HT}Y € HT . But in general, HT y is
not contained in HT};_;, or in HTY, _,, etc. Indeed, for any N, an element of HT y may have
infinitely many +1 entries in its standard continued fraction. In this sense, the theorems
and corollaries stated in the introduction are slightly more general than the ones stated in
[SY].

Remark 2.3. — There are o in HT ;v which do not satisfy the Petersen-Zakeri condition
in [PZ04]. Thus, case (i) in Theorem A applies to some rotation numbers outside the
Petersen-Zakeri class.

3. Topological model for the post-critical set

In this section we present the topological model for the post-critical set and the map on
it. This is a brief summary of the detailed construction in [Che23]. We present the key
features which will be used in this paper.

A renormalisation scheme is often given as a class of maps, and a renormalisation op-
erator which preserves that class of maps. The renormalisation operator involves a change
of coordinates (rescaling). However, the approach taken to build the toy model for the
renormalisation works in a different fashion. We start by defining a sequence of changes of
coordinates first, and then build a map so that those changes of coordinates appear in the
consecutive renormalisation of that map. We briefly present this below.

3.1. Model for the changes of coordinates. — Consider the set
H ={weC|Imw > —1}.
For r € (0,1/2], define Y, : H/ — C as

6737”“ _ 677”“16727”““11

i

Y, (w) =rRew+ 7 log i r—
We have Y,.(0) = 0, Y, is continuous on H', and real analytic in the variables Rew and
Imw. It maps vertical lines in H’ to vertical lines. But, it maps horizontal lines in H’ to
non-straight curves which are 1/r-periodic in Rew. In particular, Y, is not conformal for any
value of r € (0,1/2] (The map degenerates the conformal structure as r — 0). Despite that,
it is proved fundamentally useful when compared to the conformal changes of coordinates in
the near-parabolic renormalisation. Figure 3 shows the behaviour of Y, on horizontal and
vertical lines.

We summarise the key properties of Y, in the next proposition. Recall the map h,
employed in the characterisation of the Herman numbers in Section 2.
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F1cure 3. The black curves are the images of some horizontal lines by Y;. The
vertical lines in blue, from left to right, are the images of the vertical lines Rew =
—1, Rew =0, and Rew = 1/, under Y;.. Here, r =1/(10+1/(1+1/(1+...))).

Proposition 8.1. — For every r € (0,1/2] the following properties hold.
(i) The map Y, is injective on H', and Y,(H') C H'.
(i) For every w € H/,
Yo(w+1/r) =Y, (w) +1,
(iii) For everyt > —1,
Y, (it +1/r —1) = Yy(it) + 1 — 1,
(iv) For all wy,ws in H,
Ve (w1) = Yo (w2)| < 0.9|wy — wal,
(v) Forally>1,
|27 Im Y, (iy/ (2m)) — bt (y)] <

(vi) For ally >0,
2rry +log(1/r) — 4 < 27 Im Y,.(1/(2r) + iy) < 27ry + log(1/7) + 2.
By item (v) in the above proposition, Y, closely traces the behaviour of h! on the

imaginary axis. By item (vi), ¥; mimics the remarkable functional relation for the Brjuno
function in (2.5).

3.2. Successive changes of coordinates. — Recall the sequence {a,,}22, introduced
in Section 2.1. Let s(w) = W denote the complex conjugation map. For n > 0 we define
Y, :H — H as

Y., (w) ife, =—1,
(3-1) (w) {—soYan(w) if e, = +1.

Each Y, is either orientation preserving or reversing, depending on &,,.
For a given set X C C, let us use the notation

iX = {iz |z e X}.
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For n > 0, we have
(3.2) Y. (i[-1,400)) C i(—1,+00), ¥,,(0) = 0.
By Proposition 3.1-(ii), for all n > 0 and all w € H,

Yo(w)+1 ife, =-1,

(3.3) Y”(w+1/o‘"){y(w)—1 if e, = +1.

Also, by the same proposition, for all n > 0 and all ¢t > —1,

- i jen =700 ST

and for all n > 0 and all wy,ws in W, we have

(35) |Yn(w1) — Yn(w2)| S 0.9|’LU1 — ’LU2|.

3.3. The straight topological model. — For n > 0, let
M? ={weH |Rew € [0,1/a,]},
(3.6) K% ={we M?|Rew € [0,1/a,, — 1]},
Jo={we M°|Rew € [1/a, —1,1/ay]}.

We inductively define the sets M, JJ, and K}, for j > 1 and n > 0. Assume that M7, JJ,
and K7 are defined for some j > 0 and all n > 0. We define these sets for j+ 1 and all n > 0

as follows. Fix an arbitrary n > 0. If ,,4.1 = —1, let
1 Ay —2 ] ]
(3.7) M = U2y (Yo (M 40) + D U (Yo (Ko p) +an — 1).
If epy1 = +1, let
(3.8) MY = Uiy (Yo (M3 4) + 1) U (Ve (Jh40) + an + 1),

Regardless of the sign of ,41, define
Kit = fw e MI* | Rew € [0, 1/an — 1),
Jith = {we MJ™ | Rew € [1/an —1,1/an]}.

Figure 4 presents two generations of these domains.
For all n > 0 and j > 0, the sets M7, JJ and K] are closed and connected subsets of C,
and are bounded by piece-wise analytic curves. Moreover,
{Rew | w € MI} =1[0,1/ay,].
The functional relations in (3.3) and (3.4) allow us to align the pieces together in the unions
(3.7) and (3.8). More precisely, we have the following property of M.
Corollary 3.2. — For everyn >0 and j > 0, the following hold:

(i) for all w € C satisfying Rew € [0,1/ay, — 1], w € M} if and only if w+1 € M3 ;
(i) for all t € R, it € MJ if and only if it + 1/a,, € M.
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—

Yo+an-1+1

FI1GURE 4. In the left hand column £, = —1 and in the right hand column ¢, = +1.
The sets K2 and JC are on the lower row, and the set M. _; is on the upper row.

Recall that a—; = +1. Let M%; = {w € H' | Rew € [0,1/a_1]}, and for j > 1, consider
My =Yo(Mg ™) + (0 +1)/2

By Proposition 3.1-(i), M}! ¢ M?, for n > —1. By an inductive argument, this implies that
for all n > —1 and all j > 0, M,{‘H C M% For n > —1, we define

M, = anOM'Z,'

Each M, consists of closed half-infinite vertical lines. The set M, may or may not be
connected. By Corollary 3.2, for real t, it € M_; if and only if (it + 1) € M_;. We may
define

(3.9) Ay = {s(e*™™) |we M_,}U{0}, and Ay = 0A,.

The set A, is the topological model for the post-critical set. It is defined for irrational values
of a, and depends only on the arithmetic of a.
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Remark 3.3. — An alternative approach for building a topological model for A(f) was
introduced by Buff and Chéritat in 2009 [BCO09]. In their model, they use rational ap-
proximation of «, and some conformal changes of coordinates, in order to build topological
objects invariant for parabolic maps. Then, the model for irrational values of « is obtained
from taking Hausdorff limits of those objects. The loss of control along the limit presents
obstacles in further study of that model.

3.4. Hairy Cantor sets and Cantor bouquets. — A Cantor bouquet is any subset
of C which is ambiently homeomorphic to a set of the form

{re*™ cC|0<0<1,0<7<R(0)},
where R : R/Z — [0, 1] satisfies the following:
(a) R=0 on a dense subset of R/Z, and R > 0 on a dense subset of R/Z,
(b) for each 6y € R/Z we have
limsup R(0) = R(6p) = lim sup R(6).
0075 0—6,

A one-sided hairy Jordan curve is any subset of C which is ambiently homeomorphic
to a set of the form

{(re”™® cCl0<0<1,1<r<1+R(0)},
where R : R/Z — [0, 1] satisfies properties (a) and (b) in the above definition.

Remark 3.4. — The Cantor bouquet and one-sided hairy Jordan curve enjoy similar topo-
logical features as the standard Cantor set. Under an additional mild condition (topological
smoothness) they are uniquely characterised by some topological axioms, see [AO93].

3.5. Topology of the model. —

Theorem 3.5 ([Che23]). — For every irrational number o the following hold.
(i) If @ is a Herman number, Ay is a closed Jordan curve around 0.

(i) If @ is a Brjuno but not a Herman number, Ay is a one-sided hairy Jordan curve
around 0.

(iii) If o is not a Brjuno number, Ay is a Cantor Bouquet at 0.

In the remaining of Section 3.5, we briefly sketch a proof of the above result, outlining the
role of the properties of the changes of coordinates stated in Proposition 3.1. One may skip
the rest of this section, and move to Section 3.6, without detriment to the main purpose of
this paper, which is to show that the post-critical set is homeomorphic to A,.

Brief sketch of the proof of Theorem 3.5. — Recall that the sets MJ and M,, consist of
closed half-infinite vertical lines. KEach of these sets lies above the graph of a function,
which may be conveniently used to study these sets. For n > —1, and 5 > 0, define
b7 : [0,1/ay] — [—1, +00) according to

M ={weC|0<Rew < 1/, Imw > bl (Rew)}.
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By Equations (3.3)—(3.4), each b/ is continuous, and since M7™1 c MJ bJt! > bJ on
[0,1/ay). Thus, for n > —1, we may define by, : [0,1/a,] — [—1,4+00] as

bu(z) = lim bl (2) = sup b (z).
jotoo i>0 "

Note that b, may attain +oco. Evidently,
(3.10) M, ={weC|0<Rew < 1/ap,Imw > b,(Rew)}.

By Corollary 3.2, b (0) = b (1/a,), and b (z + 1) = b (z) for all z € [0,1/c, — 1]. Thus,
for all n > —1,

(3.11) b,(0) =b,(1/c), and b,(z+1)=0b,(z), Vr €[0,1/a,, — 1].
Using Y,,(0) = 0 for all n > 0, and the uniform contraction of the Y,,, for all n > —1,
(3.12) b,(0) = 0.

The collection of the functions b, and b,, enjoy equivariant relations induced by the maps
Y,. That is, the graph of bJ is obtained from the graph of bf;ll by applying Y;,+1 and its
translations. Similarly, b, is related to b,41 through Y, ;1. Each Y,, exhibits two distinct
behaviour. Above the line Imw = 1/q,, it nearly acts as the linear map multiplication by
. Below that line, it has a logarithmic behaviour.

Now assume that « is a Brjuno number, and for n > —1 and j > 0 inductively define the
functions

pl [0,1/ay] — [—1,4+00).
For all n > —1, set p¥ = (B(apn+1) + 5m)/(2m). Assuming p?, is defined for some j > 0 and
all n > —1, define pZ*! on [0,1/a,] so that the graph of p/*™! is obtained from applying
Y, 11 and its integer translations to the graph of pflﬂ :10,1/ant1] = [—1,4+00). As for bl
each p, is continuous, 1-periodic and p?,(0) = pJ,(1/,). By explicit calculations, one may
see that pL < p? for all n > —1, and then by an inductive argument, one may show that for
alln > —1 and j > 0, pi™* < pJ. Therefore, we may define

pn(x) = jl}gloo pl(x), VYrel0,1/a].

A main difference with the functions b/, here is that the convergence in the above equation
is uniform on [0, 1/c,]. This is because the maps Y,, behave better near the top end of M2,
where they are close to multiplication by «,. Then, each p,, is continuous. Moreover,

(3.13) pn(0) = pn(l/an), pa(x) =pp(z+1),Vo €[0,1/ay, — 1].
By definition, p? > bY, for all n > —1. Then, by the equivariant properties of b/, and p? one
concludes that for all n > —1 and j > 0, p/, > bJ. In particular,

(3.14) pu(@) > bp(z), Va € [0,1/an].

Using b,,(0) = 0 for all n, the 1-periodicity of the functions b,,, and their equivariant property,
one concludes that for every n > —1, b, (z) < +0o holds for a dense set of x in [0,1/a].
In the same fashion, if some b, attains +oco at a single point, then every b,, attains 4+oo
on a dense subset of [0,1/a,]. Whether those happen or not depend on the arithmetic of
a. Indeed, by explicit calculations, max,¢0,1/a,, bl () is uniformly close to log1/a,,. Then,
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because of the functional relations in Equation (2.5) and Proposition 3.1-(vi), it follows that
for all n > —1,

(3.15) 21 sup  by(x) — Blap+1)| < 5.

z€[0,1/ap]
In the above relation, co — 0o is assumed to be 0. It follows that if « is a Brjuno number,
every b, is bounded, and if « is not a Brjuno number, every b,, attains +oo at a single point,
and hence on a dense set of points.

Also, by Equation (3.15), when « is a Brjuno number, b,, is uniformly close to p2 at some
points. Then, by the uniform contraction of the maps Y,,, and the equivariant properties of
the functions b,, and p,,, we must have p,,(z) = b, (z) on a dense set of points x in [0,1/a,].
Indeed, one may see that these equalities occur near the vertical line Rew = 1/(2av,), due
to the extreme contracting factor of each map Y, near that line. Among the vertical lines
in the domain of Y,,, the least amount of contraction occurs near the vertical line Rew = 0.
So, 0 is the least likely place to have b,, = p,,. The answer to this question depends on the
arithmetic of a as we briefly explain below.

Because of the uniform contraction of the maps hq,, , the criterion for the Herman numbers
is stable under uniform changes to the maps h,,. More precisely, if one replaces h,, by
uniformly nearby maps, say Y, !, the corresponding set of rotation numbers stays the same.
Indeed, one may employ the estimate in Proposition 3.1-(v) to show that for integers m >
n>0and y € (1,400),

|27 Im Yy 0+ 0 Yy (iy/(2m)) — hy o+ o h ! (y)| < 10m,

Qn Am

provided h' o---ohy!(y) is defined. This estimate, and the uniform contraction of the
maps Yy, is used to show that a belongs to 7, if and only if, for all > 0 there is m > 1
such that

ImYyo---oY,_1(iB(ay,)/(2m)) < z.

Thus, « is a Herman number if and only if p,(0) = 0 for all n > —1. Combining with
earlier arguments, one concludes that when « is a Herman number, b,, = p,,, and when « is
a Brjuno but not a Herman number, b,, < p,, holds on a dense subset of [0,1/a,].

As each M, is closed, for every z € [0,1/a,), liminf,_, .+ b,(s) > b,(z), and for all
x € (0,1/ay), liminf,_, .- b,(s) > b,(x). In fact, both of “>” are “=". That is because,
for large values of m, by4y, is 1-periodic and by the equivariant property of the maps b;,
and the uniform contraction of the maps Y;, one may obtain a sequence of points on the
graph of b,, which converges to (x,b,(z)). That requires a detailed combinatorial analysis
of the trajectories of points for consecutive iterates of the maps Y;. These relations imply
the property (b) in the definition of the hairy Jordan curve and the Cantor bouquet. (|

3.6. Dynamics on the topological model. — In this section we present the (toy) map
(3.16) To: Ao = Aa,

which serves as the model for f : A(f) — A(f). This is also a brief description of the detailed
arguments presented in [Che23].
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Let us fix @ € R\ Q, and let M_; be the corresponding topological model defined in
Section 3.3. Given w_; € M_;, we inductively identify I; € Z, and then w;; € M;41, such
that

(3.17) —eir1 Re(w; —1;) € 10,1)  and  Yip1(wit1) + 1 = w;.
Then, for all n > 0,

(3.18) wog = Yo+1_1)o Y1+l o0 (Yn+1p_1)(wy),
and by (3.7) and (3.8), for all i > 0,

(3.19) 0<l;<a;+ei41, and 0<Rew; <1l/a.

We refer to the sequence (w;;l;);>—1 as the trajectory of w_;.
Consider the map

(3.20) To:M_y — M_y,
defined as follows. For w_; in M_; with trajectory (w;;l;)i>—1,
(i) if there is n > 0 such that w, € K,, and for all 0 < i <n —1, w; € M; \ K;, then

- co+1 e1+1 en+1
Ta<w1>(Yo+ o] )o(m L )(y+ . ><wn+1>;

(i) if for all n > 0, w, € M,, \ K,,, then

Ta(w,l) :ngrfoo <Y0+ 60;1> . <Y1 n 61;1) 0--.0 <Yn+%> (W + 1 — 1/a).
Evidently, item (i) leads to continuous maps on pieces of M_;. There might be a vertical
half-infinite line where item (ii) applies. On that set, the uniform contractions of the maps
Y; imply that the sequence of maps in item (ii) converges to a well-defined map. Moreover, it
follows from (3.3) and (3.4) that these piece-wise defined maps match together and produce
a well-define homeomorphism

Ta : Mfl/Z% Mfl/Z.

One may compare the above definition of T, to the action of f on its renormalisation tower
in Section 7.4. By the definition of A, in (3.9), T, induces a homeomorphism

Ty : Aa — Aa,
which may be restricted to the homeomorphism
T, : A, — A,

Recall that T, : A, — A, is called topologically recurrent, if for every x € A, there is
a strictly increasing sequence of positive integers (m;);>o such that T, (x) — = as i — +o0.
A set K C A, is called invariant under Ty, if T,(K) = K = T,; }(K). We use the notation
w(z) to denote the set of accumulation points of the orbit of a given point z € A,. That is,
the set of limit points of all convergent subsequences of the orbit of z.

Define r, € [0, 1] according to

[ra,1] ={z € Ay | Imz = 0,Rez > 0}.
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By Theorem 3.5, when « is a Herman number we have r, = 1, when « is a Brjuno but not
a Herman number we have r, € (0,1), and when « is not a Brjuno number we have r, = 0.

Below, we summarise the dynamical behaviour of T, on A, which are established in
[Che23].

Theorem 3.6 ([Che23|). — For every a € R\ Q, T, : Aqa — Aq satisfies the following
properties.

(i) To : Ay — A, is a topologically recurrent homeomorphism.
(ii) The map

w:[ra,1] = {X C A, | X is non-empty, closed and invariant}

is a homeomorphism with respect to the Hausdorff metric on the range. In particular,
every non-empty closed invariant subset of A, is equal to w(z), for some z € A,.

(iil) The map w on [ra,1] is strictly increasing with respect to the linear order on [rq,1]
and the inclusion on the range.

(iv) If «a is not a Brjuno number, w(t) is a Cantor bouquet for every t € (rq,1], and
w(l) = A,.

(v) If « is a Brjuno but not a Herman number, w(t) is a hairy Jordan curve for every
t € (Ta, 1], and w(ry) is a Jordan curve.

4. Near-parabolic renormalisation scheme

In this section we present the near-parabolic renormalisation scheme introduced by Inou
and Shishikura [IS06]. This consists of a class of maps discussed in Section 4.1, and a
renormalisation operator acting on that class discussed in Section 4.2. Our presentation of
the renormalisation operator is slightly different from the one by Inou and Shishikura, but
produces the same map.

4.1. Inou-Shishikura class of maps. — Let C denote the Riemann sphere. Consider
the filled-in ellipse
, x4 0.1812 Y \2
={ () + () <%
vriweCi\Tnr ) Tlia) =

and the domain
(4.1) U =g(C\ E), where g(z) = —4z/(1+ 2)%.

The domain U is simply connected and contains 0.

The restriction of the polynomial P(z) = z(1+ 2)? on U has a specific covering structure
which plays a central role in the near-parabolic renormalisation scheme. The polynomial P
has a parabolic fixed point at 0 with multiplier P/(0) = 1. It has a simple critical point at
cpp = —1/3 € U and a critical point of order two at —1 € C\ U. The critical point —1/3 is
mapped to cvp = —4/27 € U, and —1 is mapped to 0. See Figure 7.

Let ZSy denote the class of all maps of the form

h=Poyp U, —C

where
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(i) ¢: U — Uy, is holomorphic, one-to-one, onto; and
(ii) ¢(0) =0 and ¢'(0) = 1.
By (i), every map in ZSp has the same covering structure on its domain as the one of P on
U. By (ii), every map in ZSy has a fixed point at 0 with multiplier 41, and a unique critical
point at cp;, = ¢(—1/3) € U, which is mapped to cvy, = —4/27.

For a € R, let R, (2) = €*™'2, and define

a:{hORa|hEISQ}.

We continue to use the notation Uy to denote the domain of definition of f € ZS,. That is,
if f =ho R, with h € ZSy, then Uy = R;l(Uh).

We equip J,cp ZSa with the topology of uniform convergence on compact sets. That
is, given h : Up — C, a compact set K C Up, and an € > 0, a neighbourhood of h (in the
compact-open topology) is defined as the set of maps g € UaerZS, such that K C U, and for
all z € K we have |g(z) — h(z)| < &. There is a one-to-one correspondence between ZS; and
the space of normalised univalent maps on the unit disk. By the Koebe distortion theorem
[Dur83, Thm 2.5], for any closed set A C R, |J,c 4 ZSa is compact in this topology.

We normalise the family of quadratic polynomials by placing a fixed point at 0 and the
finite critical value at —4/27;

. 27 .
_ 27mai 4drai 2
Qa(z)=c¢ z+—16e z-.
Then, Q,(0) = 2™, Q! (=827 /27) = 0, and Q,(—8e~2"/27) = —4/27. We set the

notation
QISa = :Z:Sa U {Qa}-

When h = @, we set U, = C. We referred to the class of maps Uyenr, QZS, as the class
F in the introduction. In Proposition 6.1 we determine the value of N for Theorem A.

Let h = hg o R, € IS, with hg € ZSy and a € R. The map hg has a double fixed point
at 0. For « small enough and non-zero, h is a small perturbation of hg, and hence, it has
a non-zero fixed point near 0 which has split from 0 at « = 0. We denote this fixed point
by op. It follows that o5, depends continuously on hy and «, with asymptotic expansion
on = —4mai/hy(0) + o(a), as « tends to 0. Evidently, o5, — 0 as o — 0.

Given a set X in a topological space, X denotes the closure of X, int (X) its interior, and
0X its boundary.

Proposition 4.1 ([IS06]). — There is r1 > 0 such that for every h: U, — C in
Uae(o,n] OIS, there exist a simply connected domain Py, C Uy, and a univalent map

(I)h:Ph—)C

satisfying the following properties:
(a) P is bounded by piecewise smooth curves and P, C Up;
(b) cpy, 0, and o, belong to OPy, while cvy, belongs to int (Pp);
(c) <I>h(7)h ) contains the set {w € C| Rew € (0,2]};
(d) @plcvy) =1, ImPp(z) — +00 as z — 0 in Pp, and Im &y (2) — —o00 as z — o, in Ph;
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(e) If z and h(z) belong to P, then
Dp(h(2)) = Pr(z) + 1;
(f) the induced map @y, : P/~ — C/Z, where z ~ h(z), is a biholomorphism;

(g) @y, is unique, and depends continuously on h.

The class ZSy is denoted by F7 in [IS06]. One may refer to Theorem 2.1 as well as Main
Theorems 1 and 3 in [IS06], for further details on the above proposition.
In the next proposition we state some crucial properties of P, and ®,.

FIGURE 5. The domain P, and the special points associated to some h € ZS,.
The alternating coloured croissants are the pre-images of vertical strips of width
one by &y,

Proposition 4.2. — There exist ro € (0,71], as well as integers c; < 1/r9 — 3/2 and ¢
such that for every h: Uy — C in Uae(o,r2] OIS, the domain P C Uy in Proposition 4.1
may be chosen to satisfy the additional properties:

(a) there exists a continuous branch of argument defined on Py, such that

max |arg(w) — arg(w')| < 2mea,
w,w’'EPp,

(b) ®4(Pr) ={weC|0<Re(w) <al—c}.

See [Chel3, Prop. 2.4] or [BC12, Prop. 12] for proofs. The map @, : Py, — C is called
the perturbed Fatou coordinate or simply the Fatou coordinate of h. See Figure 5.

4.2. Near-parabolic renormalisation operator. — For h: U, — C in U,¢(g,,,) QLSa,
with Fatou coordinate @ : Pp, — C, let

Ap={2€ P :1/2 <Re(Pn(z)) <3/2, -2 <Im Py(z) <2},
Bp={z€Py:1/2<Re(Pr(2)) <3/2,2<ImP,(2)}.
By Proposition 4.1, cvy, € int (4) and 0 € 9By,. See Figure 6.

(4.2)
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It follows from [IS06] (see Remark 4.4 below) that there is a positive integer kp,, depending

on h, such that the following four properties hold:

(i) For every integer k, with 1 < k < kj, there exists a unique connected component
of h=*(By,) which is compactly contained in Uj and contains 0 on its boundary. We
denote this component by B, k.

(ii) For every integer k, with 1 < k < kj, there exists a unique connected component of
h=*(A},) which has non-empty intersection with By * and is compactly contained in
Up,. This component is denoted by A;k.

(iii) The sets A, " and B, *" are contained in
{z€Py|1/2<Re®p(z) <1l/a—ci}.
(iv) The maps h : A;k — A,:’Hl, for 2 <k < kp, and h: B;k — B,;’Hl, for 1 <k < ky,
are one-to-one. The map h : A;l — Ay, is a degree two proper branched covering.

Assume that kj, is the smallest positive integer for which the above properties hold. Then
define
Sp = Ak u B

Proposition 4.3. — There is a constant k € Z such that for all h € UaG(O,Tz] OIS,
kn <k.

See [Chel3] or [Chel9] for the proof of the above proposition.

—1
@y, 0 h°Fh 0 @},

L
Sh

FIGURE 6. Illustration of the sets An, Bn,..., A;kh, B;kh7 and the sector Sp,. The
amoeba shaped red curve denotes a large number of iterates of cp, under h.
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Since h°*» : S), — A, U By, the composition

(4.3) Ep = ®0h% 0 & @y (Sy) — C
is a well-defined map. Also, consider the covering map
(4.4) Exp(w) = (—4/27)e?™™.

By Proposition 4.1-(e), Ep(w+1) = Ej(w)+1, when both w and w+ 1 belong to the closure
of ®,(Sp). Thus, Ej induces, via Exp, a unique map R(h) defined on a set containing a
punctured neighbourhood of 0. It follows from Proposition 4.1-(d) that R(h)(z) — 0 as
z — 0. Therefore, 0 is a removable singularity of R(h). Basic calculations show that near 0,

R(h)(z) = e~ 2/ + O(2?).

The map R(h), restricted to the interior of Exp(®,(Sh)), is called the near-parabolic
renormalisation of h. We may simply refer to this operator as renormalisation.

Because ®p,(cvy) = +1 and Exp(+1) = —4/27, the critical value of R(h) is placed at
—4/27. See Figure 6. It is also worth noting that the action of the renormalisation on the
asymptotic rotation number at 0 is

a— —1/a mod Z.

Remark 4.4. — Inou and Shishikura give a somewhat different definition of this renor-
malisation operator using slightly different regions A;, and Bj, compared to the ones here.
However, the two processes produce the same map R(h) modulo their domains of definition.
More precisely, there is a natural extension of ®; onto the sets A;k U Bh_k, for 0 < k < ky,
such that each set ®;,(A, " U B, *) is contained in the union

D', UD_yUD", UD", ;UD_41UD", |
in the notations used in [IS06, Section 5.A].
Consider the domain
(4.5) V =P 1(B(0,4¢""/27)) \ ((—o0, —1] U B)

where B is the component of P~!(B(0, 4@__4”/27)) containing —1. By an explicit calculation
(see [IS06, Prop. 5.2]) one can see that U C int (V). See Figure 7.

FIGURE 7. Covering structure of the polynomial P; similar colors and line styles
are mapped on one another.
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Theorem 4.5 ([IS06]). — There exist r3 € (0,72] such that for every h € U, ¢ ) QLSas
R(h) is defined and belongs to the class IS_1/o- That is, there erists a one-to-one holomor-
phic map ¥ : U — C with 1(0) =0 and ¢'(0) = 1 so that

R(h)(z) = Pow—l(e—Qﬂ'i/az)’ V2 € ¢(U) . 2mi/a

Furthermore, ¥ : U — C extends to a univalent map on V.

Theorem 4.5 is a refinement of earlier constructions by Lavaurs [Lav89] and Shishikura [Shi98].
See also [YamO08] for an alternative point of view. Two applications of a similar renor-
malisation led to the remarkable result of Shishikura [Shi98] on the boundary of the
Mandelbrot set. Even one application of the operator in a specific setting may be fruitful,
as in [ACE22]. The results stated in the Introduction, and the technical statements proved
in this paper, apply to all the maps in QZS,,, provided « is of high type. Slightly modified
renormalisation schemes are introduced for uni-singular maps in [Chfrm-e2], and for cubic
maps in [Yan25]. It is likely that suitable modifications of the arguments presented here
may be applied in those settings as well.

5. Comparing the changes of coordinates

Given « € (0,73] and h € QZS,, the change of coordinate Exp o®y, relates the iterates of
h to the iterates of R(h). When studying repeated renormalisations, one needs to study long
compositions of such changes of coordinates. As we shall do in later sections, it is convenient
to consider suitable inverse branch of Exp ' otl);l, and study their compositions. In this
section we show that Exp~' o®; ' behaves like the (model) map Y, introduced in Section 3.

5.1. Change of coordinates in the near-parabolic renormalisation. — Let us fix
an arbitrary h: Up, — C in |J ] OTS,,. Recall from Propositions 4.1 and 4.2, the Fatou
coordinate

aG(O,TS

D P> {weC|0<Rew<1/a—c1}.

Also, recall from Section 4.2 the domain Sj, C P}, and the integer kj, satisfying h°%»(S),) C
Pp. Consider the set

M, ={weC|0<Rew < 1/a—cy,Imw > =2} U{D,(Sp) + 1|1 €Z,0 <1<k}

The functional relation in Proposition 4.1-(e) allows one to extend ®; ' onto II;. For w €
®,(Sy) + 1 one defines @, ! (w) = h°! o &, ! (w — ). It follows from Proposition 4.1-(e) that
this is a well-defined holomorphic map, and satisfies ®; ' (w + 1) = h o ®; ' (w) whenever
both sides are defined. However, ®, ' : II, — C \ {0} is not univalent any longer. It has a
critical point which is mapped to —4/27.

We may lift @, ' : I, — C\ {0} via Exp : C — C\ {0} to define the holomorphic map

(5.1) Y, = I['Exp71 Oq),:l I, - C, Tr(+1) = +1.
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5.2. Estimates on the change of coordinates. — To understand the behaviour of Y,
we need some estimates on ®;. However, obtaining good estimates on ®; are not trivial.
Following [Shi98], a general idea is to compare ®;, to an explicit formula, as we explain
below.

Recall that h has two fixed points 0 and op, on 0Pj,. Consider the covering map

Oh

Th(c) = m :C%C\{O,Uh}.

Evidently, 7,(¢ + 1/a) = 7(¢), limim ¢ 400 Tr(¢) = 0, and limpy ¢ oo () = on-
We may lift ®, ' : TI;, — C\ {0, 05} via the covering 75, : C — C\ {0,004}, to define

Lh:Hh—>(C.

That is, 7, o L, = CID,;l on II,. However, this map is only determined up to translations by
elements of Z/a. We choose the branch so that L (IIj) separates 0 from 1/c. Such branch
exists because Ly(I;) N (Z/a) = 0, and 7, ' (Py) is a 1/a-periodic set, whose components
are simply connected regions in C \ (Z/«) which spread from +ico to —ioo.

Estimates on Lj lead to estimates on ®j, through the explicit formula 7;,. One may
employ classic distortion estimates on univalent mappings from complex analysis to derive
some estimates on Lp. One may refer to [Shi98, Yoc95b] for some general results about
this. For specific estimates on Ly, one may refer to [IS06], [Chel3, Section 5] and [Chel9,
Section 6]. Below, we present only the estimates we need in this paper (these are only used
in Section 5).

Proposition 5.1. — There is a constant Cy such that for all h € Uae(o,rg] O7TS,., we have

(1) for all w € II}, with Imw > 1, |L},(w) — 1| < Cy/Imw,
(ii) for all w € Iy, |Lp(w) —w| < Cylog(l/a),
(iii) as Imw — 400 in I, Ly(w) —w tends to a constant,
(iv) for all w € I, |Lp(w) —w| < C1log(2 + d(w,Z/)).

Part (i) is an application of the Koebe distortion theorem and the functional equation
for the Fatou coordinates, see for instance [Chel9, Lemma 6.7-(4)]. For (ii) see [Chel9,
Proposition 6.19], and for (iii) see [Chel9, Lemma 6.9]. To get (iv), when Imw > 1/« one
uses part (ii), and when Imw < 1/« one uses [Chel9, Proposition 6.15, Proposition 6.17],
integrates the bound in part (i), and uses the inequality log(a) + log(b) < 2log(a + b) for all
a,b> 0.

In [Chel3], quasi-conformal methods have been employed to obtain an exponentially
decaying estimate on |Lj (w) — 1|. We do not need that fine estimate here.

By Proposition 5.1-(i), and differentiation of the explicit formula 74, we get
(5.2) lim T, (w) = a.

Im w—+oco,welly,

5.3. Dropping the non-linearity. — Recall that Y}, is defined on H' = {w € C | Imw >
—1}. We aim to compare Y}, to Y, knowing that they have different domains of definitions.
Below, we state a general form of such estimates, and later apply it to more specific domains.
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Proposition 5.2. — There is a constant C3 such that for all h € Uae(oﬁ] OIS, all
wy; € H' and all we € I}, we have

|Th(we) — Yo (wr)] < Cymax{l, |w; — wa|}.

Proof. — We shall use the decomposition of Y} as Exp*1 otp, o Lp on II,. Let gp =
Exp ' or,. We divide the proof into two steps.

Step 1. There is a constant D1, independent of o and h, such that for every wy € H', we
have

(5.3) lgn(w1 +1/2 4 31/2) = Yo (w1)| < D1

In the above inequality, the constant 1/2+ 3i/2 is chosen to make sure that gy is defined,
and also to simplify the calculations. Let us set w| = w1+1/243i/2. By explicit calculations,

4(6737‘-& _ ewai)

1
/ —
(5.4) Im gp(w)) — Im Y, (wy) = o log STeTrag,

It follows from the Koebe distortion theorem that {h”(0) | h € ZSy} is relatively compact in
C\ {0} (see [IS06] for more details). This implies that there is a constant D, independent
of @ and h, such that a/D < |o}| < Da. On the other hand, for all a € (0,1/2], we have

(5.5) le™3T — ™| < e 73T — 1| 4|1 — ™| < 37a + Ta = 47a,
and
(5.6) le™3T> — ™| > | Tm(e 3™ — )| = sin(wa) > ma/2.

These imply that 7/(2D) < |(e=3™ — ™) /g),| < 4nD. Combining with e=37/2 < e=37® <
1, we conclude that the left hand side of (5.4) is uniformly bounded from above and below.

On the other hand, g, maps {w € C | 0 < Rew < 1/a,Imw > 1/2} into a vertical
strip of width +1 whose projection onto the real axis contains +1. Similarly, Y, maps
{w e H | 0 < Rew < 1/a} into the vertical strip {w € C | 0 < Rew < 1}. Using
Yo(w+1/a) =Y, (w) + 1 and gp(w + 1/a) = gn(w) + 1, one concludes that

|Re gn(w)) — Re Yo (w1)] < [Regn(wy) — ReYa(wy)| +|Re Yo (w)) — Re Yo (w1))|
<24+ a/2<9/4.
This completes the proof of Step 1.

Step 2. There is a constant D, independent of a and h, such that for all ws € II; and
all wy € C with Imwy > 1/2 we have

(5.7) |gn © Li(ws) — gn(ws)| < Dy max{1, |ws — wyl}.

Recall the constant Cy from Proposition 5.1, and choose a constant D such that D/a —
Cilog(l1+1/a) > 1/« for all « € (0,1/2]. We break the proof into three cases.

e Imws > D/a: By Proposition 5.1-(ii), |Lp(ws) — ws| < C1log(l + 1/a), and hence
Im Ly (w3) > 1/a. For Imw > 1/a, |g,(w)| = O(e), and for Imw > 1/2, |g;,(w)| = O(1),
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with uniform constant in O independent of a;, h and w. Then,

lgh © Lin(ws3) — gn(wa)| < |gh © Ln(ws) — gn(ws)| + |gn(ws) — gn(wa)]
< O(a) - [Lp(ws) — w3 + O(1) - |wz — w4
< O(a) - O(log(1/a)) + O(lws — wa]) < O(1) 4+ O(Jws — wy]).

e 1/2 <Imws < D/a: By Proposition 5.1-(iv), |Lp(ws) — ws| < C1log(2 + d(ws, Z/)).
For 1/2 <Imw < D/a, |g;,(w)| = O(1/d(w,Z/)). Because log(1+d(w,Z/))-1/d(w,Z/c)
is uniformly bounded from above, we conclude that |gn o Lp(ws) — gn(ws)| is uniformly
bounded from above. As in the above equation, one obtains the desired inequality in this
case as well.

e Imws < 1/2: Let wh = Rews +i/2. Tt follows from the Koebe distortion theorem that
Im ws is uniformly bounded from below (see proof of Proposition 2.7 in [Che19]), and hence
|ws — ws| = O(1). As in the previous cases, we get |gn o Ln(ws) — gn(wh)] = O(1), and
therefore

lgn © Ln(wsz) — gn(wa)| < |gn o Ln(ws) — gn(ws)| + |gn(ws) — gn(wa)]

— 0(1) + 0(1) uh — wy|
=O0(1) + O(1 + |wz — wal).

To complete the proof of the proposition, one uses (5.3), (5.7), and the triangle inequality
| Th(w2) = Yo(wi)| < |gn o Lun(wz) — gn(w})| + [gn(w)) — Ya(wr)]. O

Proposition 5.3. — For all a € (0,73] and all h € OIS,

lim (Th(w) -Y, (w))a

Im w—~o0;welly,

erists and is finite.

Proof. — Recall that T), = Exp ! orp0Lj on ITj,, and define g, = Exp ! o7y,. By elementary
calculations one may see that gp(w) — Y, (w) tends to a finite constant as Im w — +o00. Also,
for all wy and wy € C, gn(wy + w2) — gn(wy) tends to a finite constant as Imw; — +o0.
On the other hand, by Proposition 5.1-(iii), L,(w) — w tends to a constant as Imw — +oo
within II,. O

6. Marked critical curve

In this section we identify a collection of simple curves with special parametrisation (mark-
ing), which satisfy some geometric and equivariant properties under the renormalisation.
These will be employed to build partitions of the post-critical set in Section 7.
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6.1. Repeated renormalisations. — Fix an arbitrary o € R\ Q, and let (;);>0 denote
the sequence generated by the modified continued fraction algorithm in Section 2.1. Recall
the complex conjugation map s(z) = Z.

Proposition 6.1. — There exists a positive integer N such that for all o in HT n and all
fin QIS,,, the following sequence of maps is defined
S if eo = +1, _JR(fn) if epe1 = —1,
fo= o Jn1 = ) _
sofos ifeg=—1, soR(fn)os ifept1 =+1,
and for all n > 0 we have fo € QLSa,, fnt1 € LSan,ys fn 1 Uyp, — C, fn(0) =0, f,(0) =
6271'1'0471,'

Proof. — Let N > 1/rs 4+ 1/2, where r3 is introduced in Theorem 4.5. Assume that « has
modified continued fraction a_1 +¢9/(ag +1/(a1 + ...)) with a; > N, for all ¢ > 0. For all
i>0,
1/a; =a;+cit10541 > N —1/2>1/r3,

and hence «a; € (0, r3].

First we note that for every v € R, h € OIS, iff sohos € QIS_,. When h = Q,,
we have s 0 @, 05 = Q_,. So assume that h € ZS,, with h(z) = P oy~ 1(e*™2). Since,
soP =Pos,and s(U) = U, we have

sohos(z)=s0Poth 1 (e2™Z) = Posoy ! os(e ?™z),

where so os: U — C is holomorphic, maps 0 to 0, and has derivative 41 at O.

If eg = 41, then @ = a_; + ap, and hence fy = f € OIS, = OLS,,. If ¢g = —1,
then o = a_; — ap, and hence f € OIS, = OIS_,,. Then, by the above paragraph,
fo=s0fose 9IS,,.

Now assume that f,, is defined and belongs to ZS,, . Since «, € (0,r3], by Theorem 4.5,
R(fr) is defined and belongs to IS_1a,, - Recall that —1/an = —ap —€nt10n+1, which gives
R(fn) € IS—c, 1anysi- If €ng1 = +1, by the above paragraph, fr,41 = soR(fn)os € IS, -
If epy1 = —1, then fr 11 = R(fn) € ZS‘a¢n+1' O

6.2. Successive changes of coordinates. — Recall IIj,, ®, ' : IT;, — C \ {0}, and Y}, :
II;, — C from Section 5.1. For n > 0, we use the notations
_ [Explod;t ife, = —1,

6.1) T, = ,
(6.1) {I[*:Xp_1 oso® 1 ifeg, = +1,

I, =1y, ®,'=a&;":1, - C\{0}.

n

with the normalisations
(6.2) Th(+1) = +1.

Each T, is either holomorphic or anti-holomorphic. See Figure 8.
Consider the set

I={weC|1/2<Rew < 3/2,Imw > —2}.
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C C
Exp TT Exp TT
C\{o}ﬁnn C\{O}?Hn

FIGURE 8. The change of coordinate Y,,, with £, = +1 on the left and &, = —1
on the right.

Lemma 6.2. — There is a constant 61 > 0 such that for all h € Uae(o,rg] OTS,.., we have
Bs, (Ty(IT)) CII.

Proof. — By [IS06], for every h € QZS, A,:k and B,:k are contained in the repelling Fatou
coordinate of h for large enough k, and hence they are defined for all values of & > 0.
Comparing to their notations, AU By, is contained in the union 9o (Do) Up (D) U1/10(Dg) U
7/)0(D§)7 where 9(z) = —4/z. See Section 5.A-Outline of the proof in [IS06]|. They prove
in Propositions 5.6 and 5.7 that the closure of Dy U Dy U Dg U Dg does not intersect the
negative real axis. In particular, it follows that for all z € A, UBy, d(Re Exp™*(2),Z) < 1/2.
By the compactness of QZSy, there is a constant C' < 1/2 such that for all h € QZS; and
all z € Ay U By, d(ReExp~*(2),Z) < C. Then, by the continuous dependence of the Fatou
coordinate on the map, one may see that there is C’ < 1/2 such that for all small enough «, all
h € QIS,, and all z € Aj, U By, d(ReExp~'(2),Z) < C’ < 1/2. Since, @;1(1'1) = A, U By,
we conclude that there is 47 > 0 such that Bs, (Yy(I1)) is contained in the vertical strip
1/2 < Rew < 3/2. On the other hand, A; U By, is contained in the image of h, and the
image of h is contained well-inside the disk of radius 4e*" /27 centred at 0. Therefore, by
making ¢; smaller if necessary, Im(Bs, (Y5 (II)) C [—2, +00).

In [IS06], the constant r3 in Theorem 4.5 is obtained from a continuity property of the
locations of Dy U Dy U Dg U D§ with respect to h. As such, it is implicitly assumed that the
inclusion in the lemma also holds for small perturbations of h € QZSy. Because of this we
do not introduce a new constant for small enough «, and assume that the same constant r3
works here as well. |

Let p(z)|dz| denote the Poincaré metric of constant curvature —1 on int (II). By classic
complex analysis, when f : D — D is holomorphic with f(ID) compactly contained in D, f is
uniformly contracting with respect to the Poincaré metric on D. However, here T, (II) is not
compactly contained in II. Despite that, the uniform space provided by Lemma 6.2 allows
us to recover the uniform contraction, as we discuss below. Let T p denote the pull-back of
pon int (IT) by T, : IT — 1L

Proposition 6.3. — There is a constant do < 1 such that for every n > 0 and every
w € int (IT),

(Thp)(w) < d2p(w).
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Proof. — Let p,(z)|dz| denote the Poincaré metric on Y, (int (IT)). By the Schwartz-Pick
Lemma, Y, : (int (IT), p) — (Y, (int (I1)), p,,) is non-expanding. It is enough to show that
the inclusion map from (7, (int (II)), p,,) to (int (II), p) is uniformly contracting.

Fix an arbitrary & in Y, (IT). Using 6; from Lemma 6.2, consider H : T, (IT) — C defined

d1(§ — o)
H(E) = € + 25780,
© =g+ 2t
For £ € T, (II) we have | Re(§ —&p)| < 1. This implies that |£ — &o| < |€ — &y + 2|, and hence
|H(&) —&| < 61. It follows from Lemma 6.2 that H maps Y, (II) into II. By Schwartz-Pick

Lemma, H is non-expanding with respect to the corresponding metrics. In particular, at

H(&) = &o,

as

p(&o)[H' (o)l = p(&0) (L + 61/2) < pn(&0)-

Hence,
< —=—) pn(&).
) < (515 ) (&)
The uniform (independent of n) contraction factor is d = 2/(2 + 7). O
6.3. Critical curve. — Inductively, we define the curves

ul 2 i[0, +o00) — TI,

for j > 0and n > —1. For j = 0 and all n > —1, let uY (it) = 1 + it. Assume that for some
j >0, and all n > —1, v/, is defined. Then, for all n > —1, let

(6.3) ultt =Tpi10 Ui+1 © Yn_+11-
Lemma 6.4. — For alln > —1 and j > 0, ul, : i[0,+00) — II is a well-defined analytic

map satisfying ul,(0) = +1.

Proof. — Recall that each T, is either holomorphic or anti holomorphic, and each Y, is real
analytic. By (3.2), for every ¢t > 0, ImYnjrll(it) € [0,+00), and by Lemma 6.2, T, (I) C

II. These imply that each w, is well-defined and analytic. Also, since Y,,4+1(0) = 0 and
Y,i1(+1) = +1, for all n > —1, inductively, one concludes that u,(0) = 1. O

Recall the constant d5 introduced in Proposition 6.3.
Proposition 6.5. — There is a constant Cy such that for all n > —1, all 7 > 0, and all
t>0,
ug;FH(it) — i (it)| < Ca(d2)’.
In particular, for every n > —1, as j — 400, ul, converges to a continuous map uy :

i[0, +00) — II.

Proof. — By Proposition 5.2, with o = i1, h = frq1, w1 = Y, (it) and wy = Y, 1 (it) +
1

)

lup (it) — ud (it)] = |Tns1 (Y, (i) + 1) — (it + 1)
<Y1 (Y2 (68) + 1) — Yoa (Y, (i) + 1 < O3 + 1.
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Recall the Poincaré metric p(z)|dz| on int (IT). One has the classic bounds 1/(2d(z, 011)) <
p(z) < 2/d(z,0II). In particular, p > 1 on int (IT). On the other hand, by Lemma 6.2,
d(u}(it),0I1) > &, which implies that d,(up,(it),u%(it)) < 2(C5 + 1)/6;. Now we apply
Proposition 6.3, to see that for j > 1,

dp(uf ™ (it), uf, (it)) = d, (Tn+1 °© “£+1 °© Yn_-‘,-ll (i), Tns1 0 %111 °© Yn_-l-ll(it))
< bady (uhyr (Vi (D) i (Vigh 1)) )
Then, by induction,

dp(uf{"l(it), ud(it)) < (52)jdp (u}wrj (it"), u?erj (itl)) ,

where it’ = Yn__:j o---oY, ! (it). Therefore, as p > 1 on int (II),

I(S;)l (it) — u, (it)] < dp(ufy™ (it), i, (it)) < (2)7dp(up 5 (it), up 4 5 (it)) < (82)72(C5 +1) /61
For each n > —1, uJ, forms a Cauchy sequence on [0, +00), which implies that u, converges
to a continuous map u,, as j — +oo. O
Proposition 6.6. — For all n >0 and all t > 0 we have

Yh 0 up(it) = up—1 0 Yy (it), and u,(0) = 1.
Proof. — These follow from taking limits as j — +oo in (6.3) and Lemma 6.4. O
Proposition 6.7. — For every n > —1, and every t > 0, we have

[un(it) = (1 +it)| < C2/(1 = 62).

Proof. — By Proposition 6.5, for j > 1 and ¢t > 0, we have
(65) | (it) — (L+it)| = | S, (ul (it) — ul 2 (it))| < T4, Cald) =1 < Co/(1 - 82).
Taking limit as j — +o00, we conclude the inequality in the proposition. [l
Proposition 6.8. — For every n > —1, u, : i[0,+00) — II is injective.

Proof. — Fix an arbitrary n > —1. Let 0 < t,, < s, be arbitrary real values. Inductively,
define the sequence of numbers ;11 = Im Yljr}(ztl) and s;+1 = Im Yljr}(zsl), for | > n. By
(3.5), for I > n, |t; — s| > (10/9)"""|t, — s,|. In particular, for large enough I, |t; —
s1] > 3C2/(1 — d3). By virtue of Proposition 6.7, this implies that w;(it;) # wi(is;). Now,
inductively using the commutative relation in Proposition 6.6, and the injectivity of Y} and
Ty for all k, we conclude that wy,(it,,) # w,(isy). O

Proposition 6.9. — For every n > —1, limy_, 1 oo (un (it) — (1 4 it)) exists and is finite.
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Proof. — By Proposition 5.3 and the explicit formula for Y;,;1, the following limit exists
and is finite

lim (u}(it) — w0 (it)) = lim ( nt+1(Y, | ( t)+1)— (1+zt))

t——+o0 t——+o00
:t_1>1m ( n+1( ( t)+1)— n+1(Yn_-|-11(it)+1))
tim (Vo (Y4 () 4 1) = Yo (V3 00) — 1.

By an inductive argument, one may see that for every j > 1, limy_, o (u? (it) — u~1(it))
exists and is finite. Indeed, by (6.4), the absolute value of this limit is bounded from above
by (62)7712(C5 +1)/6;. Tt follows that lim;_, o (u? (it) — (1 +1it)) exists and is finite. Since
ud, converges to u, uniformly on [0, +00), we conclude the proposition. |

Remark 6.10. — By the argument in this section the limiting curves w, and their
parametrisations do not depend on the particular choice of ul. Any other choice for uf
which lies within some uniform distance from u? leads to the same limiting curve u,. For
this reason, one may see that when a € %, the intersection of @, !(u,) and the Siegel disk
of f,, coincides with an internal ray of the Siegel disk of f,.

6.4. An equivariant extension of the critical curve. — We need to extend the curves
u, at the end points u,(0), while maintaining the functional relation in Proposition 6.6.
There are many choices for such extensions, as we present the details below. This is rather
arbitrary, and will be only used for technical aspects in the later parts of the paper.

Let us define the numbers ¢/, for n > —1 and j > 0 according to

t% =-1,forn>-1, and t] = ImYn+1(ztn+1) forn>—1and j> 1.

Lemma 6.11. — For every n > —1, we have t% <t} < t2 < ... < 0 with t), — 0 as
J — +oo0.

Proof. — By Proposition 3.1-(i) and the definition of Y, in (3.1), for all n > -1,
ImY,+1(—i) > —1. This implies that t) < ¢L, for all n > —1. Since each Y, is injective and
maps i[—1,400) into itself, t — ImY, (it) is order preserving, for all n > 0. This implies
that for all n > —1 and j > 0, tJ < tJ*1. Also, by (3.5), |t/| < (9/10)7, which implies the
latter part of the lemma. O

Recall the set II,, = Ily, defined in Section 6.2.

Lemma 6.12. — For each n > —1, there is a continuous and injective map

vifty, t] = T\ int (Topr (Hnga))
such that
(1) w2(itd) =1 —2i and w0 (itl) = Tpi1(1 — 2i),
(ii) sup{Imu (is) |n > —1,t0 <s <tl} < +oo,
(iif) wp (it t5)) € int (IT\ T ().
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Proof. — Recall that Exp(1 — 2i) = —4e*™/27, and Exp(Y,11(1 — 2i)) is either equal to
@1, (1—2i) or so®, (1 — 2i) depending on e,41. Also, recall that @, };(II,41) is a
finite union of sectors bounded by analytic curves landing at 0. Moreover, this set contains
a punctured neighbourhood of 0, is compactly contained in B(0, 4e*™ /27), and @;Jlrl(l —2i)
lies on its boundary. Let us assume that ,47 = —1. There is a continuous curve 7 :
[0,1] — B(0,4e*"/27) such that v(0) = —4e*™ /27, (1) = @;}rl(l —2i), and ((0,1)) does
not meet the sets @;il(HnH) and [0, +00). We may choose this curve to be uniformly away
from 0. One may lift the curve v via Exp to define the desired curve v, which may be

re-parametrised on i[t0, tL].

n’n
When ¢€,,41 = +1, one only needs to insert the complex conjugation map s in the appro-
priate places in the above argument. O

Now, by induction on j > 0, we define the maps u/, on i[t} , t1], for all n > —1. Assume

that for some j > 0 and all n > —1, u/, is defined on i[t},, t/*!]. For all n > —1, we define
wl T on it T H112] as

(6.6) ultt =Tpi1 0 Uiﬂ oY, .
Note that, by Lemma 6.12-(i),
U (ity) = Tugr 0y 1 0 Y, (ity) = Togr 0 up 1 (it 41) = T (1 — 20) = up (ity,).

In other words, u? and u) match at the intersection of their respective domains of definitions.
Repeating the above argument inductively, one may see that for all n > —1 and j > 0,
wlTH(itd ) = w (it 1), Thus we may define u,, on i[—1,0) as

un (it) = vl (it), for t € [t tIT1].
We set u,(0) = +1, for each n > —1.

Lemma 6.13. — For every n > —1, u, : i[—1,0] = II is continuous. Moreover, there is
C5 > 0 such that for alln > —1 and all t € [—1,0] we have |u,(it) — (1 + it)| < Cs.

Proof. — Fix an arbitrary n > —1. By Lemma 6.12 and (6.6), the restriction of u,, to each
closed interval 4[tJ  tJ¥1] is continuous, for j > 0. Hence, u,, is continuous on i[—1,0).

Fix an arbitrary n > —1 and an arbitrary j > 1. By Lemma 6.12-(ii), the Euclidean
diameter of the curve u,1;(i[t) , ;, ¢, ;]) is uniformly bounded from above. By the compact-
ness of IS, it follows that the Euclidean diameter of the curve Yy j(unt;(i[t), ;, ¢ ;1)) is
uniformly bounded from above, independent of n 4+ j. On the other hand, this curve also
lies in Y, 1 ;(II), which is contained well inside II, by Lemma 6.2. These imply that the hy-
perbolic diameter of the curve Yo j(uny;(ilty ;,t, ;1)) in int (TI) is uniformly bounded
from above, independent of n + j. Then, we employ Proposition 6.3 to conclude that
there is a constant C, independent of n and j, such that the hyperbolic diameter of the
curve Tpyq 0 - 0 Loy j(ung; (i[tS ;. ¢, ;])) is bounded from above by C(d2)?~'. Simi-
larly, by making C' larger if necessary, we also conclude that the hyperbolic distance from
Thi10-0 Voyj(tnyi(ity;)) to +1 is bounded from above by C(d2)7".
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By (6.6),
Tog1 00 Tt [T, thay ) = wnilth 4571,
Ypg1 00 Yo i(Uny; (itvlwrj)) _ un(itfl“).

Thus, by the above paragraph, the hyperbolic diameter of w,(i[t},t/*1]) is bounded from
above by C(62)7~1, and the hyperbolic distance from wu,, (it} *!) to +1 is bounded from above
by C(62)7~1. These imply that u, is continuous at 0. Moreover, the hyperbolic diameter of
un (ifty,, 0]) is bounded from above by C' "7 (82)’~! = C/(1—dz). In particular, combining
with Lemma 6.12-(ii), we conclude that the Euclidean diameter of the curve u,(i[—1,0])
is uniformly bounded from above, independent of n. This implies the latter part of the

lemma. |
Proposition 6.14. — For every n > —1, u, : i[—1,4+00) —= II is injective.

Proof. — Fix an arbitrary n > —1. We already proved in Proposition 6.8 that u,, is injective
on [0, +00).

Let us fix arbitrary points y, < x, in [—1,400) with y, < 0. We aim to show that
U (1Yn) 7 un(izy,). First assume that there is j > 0 such that both z,, and y, belong to the
same interval [t , t2+1]. Then, u, on [t} tJ71] is given by

-1 -1
un:TnJrlo~~~oTn+joun+jan+jo~~~an+1,

while

Yn_Jrlj o0 Ynﬁl(ﬂﬂaﬂ“]) = i[t?wj’t?lzﬂ]'

However, each T, is injective on II, Y; is injective on its domain, and by Lemma 6.12, u,, is
injective on i[t), ;, ¢, ;]. In particular, u, (iy,) # un(izn).

Now assume that both z,, and y,, do not belong to one interval [t/ , t/7!]. By Lemma 6.11,
there is j > 0 such that ¢/ < y, < t2*1 < z,. Let y;41 = Im Ylﬁ(zyl) and ;41 =
ImYlﬁ(i:cl), for n <1 <n+j—1. By the choice of j, we have —1 < y,4; < t711+j < Tngj-
Then, by Lemma 6.2,

Un+j (Wntj) € T\ Yo (M),
while
Untj(i@n45) = Tntjar © Unjer © Vil (i) © Ty (1) © Yo jrr (M)

In particular, wn+;(in+;) # Un+;(#Yyn+;). Now, inductively one uses (6.6), and the injectiv-
ity of ¥; and Yy, to conclude that wuy, (ix,) # tn(iys). O

The particular choice of the curve u, on [—1,0]i and its parametrisation does not play
any role in the sequel. But the feature we shall use is the equivariant property

(67) Tn+1 [©) Un+1(it) = Un © Yn+1(it), te [*1, O]
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7. Marked dynamical partitions for the post-critical set

In this section we build a nest of dynamical partitions for the post-critical set. The
elements of the partition are Jordan domains, whose boundaries are equipped with a param-
eterisation (marking). The markings match where the boundaries of pieces meet. This is
analogous to the Yoccoz puzzle pieces in polynomial dynamics. This nest of partitions is sim-
ilar to the nest of partitions Q7 introduced in [Chel3, Chel9, AC18]. However, the nest
introduced here has simpler combinatorial and geometric features, and enjoys equivariant
properties with respect to the renormalisation.

7.1. Marked curves w;” and v'. — Recall the curves u,, : i[—1,+oc) — I, for n > —1,

defined in Sections 6.3 and 6.4, as well as the sets II,, and the maps Y, : II,, — C defined in
Section 6.2.

For T, up(i[—1, +00)) plays the role of i[—1, +00) for Y,,. Here we define two other curves
for T, which play the analogous role of the lines 1/a,, +i[—1,+00) and 1/a,, —1+1i[—1, +00)
for Y, (see (3.3) and (3.4)). Due to the presence of a critical point of Y,,, as opposed to the
injectivity of Y, we need to consider a pair of curves for the role of 1/c,, — 1+ i[—1, 4+00).
See Figure 9. For the sake of simplifying the arguments, as in u,, we parametrise these
curves on the corresponding lines 1/, + i[—1,4+00) and 1/, — 1 + i[—1, +00).

Proposition 7.1. — For every n > 0, there are continuous and injective maps
wt :1/ay, +i[~1,+00) — I, w, :1/a, +i[—1,+00) = II,
such that
(i) for allt € [-1,400) we have

Y, ow! (1/apn +it) = Thow, (1/ay +it) = Ty 0 up,(it) — ey,

(i) on 1/ay + [0, +00), wi = w,,,
(iii) w1/ +1i[—1,0)) Nw;, (1/ay, +i[—1,0)) = 0,
(iv) T, has a critical point at wi(1/ay,) = w, (1/a).

Proof. — From Section 4.2, recall the sets A,, = Ay, , B, = By,, and S,, = S¢,, as well as
the integer k,, = ky,, associated to h = f,,. Also, recall from Section 6 that u, (i[—1, +00))
is contained in Il = ®,,(A4,, UB,,) C II,,. Then, ®,!owu,(i[-1,+0c0)) is contained in A4, UB,,.

Recall that ®,! : II,, — C covers A, U B,, several times, while ®_! : Il — A, U B,, is
univalent. The restriction ® ! : ®,(S,)+ k, — A, U B, has a specific covering structure; it
covers B,, in a one-to-one fashion, and covers A,, by a two-to-one proper branched covering
map. The branch point is mapped to —4/27 = ®,1(+1); the critical value of f,. See the
discussion in Section 4.2. In particular, there is a unique continuous curve w;} : 1/a, +
1[0, +00) = D,,(Sy) + kn, such that

(7.1) O (w (1 ay, +it)) = @ (u,(it)).

This defines w;} on 1/, + 1[0, +00). We let w,; = w;} on 1/a, + [0, +00).

There are two ways to extend w;" on 1/a, + i[—1,0) so that the above equation holds.
These come from the double covering structure of ®, ! from ®,, (A, *")+ k, onto A,,. Let us
denote these maps by w;" and w;, . The three curves w;l (1/ay,+i[—1,0]), w, (1/an+i[—1,0]),
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and w;’ (1/a,+i[0, +00)) land at w;f (1/ay,). There is a cyclic order on these curves consistent
with the positive orientation on an infinitesimal circle at w;' (1/a;,). We relabel these curves
so that w; (1/ay, +4[0,+00)) < w;i(1/an +i[—1,0]) < w,, (1/ay, + i[—1,0]). See Figure 9.
Evidently, T,, has a critical point at w; (1/ay,), and w; (1/ay + i[—1,0)) N w;, (1/a +
i[~1,0)) = 0.

By the above argument, the images of the curves w are contained in ®,,(S,) + &, that
is, for all s € {+,—},

(7.2) wy, 1/ +i[—1,4+00) = @ (Sy) + kn.

Recall that T,, = Exp ' oso®; ! or T,, = Exp ' o®, !, depending on the sign &,,. Therefore,
by (7.1) and the continuity of u,, w;", and T, there is an integer ,, such that for s € {+, —}
and all t > —1, T, ows (1/a, +1it) = Ty 0uy(it) +4,. On the other hand, the region bounded
by the curves u, and w,} near +ioo is mapped by ®,! to a slit neighbourhood of 0 in a

one-to-one fashion. It follows that i, = —¢,. O
Proposition 7.2. — There exists a constant Cg such that for every n > 0, and every
t>—1,

lw (it + 1/ ) — (un(it) + 1/an)| < Ce.
Moreover, for every € > 0 there is C. such that for every n > 0 and every t > C., we have
lwt (1) +it) — (un(it) + 1/an)| < e.

Proof. — Consider &, = ®,, 0 &1 : ®,(S,,) + k, — II, (compare with (4.3)). By Proposi-
tion 4.1-(e), & (w+1) = &, (w) + 1 whenever both sides are defined. Therefore, £, induces a
holomorphic map, say &,, from ®,,(S,)/Z C C/Z onto {w € C/Z | Imw > —2}. Moreover,
by (7.1), £, maps the curve w; /Z to the curve u,,/Z.

The image of &, covers the region above the circle Imw = +2 in a univalent fashion.
Also, we have limyy, s 400 IM gn(w) = +o00. We may apply the Koebe distortion theorem
to &' on the annulus {w € C/Z | Imw > 2}. It implies that there is a constant ¢, such
that |u, (it) + ¢, — wi (1/ay, + it)| converges to 0, uniformly independent of n, as t — +o0.
Moreover, |uy, (it)+ ¢, —w;' (1/a, +it)] is uniformly bounded from above when Im u,, (it) > 3.
By (5.2), ¢n = 1/ .

By Proposition 6.7, if ¢ > Cy/(1 — d2) + 3, Imu,(it) > 3. On the other hand, for
—1<t<Cy/(1—0d2)+ 3, by the compactness of QZS and the continuous dependence of &y,
on h € OIS, |un(it) + 1/, — w;b (1 /v, + it)| is uniformly bounded from above. O

For n > 0, we define the maps
vt i 1/an — 1+i[—1,400) = I, v, :1/a, —1+i[-1,+00) — I,
according to
(7.3) v (1/ay —1+it) =wi(1/an +it) =1, v, (1/an —1+it) = w, (1/ay, +it) — 1.
See Figure 11 for an illustration of the following proposition.

Proposition 7.3. — For every n > 0 and every t > —1 the following hold.
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(i) If eny1 = —1, then
Thi1o v;‘Jrl(l/oszrl —1+4it) +an +ent1 = wl (Va1 (it) + 1/an),
Toy100, (L anyr —1+it) + an +eny1 = wy, (Ynr1(it) + 1/ay).
(i) If eny1 = +1, then
Thi1o Un+1(1/0‘n+1 —14it) + an + ent1 = w, (Yn41(it) + 1/an),
Tni1 00, 1 (1/angr — 1 +it) + an + epg1 = w (Y1 (it) + 1/cn,).

Proof. — Fix an arbitrary n > 0 and s € {+,—}. Let us first assume that €,41 = —1 so

that fny1 =R(fn)-
By (7.2), for all ¢’ > —1, w? (1/a, +it’") — ky, € ®,,(S,). By Proposition 4.1-(e), and (7.1),

Far (@0 (W (1 am +it') = kn)) = @71 (w; (1 + it') = " (un(it')).

Hence, by the definition of renormalisation R(f,) = fn+1, see (4.3), the above relation
implies that

for1 (Bxp (wy (L am +it'))) = frsr (Exp (wy, (1/om +it') — kn))
= Exp(un(it')).
Let it’ = Y;,11(it). The right hand side of the above equation becomes

(7.4)

Exp(uy (i) = Exp(un (Vo1 (it))) = Exp oYy, 41 0 tpi1(it) (Proposition 6.6)
= @11 (unga(it)) ((6.1))
= @1 (Wi (1 ansr +it)) ((7.1))
= fag1 0@ 1 (w1 (1/ans1 +it) — 1)  (Proposition 4.1-e)
= fat10 @y (U (ansr — 1+ it). ((7.3))

Combining the above equations, we conclude that
ot (Bxp (w5, (1 + Yni1 (1) = farr (@pia (01 (/g — 1 +it))) .
The above equation implies that
Exp (w;,(1/tn + Yor1(it))) = .3 (v 41 (1/0ngr — 1+ it))
= Exp oYt () (Lanpr —14i8)  ((61))
Then, for any t > —1, there must be an integer l;, such that
wy, (1/an + Yoy1(it)) = Togr(vy o (1/ang1r — 1 4it)) + Ly

However, since Yy 41(v5 1 (1/ans1 — 141it)) and wj (1/ay, + Y41(it)) depend continuously
on t, l; must be independent of ¢. In order to identify the value of I; we look at the limiting
behaviour of the relation as ¢t — +o0.

By Proposition 7.2,

tiigrnoo (Re (v 41 (1/ g1 — 1+ it) — un1(it)))

= lim (Re(w),;(1/ans1 +it) — upg1(it)) —1=1/appq — 1.

t—+oo
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Applying Y,,4+1 and using (5.2),
lim (Re (Thi1(v)1(1/ansr — 1 +it)) — Tog1(ung1(it)))) = ans1(1/onp1—1) = 1—apq1.

t——+oo
On the other hand, by Propositions 6.6 and 7.2, we have
tiigloo Re(wy, (1/an + Yns1(it)) — Y1 (un(it))
= lim Re(w (1/an + Yoi1(it)) — un(Yni1(it))) = 1/cu,.

t— o0

Hence, we must have 1 — ap+1 + It = 1/a,, which by (2.2) and €,41 = —1, implies that
ly = an, —1=a, +epq1. This completes the proof of the desired relation in the proposition
when €,41 = —1.

Now assume that €,+1 = +1. The argument is similar in this case, so we only look at
the relation for v}, and emphasis the differences with the above argument. As in the above
argument, we have

Frm (@3 (wy, (Vag +it') = kn)) = @5 (un(it")).
When e,11 = +1, R(fn) = s 0 fnt1 © s. Therefore,
50 fot1 08 (Exp (wy, (1/an +it"))) = Exp(un(it')).
Let it’ = Y,,11(it). The right hand side of the above equation becomes
Exp(un (i) = Exp(un (Vi1 (it))) = Exp oY, 11 0ty (it) (Proposition 6.6)
— 50 ®;L, (unsa(it)) ((6.1))
= 50 fap1 0B Ly (vryy (1o — 1+3). ((73))
Combining the above equations, we conclude that
50 frt1 08 (Exp (wy, (1/an + Yyi1(it)) = 80 frs1 (2110541 (1 g — L+ it)))
The above equation implies that
soExp (wy, (1/an + Yny1(it)) = @11 (v (1/ans1 — 1 +it))
=soBxpoT,1(v,) (1/ant —1+it))  ((6.1)).

Note that the change from v, to vt 41 in the above relation is due to the orientation
reversing effect of s o Exp on the left-hand side as opposed to the orientation preserving
effect of s o Exp oY, 11 on the right hand side of the equation.

As in the previous case, there is an integer l;, independent of ¢, such that

w:(l/an + Yoqa(it)) = Tn+1(v7;-|-1(1/O‘n+1 —1+4it)) + 1.
Since Y7, is asymptotically equal to —a,41 near +ioco, in this case we obtain

(dm (Re (Thi1(vypq (W omgn — 1+ 1) = Togr (ung(it))) ) = —ang1(1/ang1—1) = apyr—1.

Hence, a1 — 141 = 1/, which by (2.2) and ,41 = 41, implies that l; = a, +ep41. O

Recall the numbers t} = ImY,,1(—i) € (—1,0), for n > —1.
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Proposition 7.4. — For alln >0 and s € {+,—}, we have
wi (1) + [t} , +00)) N (u,(i[t,, +00)) + Z) = 0,
VS (1) — 1+ i[th, 400)) N (w, (i[th, +00)) + Z) = B,
v (1) — 1 +i[—1,+00)) Nwl (1/ay +i[—1,+00)) = 0.

Proof. — First assume that e,1 = —1 so that R(f,) = fnt+1. Recall from Section 6.4 that
Un+1(i(—1,+00)) lies in int (IT). Moreover, by Proposition 6.6 and (6.7), we have

Exp ot (i(t, +00)) = ;.1 (tn41 (i(—1, +00)).

Thus, Exp ou,(i(t},+00)) is contained in int (A,41 U Byp1) = int (@1, (IT)). It follows
from (7.4) that ExpowX (1/a, +i(tl, +00)) C int (A;_il_1 U B;_il_l). As int (A1 U Bpri1) N
nt (A;-qlﬂ U B;-il-l) =0,
Exp oy, (i(t, +00)) N Exp owE (1/ay, +i(tL, +00)) = 0.
At the end of the interval ¢!, by Lemma 6.12-(i) and (7.4),
Exp oun (it) = ®, 11 (ung1(—1)) = @11 (1 — 2i) # @, 1, (—2i) > Exp ow: (1/a, + ith).
Combining the above equations, we have
(Exp oun (it} +00)) N (Exp ow; (1/aw, + ifth, +00))) = 0.

By the definition of v;¥ in terms of w%, the above equation implies the first two properties
in the proposition.

Since wuy,(i(—1,+00)) lies in int (IT), w;(1/a, + i(—1,+00)) must lie in the interior of
®,,(Sn) + kn. The sets int (®,(S,) + k) and int (®,,(S,) + k, — 1) do not meet. Hence,
vE(1/aym — 1 +i(—1,400)) and w; (1/a, + i(—1,400)) are disjoint. Evidently, v (1/a,, —
1 —14) #w}(1/a, — 7). These imply the last property in the proposition.

The proof for €,41 = +1 is similar. O

7.2. The dynamical partition. — For n > 0, u,(i(—1, +00)), v;- (1 /o, — 1 +i(—1, +00))
and w1/, + i(—1,400)) are pairwise disjoint, and lie in int (IT,,). Moreover, u,(—1),
vE(1/a, — 1 —14) and wl(1/a, — i) are also pairwise disjoint, but all belong to OII,. The
union of u,, and w; separate a connected region of II,, which contains v;". Also, v;"(1/a,, —
1+i[-1,0])) Uv, (1/a, — 1 +1i[—1,0]) divides I, into two components. Let MY denote the

closure of the connected component of
I\ (i1, 00)) |_Jw;} (1/an +i[~1, 00)) | v (1/ = 14i[=1,00) | Jvy, 1/ —14i[1,0])

which contains vl (1/a,, — 1+ (0, 00)).

Similarly, v, (1/a, — 1 +[0, +00)) divides M? into two components. Let 7 denote the
closure of the component of M2 \ v (1/a,, — 1 +i[0, +00)) which contains w;}, and let K9
denote the closure of the component of MY \ v (1/a;,, — 1 + i[0, +00)) which contains u,,.
Evidently, M% = K% U J?. These are analogous to M?, J? and K{ in Section 3.3. See
Figure 9.

Lemma 7.5. — For every n >0, Y, is injective on M?.
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Un 11:{ Uy w:{ Wy,

FIGURE 9. Illustration of the curves u,, vE and wE. The set K2 is coloured in

blue and 7.0 is coloured in orange.

Proof. — Recall that @1 is injective on M9\ (u,, Uw;"), (see the proof of Proposition 7.1).
This implies that Y, is injective on M9 \ (u,, Uw;). Also, by Proposition 7.1, T,, maps
up, and w; to disjoint curves on the boundary of T,,(int M?). Therefore, Y,, is injective on
MO. O

Now we define the sets M7, JJ, and K, for n > 0 and j > 0, in analogy with M7, JJ
and K7 in Section 3.3. Assume that M7, J7, and KJ, are defined for some j > 0 and all

n > 0. We define M1 771 and K/t for all n > 0 by following the below two cases.
If en41 = —1, we define

(7.5) M = Uzg (Pt Miy) + ) U (Tan (K 41) + an — 1),
If €41 = +1, we define
(7.6) MY = Uiy (Tosr (M) + D) U (Tt (Fi40) + an +1).
Recall that when €,17 = —1, by Proposition 7.1, Tn+1(MfL +1) lies between wu,, and

un + 1, and by Proposition 7.3, Tn+1(ICfI+1) + an — 1 lies between wu, + a, — 1 and w;.
Also, when €,11 = +1, by Proposition 7.1, Tn+1(MfL +1) lies between u,, — 1 and u,,, and
by Proposition 7.3, Tn+1(\7,{+1) + a, + 1 lies between u,, + a, and w;". As in Section 3,
it follows that M7 %! is closed, bounded by piece-wise analytic curves, and int (MZF1) is
connected. Moreover, M+l c M.

Recall the numbers ¢/ = Im Yn+1(itf;11), with t2 = —1, for n > —1 and j > 0. One may
see that when €,41 = —1,

up (ift], +00)) C OMI, Yot (v;f+1 (1/an+1 -1+ z[tflj_ll, oo))) +an —1C oM.
When €,,41 = +1,
Yot (w,j+1 (1/an+1 it +oo))> +1C oM,

and
Tt (vips (Vans = 1+i31,00)) ) +an + 1€ OM,.
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By Proposition 7.3,
Tot1(v) (1) angr — 1 +4[0, 4+00)) + an + £pg1 — 1 = v (1/cn — 1 4 1[0, +00)).

In particular, v;"(1/a,, — 1 4 i[0, +00)) divides M7 ! into two connected components. Let
J3+1 denote the closure of the connected component of M7T1\ vt (1/ay, — 1+ i[0, +00))
which meets w;", and let /™1 denote the closure of the connected component of M7 1\
v (1/a, — 1440, +00)) which meets u,,. This completes the induction step to define My,
Ki, and JF.

For n = —1, we may let
M = To(MITH) + (e0 +1)/2.
For each n > —1, define
(7.7) M, = ﬂ;ioM%

7.3. Hyperbolic contraction of the changes of coordinates. — In this section we
establish a uniform contraction of the maps Y,, on M?, with respect to suitable hyperbolic
metrics on the domain and range. This will be similar to Lemma 6.2 and Proposition 6.3.

Lemma 7.6. — There is d3 > 0 such that for every n > 0, there are open sets M%, K%
and J? satisfying the following properties:

(i) M5 C M5, K5 €KY, 70 C T, TYUK), = MY,

(i1) for all integers I with (ep41+1)/2 <1< a,+eéent1 — 1, By, (Tn+1(M%+1) +1)c MY,
(iif) if eny1 = —1, B, (Tn+1(/C9H_1) +a, —1) C My,
(iv) if eng1 = +1, Bs, (Tn+1(~779+1) +an+1)C M%.
Proof. — Recall the Poincaré metric p on int (IT). Fix an arbitrary constant R > 0, and let
U,, denote the set of all points in int (II) which lie at hyperbolic distance at most R from
Up. (Because un(—i) = 1 — 2i € 911, and p behaves like 1/(Imw + 2) near the bottom end
of II, U,, asymptotically resembles a cone at u,(—i).) The curve u, divides U,, into two
components; we denote the one on the right hand side of u, by U;" and the one on the left
hand side of u,, by U,, .

As in the proof of Proposition 7.1, we may use ®,, o ®, ! to lift ] and U, to define the
sets W C II,, such that
OLUT) =0TV, Uy ) = 0OV,

with w, (1/a,, — i) € Wi, and w; (1/a,, — i) € W,,. Then, W, is on the right side of w;,

n

and W, is on the left side of w;'. See Figure 10 for an illustration of these sets. Now, let
Vi=wr-1, v, =w, -1
Then, V; lies on the right hand side of v, with v, (1/a,, —1 —14) € V¥, and V;; lies on the
left hand side of v} with vf(1/a,, —1—14) € V.
Recall that w;t (1/ay, +i[—1,0]) Uw, (1/ay + i[—1,0]) divides II,, into two components,
one of which is bounded, and denoted by W} here. Let V; = W, — 1.
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U, ur

’60

FIGURE 10. Illustration of the sets UL, VE and Wi in the proof of Lemma 7.6.

We define
M =int (MO UU, UWUWEUVE),
(7.8) KY =int (KQUU, UV UV,
TP =int (J2 UV, UWSUWEUVE).

Since Yp41(unt+1) C up, and Y,y1 is uniformly contracting with respect to p,
Yot1(Unt1) C Uy Indeed, it follows from Lemma 6.2 and Proposition 6.3 that there
is a uniform § > 0 such that

- Bé(Tn-l-l(un—i-l)) C una B B

— When 5n+1 = 71, Bg(TnH(U;H)) C M%, Bg(Tn+1(V++1)) + Ap — 1 C M%,

n

— when g,41 = 41, B5(Trp1(Wiy1)) + 1 € MO and Bs(Tpi1 (V1)) + an + 1 € MY,

The set Uf;o f2%(S,,) is compactly contained in both the domain of f,, and the image
of f,. By Proposition 4.3, k, is uniformly bounded from above, independent of n. By
the compactness of QZS, there is 8’ > 0, independent of n, such that ¢’-neighbourhood
of U, £2(S,,) is contained in the domain and also in the image of f,. This implies that
there is 8" > 0, independent of n, such that §”-neighbourhood of T, (AMO \ (U; UW;)) is
contained in M2_,.

We define 03 = min{d, §"}. O

Let o, |dz| denote the hyperbolic metric of constant curvature —1 on M2, for n > 0.

Proposition 7.7. — There is a constant 65 € (0,1) such that for all n > 0 we have,
(i) for all integers I with (en+1 +1)/2 <1< apn+éent1—1, and all z € M%_H,
(Tns1 +1)%0n(2) < d50n+1(2);
(il) if enp1 = =1, for all z € K 1, (Tny1 4 an — 1)*0n(2) < d50n41(2);
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(iil) if eng1 =41, for all z € TPq, (Tng1 + an + 1)*04(2) < 050n41(2).

Proof. — One may repeat the proof of Proposition 6.3; replacing Lemma 6.2 by Lemma 7.6.
We obtain the uniform contractions with respect to g,4+1 on Mn 41 and g, on /\/10 In
particular, the uniform contractions hold on M? ,, K/, and J2, ;. O

7.4. Tterates, shifts, and lifts. — In this section we relate the iterates of f to integer
translations and lifts in the renormalisation tower of f. To do that, we need to define the
notion of trajectory of a given point, analogous to the one for the toy model in Section 3.6.

Given z_1 € M_;, there is a unique zy € M such that z_; = To(20) + (€0 +1)/2. Then,
inductively for ¢ > 0 we identify I; € Z and z;11 € M1 so that

(7.9) zi —1l; € Tiz1(Mit1) and Yiv1(zig1) + 1 = 2.
It follows that for all n > 0, we have

(7.10) 2.1=To+ (eo+1)/2)o (Y1 +1p) o0 (Typ+1ln-1)(2n),
and by (7.5) and (7.6), for all i > 0,

(7.11) (I4+¢ei11)/2<l; <a;+¢€it1.

We refer to the sequence (z;;1;);>0 as the trajectory of z_;. Although the trajectory is not
uniquely determined, (for some z; there might be two integers ; satisfying (7.9)), we refer
to any sequence (z;;1;);>0 which satisfies both (7.10) and (7.11) as the trajectory of z_;.

Lemma 7.8. — Let p > 0, and assume that for some wy € j and wy € Tp+1(./\/lg+1) +
(ep + 1)/2 we have R(f,)(Exp(w:)) = Exp(ws). Then, f,(®;" (wr)) = B (wn).

Proof. — Recall S, = Sy, from Section 4.2, and that Exp(®,(S,)) = DomR(fp). Since
Exp(w1) belongs to Dom R(fp), there is an integer [; such that wi —l; € ®,(S,). By the
definition of renormalisation, see Section 4.2,

Expo®, o f;k" o @;1(101 — ) =R(fp)(Exp(wr — ) = R(fp)(Exp(w1)).
Therefore, by the hypothesis in the lemma, we must have
Expo®, o f;kl’ o (I);l(wl —11) = Exp(ws).
This implies that there is ls € Z such that
(7.12) Dy 0 [k o @ M (wy — 1) + lo = wo.

Recall that J) is enclosed by the curves wil, v, = w, —1 and d(®,(S,) + Z). By
(7.2), wy is contained in ®,(S,) + k, and v, is contained in ®,(S,) + k, — 1. Thus,
T C (Pp(Sp) + kp — 1) U (Dp(Sp) + kp). Because w1 — 1 € ®y(S,) and wy € J2, either
ll—k OI‘ll—kZ — 1.

Recall that u, and u, + 1 lie on the boundary of Tp 1 (M) ;) + (g, + 1)/2, and u, is
contained in II = ®,(Ay, U By, ). This implies that Iy € {0,1}. However, using (7.1), one
notes that when [y = k, — 1 we must have [, = 0, and when [; = &, we must have lo = 1.
When 1 = k, —1 and Iy = 0, (7.12) implies the desired relation in the proposition, using the
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functional relation in Proposition 4.1-(e). When l; = k, and lo = 1, we apply @;1 to both
sides of (7.12) and use Proposition 4.1-(e), to conclude that

@gl(wg) = @;1 (tl)p o f;k" o @;1(101 —kp) + 1) = fpo(f;kp ) @;1(101 - kp)) = fp(d)gl(wl)m).

Recall that for n > 0, M, € M?% = K2U7Y. For n > 0, we define the map &, : J2 — M?
as

(7.13) En =0 frod L.
Compare the above map to the one in (4.3).

Proposition 7.9. — Assume that « € HT y, f € QIS,, and z_1 € M_1 is an arbitrary
point with trajectory (z;;1;)i>0. The following hold:
(i) if there is n > 0 such that z, € KCp, and for all0 <i<n—1, z; € M; \ K;, then

1 1 n+1
so fos(Exp(z—1)) =Expo (TO—FEO; )O(T1+€1; )o...o(’rn_;_%) (zn+1).

(ii) if for alli >0, z; € M; \ K;, then for alln >0,

so fos(Exp(z-1)) = Expo <T0+ EO;1> o (Tl + 61;1) 0--+0 (Tn+ En;rl) (En(zn)).

Proof. — Part (i). Since z, € K2, 2z, +1 € M and Y, (2, + 1) + (g5, + 1)/2 is defined and
belongs to M%_,. By Proposition 4.1-(e), we have
(7.14) fno®  (zn) = @ (2, +1).

Now we consider two cases, based on whether n =0 or n > 1.

First assume that n = 0. If &g = —1, then, by Proposition 6.1, fo = so fos, and by (6.1),
ExpoYq = @al. Then, by the definition of trajectory, Exp(z_1) = @al(zo). Using (7.14)
with n = 0, and Proposition 4.1-(e), we get

so fos(Exp(z-1)) = fo(®5"(20)) = B3 (20 + 1)

= EXp OT()(ZO + 1) = Exp O(To + (50 + 1)/2)(2’0 + 1)
Similarly, if eg = +1, fo = f and ExpoYy = s o0 ®;'. Then, Exp(z_1) = s 0 ®;" ().
Therefore,
so fos(Exp(z-1)) = 50 f(®5"(20)) = s 0 fo(®5 " (20))
=s50®5 (20 +1) =Expo(To+ (g0 + 1)/2)(20 + 1).
Now assume that n > 1. By considering two cases based on ¢, = %1, as in the previous

case, one may see that (7.14) and (7.9) imply that
en+1

(7.15) R(fn-1)Exp(zn—1)) = Expo (Tn + > (zn +1).
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Then, applying Lemma 7.8 with p=n — 1, wa = (Tr, + (€n + 1)/2) (25, + 1) and wy = 25,1
we get

(7.16) Jn-10 (I);il(zn—l) = (I);il o(Ty + (en +1)/2)(2n + 1).

Compare the above relation to the one in (7.14).

We repeat the above paragraph, replacing the relation in (7.14) with the one in (7.16). If
n—1=0, we get
n—1+1 nt1
so fos(Exp(zn—2)) = Expo (Tn_l + %) o (Tn + %) (zn +1).

which is the desired relation in Part (i). If n — 1 > 1, (7.16) implies that

R(fa2) (Exp(2n_2)) = Expo <n1 T T“) . <rn ot 1) (20 +1).

Repeating the above process, until we reach level 0, leads to the desired relation in Part (i).
Part(ii). By the definition of renormalisation in Section 4.2, &, induces the relation
R(fn)([Exp(2n)) = Exp(En(2n))-
By Lemma 7.8, the above relation implies that
(7.17) fro® (z0) = @, (En(zn))-
Now one may repeat the argument in Part (i); replacing (7.14) with (7.17). O

Proposition 7.10. — Assume that o € HTy, f € QIS,, and z_1 € M_1 with trajectory
(zi31i)i>0. For every £ > 1, there is a finite sequence of integers (j;)i_, such that either
(7.18) so f%o s(Exp(z_1))

=Expo(Yo + (c0 +1)/2) o (Y1 +jo) o (Yo +j1) o+ 0 (Lo + ju—1)(2v + o),
or
(7.19) so fo s(Exp(z_1))

=Expo(To + (c0 +1)/2) o (Y1 +jo) o (T2 +j1) o+ o (Lo + ju1)(Eu(20))-

Each map T; on the right hand side of (7.18) and (7.19) is only considered on M;.

Proof. — Proposition 7.9 readily implies the statement for £ = 1. Assume that the statement
holds for some ¢ — 1 > 1. We aim to prove it for /. By the induction hypothesis, there is a
finite sequence of integers (j;)!_, such that either

(7.20) so foY o s(Exp(z_1))
=Expo(Yo+ (c0+1)/2) o (Y1 +jo)o (Yo +j1) oo (Lo + jn-1)(2n + jn),
or
(7.21) so foY o s(Exp(z_1))
=Expo(Yo+ (c0+1)/2) o (Y1 +jo) o (Yo +j1) oo (Tn+ jn-1)(Enlzn))
We consider two cases, based on which of (7.20) and (7.21) holds.
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Case 1. Assume that (7.20) holds.
Define

w_y = (To+ (e0+1)/2) o (Y1 +jo)o (Ta+4j1) oo (Lhn+ jn-1)(2n + jn).

The point w_; has a trajectory (wy; s;)i>0 which satisfies the relations

(7.22) w; = (Tiy1 +ji) oo (T4 jn1)(zn +jn), for0<i<n—1,
(723) Wn = Zn + Jn,

(7.24) w; = z;, fori>n+1.

By (7.20),

(7.25) so f°“ o s(Exp(z_1)) = (so fos)oso o=, s(Exp(z—_1)) = s o f o s(Exp(w_1)).
Now, we consider two scenarios.

Case 1.1: There is m > 0 such that w,, € K9, and for all 0 <i <m — 1, w; € M; \ K;.
We may employ Proposition 7.9, to obtain

(7.26) so fos(Exp(w_1))

1 1 1
:EXpo(TO—i—EO;— )O(T1+€1;— )o...o(Tm—i—Em;— )(wm—l—l).

There are three scenarios based on the value of m relative n.
Case 1.1.1: m <n — 1. By (7.22), the right hand side of (7.26) may be written as

1 1 m+1
IEX10<><T0+€0;r >o<ﬁf1+€12+ )o~--o<Tm+€ 2+ )

o (Terl +]m + 1) O:-+0 (Tn +jn71) (Zn +.7n)
Case 1.1.2: m = n. By (7.23), the right hand side of (7.26) may be written as

1 1 nt1 .
EXPO<T0+€O; >O<T1+€1; >o-~~o<Tn+€ 2+ >(Zn+]n+1)'

Case 1.1.3: m > n+ 1. By (7.24), the right hand side of (7.26) may be written as

1 1 1
Expo(TO—f—EO;— )O(T1+51; )o...o(TerEm; )(zm+1).

Case 1.2: There is no m > 0 satistfying w,, € KC,,.
By Proposition 7.9, and (7.24), we obtain

so fos(Exp(w-_1))

+1 +1 nt1 +1
=Expo <T0ﬁL 602 ) o <T1+ 612 > 0-:-0 <Tn+1+L> (Ent1(wn+1))

2
eo+1 e1+1 €nt1 +1
ZEXPO(To-F 02 )O(Tl-i- 12 )O"'O(Tnﬁ-l“l‘%) (En+1(2n41))-

Case 2. Assume that (7.21) holds.
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Define
w_1 = (To+ (0 +1)/2) 0 (T1+jo)o(Ta+j1)o0(Ly+ jn-1)(En(zn)).

The point w_; has a trajectory (w;;s;)i>o which satisfies

(7.27) w; = (YTig1+di)o-0(Th+Jjn-1)(En(zn)), for0<i<n-—1I,
(7.28) wy, = En(2n)-
By (7.21),

(7.29) so fos(Exp(z_1)) = (so fos)oso fo™Y o s(Exp(z_1)) =so fosExp(w_1)).

Now we consider two scenarios.
Case 2.1: Thereis m < n—1, such that w,, € lC?n, and forall0 <i<m-—1,w; € M?\IC?.
Using Proposition 7.9, and (7.27),

5o f o s(Exp(w_1))

1 1 1
:Expo(TO—i—EO;— )O(T1—|—51; )o...o(Tm—i—Em;_ )(wm+1)

1 1 m+1
IEXpo<T0+€0;L >O<T1+€1; )o...o<Tm+€ 2+ >

o (Tmp1 +Jm +1) 00 (T + jn1) (En(2n))-

Case 2.2: For all m with 0 <m <n —1, w,, € M2 \ £2,.
By Proposition 7.9, and using w,, = &,(z,) € K, we get

(7.30) so fos(Exp(w_1))

1 1 1
:EXpo(TO—i—EO; )O(T1+51; )o...o(Tn—i—En; )(wn—i—l)

1 1 1
:EXpO(T0+€O;_ )O(T1+51+ )O---O(Tn"'%) (gn(zn)+1)

2

There are two scenarios based on whether z,; € K% 41, Or not.
Case 2.2.1: zp+1 € Kpy1. Then 2,41 +1 € My41, and hence fp4q o (I);Jlrl(znﬂ) =
®: 1 (2n41 + 1). The latter relation implies that

R(fn)(Exp(2r)) = Expo(Tni1 + (nt1 +1)/2) (241 + 1).
We may apply Lemma 7.8, to get
fa 0 71 (z0) = 871 0 (Cuar + (Enss +1)/2) (nps + 1),
This implies that
En(2n) = Ppo fno (I);l(zn) = (Tot1 + (ent1 +1)/2) (241 + 1).
By (7.28), and the above relation, the right hand side of (7.30) may be written as

go+1 e1+1 en+1 €ns1 +1
EXPO<T0+ 02 >O<T1+ 12 >O"'O<Tn+ 5 >O<Tn+1+%+1)(zn+1+1)-
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Case 2.2.2: zpt11 € Mpy1 \ Knt1. As in the previous case, one may see that

Enlzn) = (Tnt1 + (Ent1 +1)/2)(Enti(2n+1))-
Therefore, by (7.28), and the above relation, the right hand side of (7.30) may be written as

1 1 nt1
Expo(’fo—i—gojL )o(Tl—l—El;L )o...o(Tn+€ + )

2 2
+1 =
En
o (Tn—i-l + % + 1) (gn-i-l(zn-l-l))-
Remark 7.11. — Assume that z_; in M_; has a trajectory (z;;1;);>0 such that for in-

finitely many distinct n > 0 we have z,, € K9. It is evident from the proof of Proposition 7.10
that for every ¢ > 1, (7.18) holds for some (j;)i_,. For instance, if « is an irrational number
with €; = —1 for all ¢ > 0, one may employ Proposition 7.7 to conclude that for every
z_1 € M_q, infinitely often z, € IC%. However, if « is an irrational number with £; = +1
for all i > 0, there are 2_; € M_; such that for all n > 0, 2z, € M,, \ K. For such z_, it is
not possible to have (7.18) for all £ > 1. Once we establish the relation between M_; and
M _q in Section 8, it becomes clear that the set of such z_; forms a countable union of arcs

in ./\/l_l .
The inverse of the statement in Proposition 7.10 is also true, which we state below.

Proposition 7.12. — Assume that o € HTy, f € QIS,, and z_1 € M_1 is an arbitrary
point with trajectory (zi;1;)i>0. Then, the following hold:
(i) for every sequence of integers (j;)v_o with j, > 1, there is £ > 1 such that (7.18) holds,
provided each Y; in the right hand side of (7.18) is considered on M;.
(ii) for every sequence of integers (ji)fz_ol, there is £ > 1 such that (7.19) holds, provided

each Y; in the right hand side of (7.19) is considered on M.
We will not use the above proposition in this paper, it is only stated for the record.

Proof. — By Proposition 4.1-(e), each translation in M, corresponds to an iterate of f;.
Each iterate of f; corresponds to an iterate of R(f;—1). Each iterate of R(f;j—1) corresponds
to a finite number of iterates by f;_;. Combining these steps, one concludes that the
translations and lifts correspond to some iterate of f under the changes of coordinates. The
argument is similar to the proof of Lemma 7.8, so we leave the details to the reader. One
may consult the proofs of similar statements in [Chel3, Chel9, AC18]. O

The following lemma will not be formally used in this paper, but it sheds some light on
the argument presented in Section 8.
Lemma 7.18. — For every n > 0, and every integer | € [0, a, + €,], we have
(un(i[-1,0)) + 1) " MO = 0, wE(1/ay +i[-1,0) N M =0, vE(1/a, —1+i[-1,0)) N M,
Proof. — Fix arbitrary n > 0 and 0 < [ < a, + €,. Recall from Proposition 7.1 and
(7.3) that for all i > 0, w;(1/ay) = w; (1/cy) and v (1/a; — 1) = v; (1/a; — 1). By
propositions 7.1 and 7.3, for every z; in {u;(0) + I, w; (1/a;),v;"(1/c; — 1)}, there are 241

0.
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in {ui11(0), wf; (1/0s), v, (1/c; — 1)} and j; € Z such that Yiy1(2i41) + ji = 2. This
implies that z, has a trajectory (z;;j;)i>n+1, such that for all ¢ > n + 1, z belongs to
{u: (0), wy (1/ay), v} (/e — 1)}.

Now assume that thereis ¢t € [—1,0) such that uy, (it)+! belongs to M,,. Let w,, = uy,(it)+!
and z, = u,(0)+1. It follows from Propositions 7.1 and 7.3, that z,, and w,, have trajectories
(2i3Ji)izn+1 and (wi; Ji)i>n+1, respectively. That is, the integers j; in the corresponding
trajectories are identical. By the definition of trajectories, for all m > n + 2, we have

Zn = (Tn—i-l + (5n+1 + 1)/2 + l) o (Tn+2 +jn+1) 0--+0 (Tm +jm—1)(zm)a

Wy = (Tny1 + (Eng1 +1)/24 1) 0 (Tngo + jny1) o -0 (T 4 1) (wm).

Recall the hyperbolic metric g, on /\;1971 D MY | discussed in Section 7.3. Since z,41 and
W41 belong to Mp,41 C M2, C /\;l?nﬂ, it follows from Lemma 7.6, that the distance
between w,, and z,, with respect to o0,, is uniformly bounded from above, independent of m.
Then, by Proposition 7.7, we must have w,, = z,. That is, u,(0) = u,(ét). This contradicts
the injectivity of u, on [—1,+00), proved in Proposition 6.8.

The latter two properties in the lemma are proved similarly, where one employs the
injectivity of w¥ and v in Propositions 7.1 and 7.3. O

7.5. Capturing the post-critical set. — Let us define the sets

(7.31) A = s oExp(M_,) U{0}, and Ap = 0A;.

When o € £, soExp(M_;) contains a punctured neighbourhood of 0, so we have added 0
to that set, to avoid including 0 in A;. When a ¢ %, as we shall see in the next section,
soExp(M_1)U{0} has empty interior, so its boundary is itself. Recall from Section 1 that
the post-critical set of f is denoted by A(cy). In this section we prove that A(cy) C Ay.

Proposition 7.14. — For every « € HTy and f € QIS., f(Ay) C Ag, and A(cy) C Ay

Proof. — The first part of the proposition follows from Proposition 7.10. For the latter part
of the proposition we note that 1 =u_1(0) € M_1, and s o Exp(1) is the critical value of f.
Thus, by the first part of the proposition, the orbit of the critical value of f is contained in
Aj. Because A; is a closed set, it must contain A(cy). O

8. Uniformisation of the post-critical set

In this section we complete the proofs of the theorems stated in the Introduction. There
remains to show that A4, is homeomorphic to the topological model A,.

Recall M} and Y,, employed to build the topological model in Section 3, and the correspond
dynamical objects M7 and Y,, from Section 7. We aim to build homeomorphisms from each
M, to M which collectively enjoy equivariant properties with respect to Y,, and Y,,. Then
we pass to limit to obtain a homeomorphism from M, to M,, which in turn will induce a
topological conjugacy from Ay to A, conjugating f to the model map Ti,.
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8.1. Summary of the markings. — In Sections 6 and 7 we introduced the curves u,,
vf, and w%, for n > 0. We also established some remarkable equivariant properties of these
curves, which play a fundamental role in this section. For the convenience of the reader, we
collect (and reformulate some of) those relations, and present them below.

For every n > 0, the following hold:
(E1) up :i[-1,400) = OM?, and for all t > —1,
Y 0 up(it) = up—1 o Yy, (it).
(E2) w : (1/ay +i[—1,+00)) = MY w, : (1/ay+i[—1,+00)) — II,, and for all t > —1,
Ypow! (1/an +it) = Ty ow, (1) +it) = up_1 0 Yy (it) — ep;

(E3) v : (1/an — 1 4+i[~1,00)) = M,, and for all t > —1,
ToovE(1/an —1+it) + an1+en =wr | (1/an_1 + Yn(it), ife, =—1,
Toovi(l/an —1+it) + an_1 +en = wf | (1/an_1 + Y, (it)), ife, = +1.

See Figure 11 for an illustration of the above relations.

8.2. Partial uniformisations matching the markings. — Let n > 0 and j > 0. We
say that a map Q : MJ — MJ matches (u,, v}, w;), if the following four properties hold:

(M1) for every z € M} with Rez = 0 we have Qo u,(2) = 2;

(M2) for every z € MJ with Rez = 1/a, we have Qow;(2) = z;

(M3) for every z € M} with Rez = 1/, — 1 we have Qo v,/ (2) = z;

(M4) for every z € M} with Rez = 1/ay, — 1 we have Qo (z) = z;

In other words, Q : M7 — MJ matches (u,, v, w;) if it is equal to the inverses of the maps
Un, v, vy, and w;, where they are defined.

By Propositions 7.1 and 7.4, v;} = v, on 1/a,, — 1+ [0, 00). This implies that (M3) and
(M4) do not contradict. However, because v} (1/ayn,—1+i[—1,0))Nv,, (1/a,—1+i[—1,0)) = 0,
2, may not be injective. For this reason, maps from M to MJ matching the markings
must be multivalued (hence the reason for working with maps from MJ to MJ). As we
shall see in a moment, this does not cause any problems, since by Lemma 7.13 the curves
v (1/an —1+4[—1,0)) and v, (1/a, — 1 +4[—1,0)) do not meet M,,.

Proposition 8.1. — There is a constant Cg such that for every n > 0 there exists a
continuous and surjective map
0. A40 0
Q, M, = M,
which matches (un, v, w;), and for all z € MY, |Q°(2) — 2| < Cs.

n? n

In light of Lemma 7.13, we may choose the map Q¥ in the above proposition to be injective
on M,,. But this will not be needed for the overall argument to work in this section.

Proof. — Recall that M? is bounded by the curves u,, w;, and a continuous curve u,

which connects u, (—4) to w; (1/ay, —i). By Propositions 6.7 and 7.2, the maps u,,, v and
w;’ are uniformly close to the identity map. By Theorem 4.5, y1,, may also be parameterised

to be uniformly close to the identity map. These imply that one may extend the inverses
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of these maps to a continuous surjective map from MY to M2. This may be carried out
by partitioning the sets M and MY into Jordan domains with uniformly bounded diame-
ters, and mapping the corresponding pieces one to another, while respecting the boundary
conditions. We present more details below.

The curves vl lie in M%, and v (1/a, — 1 —4) belong to u,. By Proposition 7.4, v
are disjoint from w; and w,, and moreover u,, + Z is disjoint from v and w;. Recall
that {w € C | 0 < Rew < 1/a, — c1} is contained in MY, where ¢; is the constant in
Proposition 4.2. Thus, for integers j with 0 < j < 1/ay, — ¢; — 1, the curves u,, + j are
contained in M9 and lie on the left hand side of v;". Moreover, by the definition of s, all
those curves u,, + j meet the curve u,. Let us define [,, as the largest integer less than or
equal to 1/a, — ¢ — 1. The curves u, + j, for 0 < j < I,,, v, and w; partition M2 into
ln + 2 pieces, say A, for 1 < k <14 2. Each A}, is uniformly close to a half-infinite
vertical strip of width one. Next, we divide each A% i into infinitely many nearly-square
Jordan domains with uniformly bounded diameters. To see this, we note that for each Ag, >
with “vertical” boundary curves, say u, +j and u, +j+ 1, and any parameter ¢t € [—1, +00),
the points uy (it) 4+ j and uy(it) + j + 1 may be connected by a path in AY , which has a
uniformly bounded diameter. We may use countably many such paths to partition each A% &
into Jordan domains with uniformly bounded diameters. O

8.3. Lifting partial uniformisations. —

Proposition 8.2. — Letn > 1 and j > 0. Assume that Q) : MJ, — MJ is a continu-
ous and surjective map which matches (un,vf,w;{). Then, there exists a continuous and

surjective map
Q5 M M
which matches (un_1,v |, wl ), and for all integers | satisfying (e, +1)/2 <1< an_1 +
(en —1)/2,
Qo (T +1) =Y, 00 +1,
whenever both sides of the equation are defined.

See Figure 11 for an illustration of the proof of Proposition 8.2.

Proof. — Fix an arbitrary n > 1 and j7 > 0. Let us first assume that £, = —1. Recall from
(3.7) and (7.5) that

Ap—1—2
Mt = (e + 1) (Ya(KD) +an —1).
=0
and
- an71_2 . .
M= | (CaMD) + 1) (TalKD) + an_y — 1).
=0

For each 0 <1 < a,_1 — 2, define Q27 T, (MI) +1 — Y,,(MJ) +1 as
D) =Y 0 oY 2= 1)+ 1.

n—1
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+an71 + €n

Un—1

FI1GURE 11. Illustration of the markings and commutative relations, when €, = —1.

Since Y,,, ) and Y,, are continuous, the above map is continuous. As €, is surjective, Qﬁ:l

covers Y, (M) + 1. Similarly, we define Q™ - T, (Ki) + apn_1 —1 = Yy (KI) + a1 — 1 as

n—1

QG (2)=Y, 00 oY z—apn_1+ 1) +an_1 — 1.

n—1

Since Q) : MJ — MJ matches u,, and v;, it follows that QJ, : KJ — K is continuous and
surjective. 4

We need to show that Qﬁ:ll is well-defined on the common boundaries of Y, (M) +1 and
Y, (M) + 1+ 1, for integers | with 0 < [ < a,_1 — 2. Fix an arbitrary z on the common
boundary. There is t' > Im Y,,(—:) such that z = u,_1(it') + 1+ 1. Let it’ = Y,,(it), for some
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t > —1, (see (3.2)). The map induced from the left-hand component provides
QO () =Y 0 oY (up (i) +1+1 1) +1

=Y, o, 0wt (1an + Y, (it')) +1 (by (E2))
= Yo (1/an + Y, (it') +1 (by (M2))
=it +1+1. ((3.3))

The map induced from the right-hand component provides

D () =Y, 0 o X (tn_y (it +1+1—1—1)+ 141

=Y, 0 ou, (Y, (it) +1+1 (by (E1))
=Y, (Y7 ) +1+1 (by (M1))
=ait' +1+1.

Thus, the two induced maps are identical on the common boundaries.

By the definition of Qﬁltll, the functional equations in the proposition hold. There remains
to show that /! matches (un_1,vF |, w} ).

° Qitll matches u,—1: Let z = u,—1(it') = Y, (it) for some ¢’ > ImY,,(—i) and ¢ > —1.
By the definition of Q" (use I = 0), we have
D (w1 (i) = Yy 0 Q0 0 X (1 (it")) = Yy 0 ¥ 0w, (V71 (it))) = Yo (Y71 (it))) = it

n
In the above equation we have employed (E1) and (M1).
o Ot matches wl ;: Let z = wl | (it' + 1/a,_1) for some ¢ > —1. As w} (it +

1/n_1) belongs to Y, (K2) 4 an_1 — 1, by the definition of Q7"

n—1»

V() =Yoo o Y M wi (it + 1/an—1) = (an-1 — 1)) + ap1 -1

=Y,o ovt(1/ay, — 14+ Y, it) +an_1 — 1 (by (E3))
=Y, (1/a, — 1+ Y, it) + an_1 — 1 (by (M3))
=Y, (Y, M)+ 1 —ay +an1—1 ((3.4))
=it' + 1)1 ((2.2))

o O matches v ,: Let z = v, (it +1/a,_1 — 1) for some ¢’ > —1. Using Q") (z +
1) = Q" (2) + 1, we have
5 oy (it + 1/ a1 = 1)) = Q5 (o, (i + 1y — 1) +1) — 1
= Q5 (wd_y (it + 1fan-1)) — 1
=it +1/ap—1 — 1. (by (M2))
o Q)" matches v, _;: Let z = v,_(it' + 1/ay,—1 — 1) and it’ = Y, (it) for some ¢' >
ImY,(—i) and t > —1. Since &, = —1, 1/ap_1 = an—1 — @y, and hence 1/a,_1 — 1 lies
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strictly between a,—1 — 2 and a,—1 — 1. By the definition of Qf:ll (here use | = ap—1 — 2),

we have

Q{z—i (V1 (it + 1 /01 — 1)
=Y, 0o o, v, (it +1/ap_1 —1) — (@n—1 —2)) + apn_1 — 2
=Yno0 ng ° Tr_zl(w;—l(itl +1/an-1) = (an-1 — 1)) + ap—1 — 2
=Y, 0 ov, (Y7 (it)) +1/ay — 1)) + apn_1 — 2 (
=Y, (Y, L6t + 1/an — 1)) +an_1 — 2 (
=Y, (Y, it + 1 — an +an_1 — 2 (
=it' +1/ay—1 — 1. (

This completes the proof of the proposition when ¢, = —1. The proof for the case ¢, = +1

is similar, so we briefly explain the two parts which require attention.

o T matches w;_,: Let z = w} | (it +1/cy,_1) for some t > —1. Note that w,_ (it +
1/an_1) € Yo(JJ) + an_1 + 1. Then, by the definition of Q7"
B (w1t + 1/, )

=Y,o0 Qfl o T;l(w:lll(it' +1/an-1) — (ap—1+1)) +an—1+1

=Yn o ov, (Y, (it') + 1/ay — 1) + an—1 + 1 (by (E3))
=Y, (Y, it + 1y —1) +an_1 +1 (by (M4))
=Y, (Y, it +an—1+an1+1 ((3.4))
=it +1/ay_1. ((2.2))
o O matches v, ;: Let z = v, (it' + 1/ay_1 — 1) for some ¢ > Im Y, (—i). Let

it' = Y, (it). Since €, = +1, 1/ap—1 = ap-1 + @,. Thus, 1/a,_1 — 1 lies strictly between
an—1 — 1 and a,_1, and hence
Q{z—i (U;—l(it/ +1/an—1—1))
=Y, 0 o X, (v, (it' +1/ay_1 — 1) — ap_1) + an_1

=Y, 00 o X, w, _(it' +1/an_1) — (an—1 + 1)) + an_1

=Yno ng ° 'U:zr(ynil(it/) +1/an = 1)) + an—1 (by (E3))

=Y, (Y, (i) + 1o — 1) + an—1 (by (M3)))

=Y, (Y, (i) + an — 1+ an— ((3.4))

=it' +1/ap—1 — 1. ((2.2)) O
8.4. Convergence of the partial uniformisations. — Fix an arbitrary n > 0. By

Proposition 8.1, for each 7 > 0, there is a continuous and surjective map Q%ﬂ- : M%ﬂ- —
MP +; Which matches (w4, vfﬂ, w +;)- Inductively applying Proposition 8.2, we obtain a
continuous and surjective map
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Proposition 8.3. — There is Co € R such that for everyn > 0 and every j > 0, on ML
Q7 — Q)| < Cy(0.9).
In particular, for each n >0, as j — oo, the sequence QU converges to a continuous map
Qp: M, = M,.

Proof. — First we show that there is Cy € R such that [ — Q0| < Cy on ML, for all n > 0.
Fix an arbitrary n > 0. Let z,, € M. There is an integer [,, such that z,, —1,, € Tn+1(M%+1)
and 2,41 = Y11 (2, — I,) is defined. Note that Q0 : MY — M? and QL : ML — ML, As
ML c MY both maps are defined on ML. By Theorem 4.5, there is a uniform constant
C > 0, independent of n, such that for all 2 € M2, Im 24+C > —1. Employing Proposition 5.2
with w1 = Y, 11 (2, — ln) + C and wy = Y, 1, (2, — L,,), and then using Proposition 3.1-(iv)
and Proposition 8.1, we obtain

1 (2n) — 2| = | (Y1090 4 0 T;}rl(zn —ln) + 1) — zn}

(Yn-i-l o Q?z+1(w2) + ln) = (Yog1(w1) + ln)}
+ (Yot (w1) + 1) — (Tng1(w2) + 1)

<0.9- ‘Qg+1(UJ2) — wi| + Cs max{C, 1}.

< |90 41 (w2) — wa| + |wa — wi| 4+ C3(C + 1).

<Cs+C+C3(C+1).

Therefore,
|Q1lz(zn) - Q?z(zn)l < |Q}z(zn) — zn| + |20 — Q?z(zn)l <O +C+C3(C+1)+Cs.

Let us introduce Cy = 2Cs + C' + C3(C + 1). _
Now assume that the inequality holds on My, for some j —1 > 0 and all n > 0. For z, €
MIFL YL (2 — 1) € M. Using Proposition 3.1-(iv), and the induction hypothesis,

for all n > 0,
|0 (2,) — QI (20)] = |Yag1 0 Q0 Tty (20 — o) = Y1 0 X 0 Tt (20 — )|
<0.9-Cy(0.9)71 = Cy(0.9)7.

The sequence (£2/,);>0 is uniformly Cauchy on M,, C M. It converges to a continuous
map. O

Corollary 8.4. — For every n > 1 and all integers | satisfying (€, +1)/2 <1 < ap—1 +
(en —1)/2,
Qn—lo(Tn+l) :YnOQn+la

whenever both sides of the equation are defined.

Proof. — This follows from Proposition 8.3 and the functional relation in Proposition 8.2.
O
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We may define Q_ : M_; — M_1q, as
Q_1(2) = Yo 0 Qo 0 Tg ' (2 — (e0 + 1)/2) + (0 + 1) /2.
By Proposition 7.1, and since {2y satisfies (M2), for ¢t > 0,
Q_q1(it+1)=0Q_1(it) + 1.
Proposition 8.5. — There is a constant Chg such that for everyn > —1 and every z € M,
[Q2(2) — 2| < Cho.

Proof. — By Propositions 8.1 and 8.3, for all n > —1, all j > 0, and all z € M,, we have

[24(2) = 2 = iS5 () - @) + [00(2) — 2 = DT Co(09) + G T
Proposition 8.6. — For every n > —1, Q, : M,, — M, is injective.

Proof. — Fix an arbitrary n > —1. Let z, # z], be arbitrary points in M,. Since M,, =
Nj>0MY, we may inductively identify integers /; and I} such that z; — I; and z, — I} belong
to Yiy1(Mig1) \ wig1(i[—1,+00)), and 241 = Y5 (2 — ;) and 2}, = Y (2] — I]) are
defined.

If there is a smallest ¢ > n such that I; # I, then Q;(z;) # Q;(2}). Using the commutative
relations in Corollary 8.4, one concludes that §,(z,) # Qn(2]).

Now assume that for all ¢ > n, I; = I[. Recall the sets /\;l,ol and the hyperbolic metrics o,
defined in Section 7.3. By the uniform contraction of the maps Y; +[;_; in Proposition 7.7,
we must have dy, (z;,2]) — +00 as i — +00. By Lemma 7.6, M/, is well-contained in
/\;l%H. This implies that |z; — 2| — +00, as ¢ — +oo. In particular, there is ¢ > n, such
that |z; — 2}| > 2C1. By virtue of Proposition 8.5, we must have Q;(z;) # €;(z}). Using the
functional relations in Corollary 8.4 as well as the injectivity of Y; on MlO and Y; on ./\/llo,
we must have Q,,(z,) # Qn(z],). O

Proposition 8.7. — For every n > —1, Q,, : M,, = M, is surjective.

Proof. — Fix an arbitrary n > —1, and z € M,. As M, = ijOMg and for each j > 0,
QJ : MJ, — M is surjective, there is z; € M7, with QJ(z;) = 2. By Proposition 8.5, z; are
contained in a bounded subset of M2. Thus, there is a subsequence, say z;, , for k > 1, which
converges to some 2z’ € MY. However, because Nj>o M7 is a nest of closed sets, we must
have 2’ € M,,. Then, the uniform convergence of Q7 to (2, implies that Q,(z") = z. O

8.5. Proofs of the main theorems, and corollaries. — Recall the straight topological
model A4, = dA, and the model map Ty, : A, — A, from Section 3, and the closed set
Aj = dA; from Section 7.5. In this section we show that f : A(c;) — A(cy) is topologically
conjugate to Ty, : Ay — Ag, and transfer the features of the latter system to the former one.

Theorem 8.8. — There is N € N such that for every « € HT y and every f € QIS,, there
is a homeomorphism Vg : Ay — A, which satisfies To o Wy = Weo f on Af. Moreover,
Us(Alcy)) = Aa-



58 DAVOUD CHERAGHI

Proof. — Let N be the integer in Proposition 6.1. For « € HTy and f € QZS,,, by following
the constructions in Sections 6, 7 and 8, we obtain the homeomorphism Q_; : M_; — M_q,
which satisfies Q1 (it + 1) = Q”1(it) + 1, for t > 0. Then, U_; induces a homeomorphism
\I/f : Af — Aa.

By Proposition 7.14, f(Af) C flf. By Proposition 7.9, the definition of T, and Corol-
lary 8.4, T, o ¥y = Wso f on flf. Indeed, one only needs to verify the conjugacy on the
set of points which satisfy item (i) in the definition of T, because the set of such points is

dense in A,.
By Propos1t1on 7.14, A(ey) C .Af Since U_1(+1) = 0, ¥; maps the critical value of f

to +1 in A,. Then, ¥; maps A(cs) to the closure of the orbit of +1 in A,. On the other
hand, by Theorem 3.6, the orbit of +1 by T, is, contained in and, dense in A,. Thus,
\I/(A(Cf)) = Aa. O

Proofs of Theorems A, B and C. — Recall from Section 4 that the class of maps Uy enry QZSq
is the class F in the introduction. Theorem A follows from Theorem 8.8 and the trichotomy
of A, in Theorem 3.5. Theorems B and C follow from Theorem 8.8 and Theorem 3.6. [l

We make the following connection to the set A for future purposes.
Corollary 8.9. — For every a € HTnx and every f € QIS,, A(cy) = Ay.

Proof. — Because Af is closed, Ay C /lf. By Theorem 8.8 and the invariance of domain
theorem,

Us(Ay) = Vs(0Af) = 0Aa = Ao = W s(A(cy)).
Therefore, Ay = A(cy). O

Combining Theorems 3.6 and 8.8, we obtain a proof of the following result in [AC18,
Thm 4.6].

Corollary 8.10. — For every oo € HTy and every f € QIS., f : Alcy) — Alcy) is
injective.

Given a connected set X C C, let us say that € X is an end point of X if X \ {z} is
connected.

Theorem 8.11. — For every « € HT N \ 5, every f € QIS,, and every integer k > 0,
f°¥(cy) is an end point of A(cy).

Proof. — Recall that ¥y maps the critical value of f to 1 in A,. By (3.12), 1 is an end
point of A, when « is an irrational number outside 5. Then, by Theorem 8.8, the critical
value of f is an end point of A(cy). Then, by Corollary 8.10, every f°%(cs) must be an end
point of A(cy). O

As an immediate corollary of Theorem 8.8 we obtain the following.

Corollary 8.12. — For every a € HT y and every f and g in QIS with f'(0) = ¢’(0) =
e2rio \11;1 oWy : Aley) — Alcqy) topologically conjugates f with g, and satisfies \IJ;1
Wyler) =cq.
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Remark 8.13. — One may give a different proof of the above corollary using the holo-
morphic motion of the critical orbits of the maps, parametrised over the infinite dimensional
complex manifold ZS,. The proof of Theorem 8.8 only uses the compactness of ZS,, and
does not require any complex structure on ZS,,.

By a general result in dynamics of polynomials [Mil06, thm 18.5], having no critical
point on the boundary of the Siegel disk makes the Julia set non locally connected; see also
[Kiw00, KLCN15|.

Corollary 8.14. — For every « € HTy N (A \ ) and every polynomial P € QIS,,, the
Julia set of P is not locally connected.

In light of this, we make the following conjecture.

Conjecture 8.15. — For every a € R\ Q, the Julia set of Qn is locally connected iff
o€ .

In [BBCO10], some progress is made in describing the topology of the Julia set of Q.
when it is not locally connected.

Remark 8.16. — In [PM97a], Perez-Marco introduced the notion of hedgehogs, or Siegel-
compacta, for a general holomorphic map with an irrationally indifferent fixed point. That
is a non-trivial local invariant compact set containing the fixed point. In general, a Siegel
compacta may have a complicated topology, see for instance [Chell]. But, if the holomor-
phic map is a restriction of an element of QZS,, to a neighbourhood of the fixed point, then
the hedgehog may not have a complicated topology, provided o € HT . Indeed, using a gen-
eral result of Mané, and the lack of expansion along orbits in a Siegel compacta, any Siegel
compacta of a rational function must be contained in the post-critical set. This is true for
any element of QZS,,, [AC18, Section 4.3]. Thus, such Siegel compacta and hedgehogs must
be one of the invariant sets presented in Theorem C. Our work suggests that for rational
functions of the Riemann sphere the hedgehogs and Siegel compacta have tame topologies.
In contrast, for an arbitrary holomorphic germ of diffeomorphism of (C,0), this is far from
true as it is shown in [Bis16].

Remark 8.17. — Cantor bouquets also appear as the closure of the set of escaping points
of the maps Ae?, for 0 < A < 1/e, see [DK84, AO93, Rem06]. The analysis of the
renormalisation in this paper, among others, presents the similarity between these dynamical
systems. Naively speaking, that is due to the behaviour of the changes of coordinates in the
renormalisation tower of a given map in OZS,. Each change of coordinate behaves like the
log function below a certain horizontal line (while behaving like a linear map above that
line).

Evidently, the analysis of the renormalisation scheme presented in this paper provides
some geometric features of the post-critical set as well. For example, we have the following
result.

Corollary 8.18. — For every non-Brjuno number a € HT  and every f € QLS,, every
connected component of A(f)\ {0} lands at 0 at a well-defined angle.
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Proof. — By Proposition 6.9, for every n > —1, lim;_, 4 oo Reu,, (it) exists and is finite. This
implies that the connected component of A(f)\ {0} which contains the critical value of f
lands at 0 at a well-defined angle. Any iterate of this curve by f lands at 0 at a well-defined
angle. Since the set of the angles of all those rays is dense on R/Z, any other component of
A(f)\ {0} must also land at 0 at a well-defined angle. O
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