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Abstract. — We study the post-critical set of a class of holomorphic maps with an irra-
tionally indifferent fixed point. We prove a trichotomy for the topology of the post-critical
set based on the arithmetic of the rotation number at the fixed point. The only possibili-
ties are Jordan curve, one-sided hairy Jordan curve, and Cantor bouquet. This explains the
degeneration of the closed invariant curves inside the Siegel disks, as one varies the rotation
number.

Résumé (Topologie des attracteurs irrationnellement indifférents)
Nous étudions l’ensemble post-critique d’une classe d’applications holomorphes avec

un point fixe indifférent irrationnel. Nous prouvons une trichotomie pour la topologie de

l’ensemble post-critique basée sur l’arithmétique du nombre de rotation au point fixe. Les
seules options sont une courbe de Jordan, une courbe de Jordan velue unilatérale et un
bouquet de Cantor. Cela explique la dégénérescence des courbes invariantes fermées à
l’intérieur des disques de Siegel, lorsque l’on fait varier le nombre de rotation.

1. Introduction

1.1. Irrationally indifferent attractors. — Let

(1.1) f(z) = e2πiαz +O(z2)

be a germ of a holomorphic map defined near 0 ∈ C, with α ∈ R \ Q. The fixed point at 0
is called irrationally indifferent. It is known that the local dynamics of f near 0 depends
on the arithmetic nature of α in a delicate fashion. By classical results of Siegel [Sie42]
and Brjuno [Brj71], if α satisfies an arithmetic condition, now called Brjuno type, f is
conformally conjugate to the rotation by 2πα near 0. The maximal domain of linearisation
(conjugacy) is called the Siegel disk of f at 0, and is denoted by ∆(f) here. Within ∆(f),
the local dynamics is trivial; any orbit in ∆(f) is dense in an invariant analytic Jordan curve.
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On the other hand, in a remarkable development [Yoc95b], Yoccoz showed that if α is not
a Brjuno number, the quadratic polynomial

Pα(z) = e2πiαz + z2

is not linearisable at 0. Despite that, Perez-Marco [PM97a] showed that there remains a
non-trivial local invariant set at 0. However, the topology of the local invariant set, and the
local dynamics near 0 remained mysterious, even for Pα. In this paper, for the first time, we
explain the delicate topological structure of the (local) attractor, and the dynamics of the
map on it.

When f is a polynomial or a rational function, the irrationally indifferent fixed point at
0 influences the global dynamics of f . By the classical results [Fat19, Mañ87], there is at
least a recurrent critical point of f which “interacts” with the fixed point at 0. For any such
critical point cf , we define

Λ(cf) =
⋃

i≥1f
◦i(cf ).

When f is linearisable at 0, the boundary of ∆(f) is contained in Λ(cf ), and when f is not
linearisable at 0, then 0 ∈ Λ(cf ). The set Λ(cf ) is part of the post-critical set of f , which
is the closure of the orbits of all critical values of f . By a general result in holomorphic
dynamics [Lyu83], unless the Julia set is equal to the whole Riemann sphere, for Lebesgue
almost every z in the Julia set of f , the spherical distance between f◦k(z) and the post-critical
set of f tends to 0 as k → ∞.

For “badly approximable” α, Λ(cf ) is well understood over the last four decades. The
main method is an ingenious surgery procedure, which is introduced by Douady [Dou87] for
quadratic polynomials, Zakeri [Zak99] for cubic polynomials, Shishikura (unpublished work)
for all polynomials, and Zhang [Zha11] for all rational functions. Through the surgery, the
problem is linked to the dynamics of analytic circle maps, where the works of Herman, Yoccoz
and Swianek [Her79, Yoc84, Swi98] play a key role. The culmination of those works shows
that when α is bounded type and f is a rational function, cf ∈ ∂∆(f) and Λ(cf ) = ∂∆(f) is a
quasi-circle (a Jordan curve with controlled geometry). In [McM98], McMullen developed a
renormalisation method to show that, among other features, when α is an algebraic number,
Λ(cf ) enjoys rescaling self-similarity at cp. In a far reaching generalisation in the quadratic
case, Petersen and Zakeri [PZ04] employed trans quasi-conformal surgery to show that for
almost every α, cf ∈ ∂∆(f) and Λ(cPα

) = ∂∆(Pα) is a David circle (a generalisation of
quasi-circle).

For “well-approximable” α, the structure of Λ(cf ) remained mostly mysterious, despite
few sporadic surprising results such as [PM97b, ABC04]. Computer simulations suggest
that large entries in the continued fraction of α result in oscillations of the invariant curves
in ∆(f). The size of an entry and its location in the continued fraction of α, as well as
non-linearity of large iterates of f , result in an intricate oscillation of the invariant curves
in ∆(f). See Figure 1. For α with infinitely many extremely large entries, the consecutive
oscillations may degenerate the closed invariant curves. For a class of maps, we explain the
degeneration of invariant curves under perturbations of α.

1.2. Statements of the results. — Inou and Shishikura in [IS06] introduced a sophis-
ticated renormalisation scheme (F ,R), where F is an infinite dimensional class of maps as
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Figure 1. Left image: computer simulations of the orbit of cPα for rotation
numbers α = [2, 2, 2], [2, 2, 102, 2], [2, 2, 104, 2], and [2, 2, 108, 2]. Right image:
computer simulations of the orbit of cPα for α = [2, 2, 2], [2, 2, 102, 2], and

[2, 2, 102, 108, 2].

in (1.1), and R : F → F is a renormalisation operator. Every f ∈ F has a certain covering
structure, and a (preferred) critical point cf . The set F contains (the restriction to a neigh-
bourhood of 0 of) some polynomials and rational functions of arbitrarily large degrees. The
scheme requires α to be of sufficiently high type, that is, α belongs to the set

HTN = {ε0/(a0 + ε1/(a1 + ε2/(a2 + . . . ))) | ∀n ≥ 0, an ≥ N, εn = ±1},

for a suitable N . In HTN , there are α of bounded type, as well as α with arbitrarily large
entries.

The scheme (F ,R) was successfully employed by Inou and Shishikura to trap the orbit
of cf in a dynamically defined neighbourhood of 0. Moreover, they showed that the orbit of
cf is infinite, there are no periodic points in Λ(cf ), and in particular, Λ(cPα

) is not equal to
the Julia set of Pα.

In [Che13, Che19] we carried out a detailed quantitative analysis of the renormalisation
scheme (F ,R), and obtained fine estimates on the changes of coordinates which appear in
the renormalisation. In [Che23], we built a toy model for the renormalisation of maps with
an irrationally indifferent fixed point. We employ those methods to explain the delicate
structure of Λ(cf).

Theorem A (trichotomy of irrationally indifferent attractors)
There is N ≥ 2 such that for every α ∈ HTN and every f(z) = e2πiαz +O(z2) in the

Inou-Shishikura class F , one of the following holds:

(i) α is Herman type, and Λ(cf ) is a Jordan curve enclosing 0,
(ii) α is Brjuno but not Herman type, and Λ(cf ) is a one-sided hairy Jordan curve enclosing

0,
(iii) α is not Brjuno type, and Λ(cf ) is a Cantor bouquet at 0.

The trichotomy also holds for the quadratic polynomials Pα, when α ∈ HTN .
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The set of Herman numbers was discovered by Herman and Yoccoz [Her79, Yoc95a]
in their landmark studies of the dynamics of analytic circle diffeomorphisms. In this paper we
do not make any connections to circle maps – the Brjuno and Herman types naturally come
up. The set of Herman numbers is complicated to characterise in terms of the arithmetic
of α; see Section 2. But we note that the set of Herman numbers is contained in the set
of Brjuno numbers, and both sets have full Lebesgue measure in R. However, the set of
non-Brjuno numbers, and the set of Brjuno but not Herman numbers, are both uncountable
and dense in R. Similarly, the set of α corresponding to each of the cases in Theorem A is
uncountable and dense in HTN .

Cantor bouquets and hairy Jordan curves are universal topological objects like the Cantor
sets; they are characterised by some topological axioms [AO93]. Roughly speaking, a Cantor
bouquet is a collection of arcs landing at a single point, such that every arc is accumulated
from both sides by arcs in the collection. A (one-sided) hairy Jordan curve is a collection
of arcs landing on a dense subset of a Jordan curve such that every arc in the collection is
accumulated from both sides by arcs in the collection. Both sets have empty interior, and
necessarily have complicated topologies; have uncountably many hairs and are not locally
connected. See Section 3.4 for the definitions.

In Theorem A, in cases (ii) and (iii), cf is an end point of a hair of Λ(cf ). We also show
that in case (iii), the arcs in Λ(cf ) land at 0 at well-defined (distinct) angles.

Theorem A explains the degeneration of the boundaries of Siegel disks as one varies
α ∈ HTN . Either the oscillations diminish and no degeneration occurs, or the oscillations
build up and reach 0 in the limit, collapsing onto uncountably many arcs landing at 0 (case
(iii)); or oscillations remain short of 0, but collapse onto uncountably many arcs landing on
a closed invariant curve (case (ii)). These phenomena also happen to the invariant curves
within the Siegel disks, which give rise to a one-parameter family of closed invariant sets in
Λ(cf ), all with the same topology.

Theorem B (degeneration of closed invariant curves). — For every α ∈ HTN there

is rα ≥ 0 such that for every f(z) = e2πiαz +O(z2) in the class F , there is a map

φf : [0, rα] → {X ⊆ Λ(cf) | X is non-empty, closed and invariant},

which is a homeomorphism with respect to the Hausdorff metric on the range. Moreover,

(i) φf is strictly increasing on [0, rα], with respect to the inclusion in the range;

(ii) if α is not a Brjuno number, φf (t) is a Cantor bouquet for every t ∈ (0, rα], φf (0) =
{0}, and φf (rα) = Λ(cf );

(iii) if α is a Brjuno but not a Herman number, φf (t) is a hairy Jordan curve for all

t ∈ (0, rα], φf (0) is a Jordan curve, and φf (rα) = Λ(cf ).

The above theorem, and the next results, all apply to the quadratic polynomials Pα,
provided α ∈ HTN . Evidently, in Theorem B, rα = 0 when α is a Herman number, and
otherwise rα > 0. We also characterise the non-empty closed invariant subsets of Λ(cf).

Theorem C (invariant sets in irrationally indifferent attractors)
For every α ∈ HTN and every f(z) = e2πiαz + O(z2) in F , f : Λ(cf ) → Λ(cf ) is a



TOPOLOGY OF IRRATIONALLY INDIFFERENT ATTRACTORS 5

topologically recurrent homeomorphism. Moreover, every non-empty closed invariant set in

Λ(cf ) is equal to the closure of the orbit of some z ∈ Λ(cf ).

A partial result in the direction of Theorem A is obtained by Shishikura and Yang [SY]
around the same time. They prove that if α is a Brjuno number of high type, ∂∆(f)
is a Jordan curve, and cf ∈ ∂∆(f) iff α is a Herman number. These results also follow
immediately from Theorem A. In both cases (i) and (ii), the region inside the unique Jordan
curve in Λ(cf ) is invariant by f , and hence it must be ∆(f). In case (i), since cf is recurrent,
cf ∈ Λ(cf ) = ∂∆(f), and in case (ii), cf /∈ ∂∆(f) (otherwise the orbit of cf remains in
∂∆(f)).

Corollary D. — For any Brjuno α ∈ HTN and any f(z) = e2πiαz + O(z2) in F , the

boundary of the Siegel disk of f at 0 is a Jordan curve.

Corollary E. — For any Brjuno α ∈ HTN and any f(z) = e2πiαz + O(z2) in F , the

boundary of the Siegel disk of f at 0 contains a critical point of f if and only if α is a

Herman number.

The above corollaries partially confirm conjectures of Herman and Douady on the Siegel
disks of rational functions, [Her85, Dou87]. In [Her85], Herman employs a conformal
welding argument of Ghys [Ghy84] to show that if α is a Herman number, cPα

∈ ∂∆(Pα). On
the other hand, Ghys and Herman [Ghy84, Her86] gave the first examples of polynomials
having a Siegel disk with no critical point on the boundary. Based on these results, Herman
conjectured in 1985 that Corollary E holds for all rational functions f of degree ≥ 2 and
all irrational numbers α. Using an elegant Schwarzian derivative argument, Graczyk and
Swiatek in [GS03] proved a general result, which implies in particular that if f is a rational
function or an entire function with degree ≥ 2 and α is bounded type, there must be a critical
point on the boundary of ∆(f). The result of Herman is extended to cubic polynomials in
[CR16]. We note that Shishikura and Yang in [SY] have a fundamentally different approach
to the proofs of Corollaries D and E. They work directly in the renormalisation tower of f .
Those corollaries were not the main purpose of this paper, but a bi-product of studies towards
explaining the global dynamics of non-linearisable maps.

In [Che23] we conjectured that the trichotomy in Theorem A, as well as the dynamical
features in Theorems B and C hold for all irrational numbers α and all rational functions
f . In particular, the conjectures of Douady and Herman follow from the conjecture on the
trichotomy of the irrationally indifferent attractors. See Section 1.3 for some justification of
our conjectures.

By a general result of Perez-Marco [PM97a], the invariant sets within Siegel disks do not
disappear under perturbations of α. That is, for every f as in (1.1), there are non-trivial,
compact, connected, invariant sets containing 0, called Siegel compacta or hedgehog. They
built examples of non-linearisable f with interesting pathological behaviour, such as examples
with no small cycles [PM93], and examples with uncountably many conformal symmetries
[PM95]. In [Che11], Cheritat uses similar methods to build an example with ∂∆(f) non-
locally connected. In [Bis16, Bis08], Biswas builds hedgehogs with empty interior but
positive area, and also hedgehogs with Hausdorff dimension 1. Such behaviours are not
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expected for rational functions. Indeed, by [Mañ87], when f is a polynomial or a rational
function, every Hedgehog of f is contained in the post-critical set of f . This also holds for
maps in F , [AC18]. By explaining the topology of the post-critical set, we have shown that
those pathological behaviours do not occur for many classes of rational functions.

The renormalisation scheme (F ,R) is a sophisticated but powerful tool. It has helped
with making substantial progress in our understanding of the dynamics of maps with an
irrationally indifferent fixed point. In [BC12], this was employed to prove the upper simi-
continuity of Λ(cf ) at every f ∈ F with bounded type rotation number α. That was a
main ingredient in the remarkable work of Buff and Cheritat on the existence of Pα with
positive area Julia sets. In [Che13, Che19], we proved that Λ(cf ) has zero area, and
depends upper simi-continuously at every f ∈ F . Combining those results with the current
paper, we now fully understand the topological behaviour of typical orbits of Pα, for all
α ∈ HTN . That is, for almost every z in the Julia set of Pα, the set of accumulation
points of the orbit of z is equal to Λ(cPα

). In particular, the basin of attraction of any
closed invariant set strictly contained in Λ(cPα

) has zero area. In [AC18], the statistical
behaviour of the orbits is explained by showing that f : Λ(cf ) → Λ(cf ) is uniquely ergodic.
On the other hand, in [CC15], the Marmi-Mousa-Yoccoz conjecture, which provides a fine
estimate on the sizes of the Siegel disks in terms of the arithmetic of α, is confirmed for
the class F . The flexibility of the scheme (F ,R) allows one to make perturbations of α
into complex numbers. In [CS15], the author and Shishikura prove the hyperbolicity of
the renormalisation operator for satellite types, and conclude the local connectivity of the
Mandelbrot set at some infinitely renormalisable parameters of satellite type. In [AL22],
Avila and Lyubich combine the upper semi-continuity of Λ(cf ) in [Che19] with a random
walk argument to prove the existence of Feigenbaum quadratic polynomials with positive
area Julia sets.

1.3. Methodology. — We implement an alternative point of view on the use of renor-
malisation methods for the study of the dynamics. By employing a toy model for the renor-
malisation scheme (F ,R), we avoid cumbersome analytic arguments and error estimates via
geometric constructions.

The toy model consists of a one-parameter family of maps {Tα : Âα → Âα}α∈R\Q, where

each Âα is star-like about 0, and Tα is a homeomorphism of the form reiθ 7→ g(r, θ)ei(θ+2πα)

in the polar coordinate. Moreover, Tα+1 = Tα and Âα+1 = Âα, for all α ∈ R \ Q. The

renormalisation is the action of the modular group, which sends Tα : Âα → Âα to T−1/α :

Â−1/α → Â−1/α.
To present the alternative point of view, it is necessary to briefly describe how the toy

model is built. It is convenient to carry out the construction in the log coordinate (where
Tα is unwrapped). For each α ∈ R \ Q, we start with a sequence of change of coordinates
Yn : H−1 → H−1, for n ≥ 0, where H−1 is the upper half-plane Imw > −1, with each
Yn not necessarily surjective. The maps Yn must satisfy two functional relations in order
to be induced by successive applications of a renormalisation operator. Otherwise, there is
considerable flexibility in choosing them. The collection (Yn)n≥0 forms a non-autonomous
dynamical system, as in Figure 2. The set of points in H−1 where the infinite composition
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· · · ◦Y −1
2 ◦Y −1

1 ◦Y −1
0 is defined corresponds to Âα. More precisely, it projects via w 7→ e2πiw

to define Âα. Loosely speaking, Tα corresponds to Y0(Y
−1
0 + 1) via the same projection.

The maps Yn are chosen to uniformly contract the Euclidean metric, and map half-infinite
vertical lines in H−1 to half-infinite vertical lines; see Figure 3. Then, the non-autonomous
system (Yn)n≥0 exhibits Markov behaviour, which is conveniently used to study the topology

of Âα and the dynamics of Tα on Âα. The Brjuno and Herman types naturally come up in
this setting.
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r

r

r

r
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oo · · ·
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oo · · ·

Yn+1
oo
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Υn−1
oo

Un−1
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Mn
Υn
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Un

OO

· · ·
Υn+1
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Λ(cf ) ∪∆(f)

U

OO

Figure 2. Conjugacy of the non-autonomous dynamics of the changes of coordi-
nates in two renormalisation schemes. The map U0 projects to U : Λ(cf )∪∆(f) →

Âα which conjugates f on Λ(cf ) to Tα on ∂Âα.

The operator R is based on a geometric construction which involves a coordinate change
(perturbed Fatou coordinate). Successive applications ofR at some f ∈ F with f ′(0) = e2πiα

produces a sequence of changes of coordinate Υn : Mn → Mn−1, for n ≥ 0. When viewed in
the log coordinate (where the dynamics is unwrapped), each Mn is uniformly close to H−1,
and each Υn is either holomorphic or anti-holomorphic, with highly non-linear behaviour.
Despite that, the maps Υn are uniformly contracting with respect to suitable hyperbolic
metrics on the regions Mn.

The heart of the argument is to show that the non-autonomous dynamics of (Yn)n≥0 is
conjugate to the non-autonomous dynamics of (Υn)n≥0. That is, a collection of homeomor-
phisms Un, as in Figure 2, so that the diagram is fully commutative along solid arrows.
However, in order to induce a conjugacy between f and Tα, (Un)n≥0 must satisfy some cir-
cular functional relations due to unwrapping the recurrent dynamics of the underlying maps,
and also due to the presence of critical points in (F ,R) but not in the toy model.

To build such a conjugacy (Un)n≥0, we need to choose the maps Yn uniformly close to Υn.
That requires some understanding of the coordinate changes Υn, obtained in [Che19]. It is
worth noting that the detailed information about the locations and geometries of relevant
pieces near 0 obtained in [IS06] were not utilised here. More precisely, given a renor-
malisation scheme with the qualitative characteristics of (F ,R), one only needs to verify
Proposition 5.2, Proposition 5.3, and Lemma 6.2 about the changes of coordinates in that
renormalisation. Hence, the trichotomy conjecture.

The Markov system (Yn)n≥0 provides partitions of the phase spaces H−1, shrinking to
half-infinite vertical lines. We build corresponding partitions for the system (Υn)n≥0, which
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are in the spirit of Yoccoz puzzle pieces with boundary markings. The first parametrised
arc for the partitions is obtained from the limit of certain hyperbolic geodesics (suitably
re-parametrised by the maps Yn). This gives rise to a collection of curves, one in each Mn,
which collectively enjoy equivariant properties with respect to the dynamics of (Υn)n≥0 and
(Yn)n≥0. By employing the circular functional relations imposed on the conjugacy (Un)n≥0,
further parametrised arcs are built. Those arcs divide the sets Mn into partitions (not
necessarily shrinking to points).

To complete the argument, we build a sequence of partial conjugacies by mapping the
corresponding partition pieces one to another. Contrary to Υn, the maps Yn are not confor-
mal, and their long compositions may degenerate the complex structure. This leads to the
degeneration of the sequence of partial conjugacies. However, the degenerations only occur
transverse to the hairs in Λ(cf ), and the partial conjugacies form Cauchy sequences along
the hairs.

There are a number of advantages in explaining the dynamics of f through a toy model.
It allows one to study the delicate role of the arithmetic properties of α in the simpler setting
of the model, while only dealing with the highly distorting coordinate changes in another
setting. The construction of the conjugacy does not require detailed understanding of the
dynamics of the underlying maps, and simultaneously works rotation numbers of different
type. Moreover, the toy model allows us to build puzzle partitions enjoying equivariant
properties with respect to the renormalisation. This paves the way for further progress on
the topic, see for instance, [CdY20].
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2. Arithmetic classes of Brjuno and Herman

In this section we define the arithmetic classes of Brjuno and Herman. The definition
requires the action of the modular group PGL(2,Z) on R. To study the action of this group,
one may choose a fundamental interval for the action of z 7→ z + 1 and study the action of
z 7→ 1/z on that interval. Due to a feature of the near-parabolic renormalisation, it is natural
to work with the fundamental interval (−1/2, 1/2) for the translation. That is because, as
we shall see in Section 4, the scheme works for rotation numbers close to 0. This choice of
the fundamental interval leads to a modified notion of continued fractions, which we briefly
present below.

2.1. Modified continued fraction. — Let us fix an irrational number α ∈ R. For x in
R, define d(x,Z) = mink∈Z |x − k|. Let α0 = d(α,Z), and for n ≥ 1, inductively define the
numbers

(2.1) αn+1 = d(1/αn,Z).

For our convenience in future formulae, we let α−1 = +1. There are unique integers an, for
n ≥ −1, and εn ∈ {+1,−1}, for n ≥ 0, such that

(2.2) α = a−1 + ε0α0 and 1/αn = an + εn+1αn+1.
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Evidently, for all n ≥ 0,
(2.3)

1/αn ∈ (an − 1/2, an + 1/2), an ≥ 2, and εn+1 =

{

+1 if 1/αn ∈ (an, an + 1/2),

−1 if 1/αn ∈ (an − 1/2, an).

The sequences an and εn provide the infinite continued fraction

α = a−1 +
ε0

a0 +
ε1

a1 +
ε2

a2 + . . .

.

The best rational approximants of α, or the convergents of α, are defined as

pn
qn

= a−1 +
ε0

a0 +
ε1

. . . +
εn

an

, for n ≥ −1.

We assume that pn and qn are relatively prime, and qn > 0.

2.2. Brjuno numbers. — By a careful study of the Siegel’s approach in [Sie42], Brjuno

in [Brj71] showed that the convergence of the infinite series
∑+∞

n=−1 q
−1
n log qn+1 for α is

sufficient for the analytic linearisation of the germs f(z) = e2πiαz + O(z2) near 0. Siegel-
Brjuno approach is based on estimating the coefficients of the formal conjugacy, but do not
involve any notion of renormalisation.

Yoccoz in [Yoc95b] carried out a geometric approach to the linearisation problem based
on a notion of renormalisation introduced by Douady-Ghys. Thanks to his work, a natural
way to look into the Brjuno condition is through a function which enjoys remarkable equiv-
ariant properties with respect to the action of PGL(2,Z). That is, the Brjuno function is
defined (by Yoccoz) as

(2.4) B(α) =
∑∞

n=0 βn−1 logα
−1
n

where βn =
∏n

i=−1 αi, for n ≥ −1. The function B is defined on R \ Q, and takes values in
(0,+∞]. It satisfies the remarkable relations

(2.5)
B(α) = B(α+ 1) = B(−α), for α ∈ R \Q,

B(α) = αB(1/α) + log 1/α, for α ∈ (0, 1/2) \Q.

As shown by Yoccoz, |
∑+∞

n=−1 q
−1
n log qn+1 − B(α)| is uniformly bounded from above inde-

pendent of α. Thus, an irrational number α is a Brjuno number iff B(α) < +∞.
For a generic choice of α ∈ R, B(α) = +∞. The function B is highly irregular. One

may refer to [MMY97, MMY01, JM18], and the extensive list of references therein, for
detailed analysis of the regularity properties of the Brjuno function. The irregularity features
of the Brjuno function is somehow reflected in the sizes of the Siegel disks as a function of
the rotation number, as suggested in [MMY97] and studied in [BC06, CC15].
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Remark 2.1. — Besides the quadratic polynomials, the optimality of the Brjuno condition
has been (re)confirmed for several classes of maps in [PM93, PM01, Gey01, BC04,
Oku04, Oku05, FMS18, Che19]. But in its general form for polynomial and rational
functions remains a significant challenge. For progress on the linearisation problem in higher
dimensions one may refer to [Sto00, Gen07, Ron08, YG08, Rai10, BZ13, GLS15], for
twist maps refer to [BG01, Pon10], see also [CM00, Lin04, MS11] and the references
therein.

2.3. Herman numbers. — The problem of analytic linearisation of orientation-preserving
diffeomorphisms of the circle R/Z was first successfully studied by Arnold [Arn61] for maps
close to rigid rotations. In [Her79], Herman presented a systematic study of the problem,
and presented a rather technical arithmetic condition which guaranteed the analytic lineari-
sation. Later, Yoccoz made improvements in the work of Herman and identified the optimal
arithmetic condition for the linearisation, which he called Herman type, in honour of the
work of Herman.

In [Yoc02], Yoccoz gives several characterisations of the Herman numbers. We present
the most relevant of those in our setting. To do that, we need to consider the functions
hr : R → (0,+∞), for r ∈ (0, 1):

hr(y) =

{

r−1(y − log r−1 + 1) if y ≥ log r−1,

ey if y ≤ log r−1.

Each hr is a C1 monotone map, which satisfies y + 1 ≤ hr(y) ≤ ey for all y ∈ R, and
h′r(y) ≥ 1 for all y ≥ 0. An irrational number α is a Herman number if and only if for all
n ≥ 0 there is m ≥ n such that

hαm−1
◦ · · · ◦ hαn

(0) ≥ B(αm).

In the above definition, the composition hαm−1
◦ · · · ◦ hαn

is understood as the identity map
when m = n, and as hαn

when m = n+ 1.
The arithmetic characterisation of the Herman numbers by Yoccoz in [Yoc02] uses the

standard continued fraction. That is, he works with the interval (0, 1) for the action of
z 7→ z + 1. The above form of the Herman numbers in terms of the modified continued
fractions is established in [Che23].

One may see that every Herman number is a Brjuno number, the set of Herman numbers
is invariant under the action of PGL(2,Z), and every Diophantine number is of Herman type.
In particular, the set of Herman numbers and the set of Brjuno numbers have full Lebesgue
measure in R. On the other hand, there is an uncountable dense set of irrational numbers
which are of Brjuno but not Herman type.

Although Herman did not have the optimal characterisation for the linearisation of ana-
lytic circle diffeomorphisms, he used the linearisation property of circle maps to show that if
α satisfies that optimal condition, the critical point of e2πiαz + z2 must lie on the boundary
of the Siegel disk [Her85]. His argument also applies to polynomials with a single critical
point of higher orders. This result has been extended to cubic polynomials in [CR16]. On
the other hand, Ghys and Herman built the first examples of polynomials with a Siegel disk
whose boundary does not contain any critical points. Until this paper, and [SY], it was not
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known how the arithmetic condition of Herman is related to the presence of critical points
on the boundary of Siegel disks.

Remark 2.2. — The set of high type numbers HTN in the modified continued fraction may
be strictly larger than the set of high type numbers in the standard continued fraction. To
be precise, let HTs

N denote the set of irrational numbers α whose entries ãn in the standard
continued fraction are at least N , for all n ≥ 0. If ãn ≥ 2 for all n ≥ 0, then an = ãn and
εn = +1, for all n ≥ 0. This shows that for N ≥ 2, HTs

N ⊆ HTN . But in general, HTN is
not contained in HTs

N−1, or in HTs
N−2, etc. Indeed, for any N , an element of HTN may have

infinitely many +1 entries in its standard continued fraction. In this sense, the theorems
and corollaries stated in the introduction are slightly more general than the ones stated in
[SY].

Remark 2.3. — There are α in HTN which do not satisfy the Petersen-Zakeri condition
in [PZ04]. Thus, case (i) in Theorem A applies to some rotation numbers outside the
Petersen-Zakeri class.

3. Topological model for the post-critical set

In this section we present the topological model for the post-critical set and the map on
it. This is a brief summary of the detailed construction in [Che23]. We present the key
features which will be used in this paper.

A renormalisation scheme is often given as a class of maps, and a renormalisation op-
erator which preserves that class of maps. The renormalisation operator involves a change
of coordinates (rescaling). However, the approach taken to build the toy model for the
renormalisation works in a different fashion. We start by defining a sequence of changes of
coordinates first, and then build a map so that those changes of coordinates appear in the
consecutive renormalisation of that map. We briefly present this below.

3.1. Model for the changes of coordinates. — Consider the set

H′ = {w ∈ C | Imw > −1}.

For r ∈ (0, 1/2], define Yr : H′ → C as

Yr(w) = rRew +
i

2π
log

∣

∣

∣

e−3πr − e−πrie−2πriw

e−3πr − eπri

∣

∣

∣
.

We have Yr(0) = 0, Yr is continuous on H′, and real analytic in the variables Rew and
Imw. It maps vertical lines in H′ to vertical lines. But, it maps horizontal lines in H′ to
non-straight curves which are 1/r-periodic in Rew. In particular, Yr is not conformal for any
value of r ∈ (0, 1/2] (The map degenerates the conformal structure as r → 0). Despite that,
it is proved fundamentally useful when compared to the conformal changes of coordinates in
the near-parabolic renormalisation. Figure 3 shows the behaviour of Yr on horizontal and
vertical lines.

We summarise the key properties of Yr in the next proposition. Recall the map hr
employed in the characterisation of the Herman numbers in Section 2.
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Figure 3. The black curves are the images of some horizontal lines by Yr. The
vertical lines in blue, from left to right, are the images of the vertical lines Rew =
−1, Rew = 0, and Rew = 1/α, under Yr. Here, r = 1/(10 + 1/(1 + 1/(1 + . . . ))).

Proposition 3.1. — For every r ∈ (0, 1/2] the following properties hold.

(i) The map Yr is injective on H′, and Yr(H′) ⊂ H′.

(ii) For every w ∈ H′,

Yr(w + 1/r) = Yr(w) + 1,

(iii) For every t ≥ −1,
Yr(it+ 1/r − 1) = Yr(it) + 1− r,

(iv) For all w1, w2 in H′,

|Yr(w1)− Yr(w2)| ≤ 0.9|w1 − w2|,

(v) For all y ≥ 1,

|2π ImYr(iy/(2π))− h−1
r (y)| ≤ π,

(vi) For all y ≥ 0,

2πry + log(1/r)− 4 ≤ 2π ImYr(1/(2r) + iy) ≤ 2πry + log(1/r) + 2.

By item (v) in the above proposition, Yr closely traces the behaviour of h−1
r on the

imaginary axis. By item (vi), Yr mimics the remarkable functional relation for the Brjuno
function in (2.5).

3.2. Successive changes of coordinates. — Recall the sequence {αn}∞n=0 introduced
in Section 2.1. Let s(w) = w denote the complex conjugation map. For n ≥ 0 we define
Yn : H′ → H′ as

(3.1) Yn(w) =

{

Yαn
(w) if εn = −1,

−s ◦ Yαn
(w) if εn = +1.

Each Yn is either orientation preserving or reversing, depending on εn.
For a given set X ⊂ C, let us use the notation

iX = {ix | x ∈ X}.
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For n ≥ 0, we have

(3.2) Yn(i[−1,+∞)) ⊂ i(−1,+∞), Yn(0) = 0.

By Proposition 3.1-(ii), for all n ≥ 0 and all w ∈ H′,

(3.3) Yn(w + 1/αn) =

{

Yn(w) + 1 if εn = −1,

Yn(w) − 1 if εn = +1.

Also, by the same proposition, for all n ≥ 0 and all t ≥ −1,

(3.4) Yn(it+ 1/αn − 1) =

{

Yn(it) + (1− αn) if εn = −1,

Yn(it) + (αn − 1) if εn = +1,

and for all n ≥ 0 and all w1, w2 in H′, we have

(3.5) |Yn(w1)− Yn(w2)| ≤ 0.9|w1 − w2|.

3.3. The straight topological model. — For n ≥ 0, let

(3.6)

M0
n = {w ∈ H′ | Rew ∈ [0, 1/αn]},

K0
n = {w ∈M0

n | Rew ∈ [0, 1/αn − 1]},

J0
n = {w ∈M0

n | Rew ∈ [1/αn − 1, 1/αn]}.

We inductively define the sets M j
n, J

j
n, and K

j
n, for j ≥ 1 and n ≥ 0. Assume that M j

n, J
j
n,

and Kj
n are defined for some j ≥ 0 and all n ≥ 0. We define these sets for j+1 and all n ≥ 0

as follows. Fix an arbitrary n ≥ 0. If εn+1 = −1, let

(3.7) M j+1
n =

⋃an−2
l=0

(

Yn+1(M
j
n+1) + l

)
⋃
(

Yn+1(K
j
n+1) + an − 1

)

.

If εn+1 = +1, let

(3.8) M j+1
n =

⋃an

l=1

(

Yn+1(M
j
n+1) + l

)
⋃
(

Yn+1(J
j
n+1) + an + 1

)

.

Regardless of the sign of εn+1, define

Kj+1
n = {w ∈M j+1

n | Rew ∈ [0, 1/αn − 1]},

Jj+1
n = {w ∈M j+1

n | Rew ∈ [1/αn − 1, 1/αn]}.

Figure 4 presents two generations of these domains.
For all n ≥ 0 and j ≥ 0, the sets M j

n, J
j
n, and K

j
n are closed and connected subsets of C,

and are bounded by piece-wise analytic curves. Moreover,

{Rew | w ∈M j
n} = [0, 1/αn].

The functional relations in (3.3) and (3.4) allow us to align the pieces together in the unions
(3.7) and (3.8). More precisely, we have the following property of M j

n.

Corollary 3.2. — For every n ≥ 0 and j ≥ 0, the following hold:

(i) for all w ∈ C satisfying Rew ∈ [0, 1/αn − 1], w ∈M j
n if and only if w + 1 ∈M j

n;

(ii) for all t ∈ R, it ∈M j
n if and only if it+ 1/αn ∈M j

n.
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K0
n J0

n K0
n J0

n

Yn Yn + an−1 − 1 Yn

Yn + an−1 + 1

Figure 4. In the left hand column εn = −1 and in the right hand column εn = +1.
The sets K0

n and J0
n are on the lower row, and the set M1

n−1 is on the upper row.

Recall that α−1 = +1. Let M0
−1 = {w ∈ H′ | Rew ∈ [0, 1/α−1]}, and for j ≥ 1, consider

M j
−1 = Y0(M

j−1
0 ) + (ε0 + 1)/2.

By Proposition 3.1-(i), M1
n ⊂M0

n, for n ≥ −1. By an inductive argument, this implies that
for all n ≥ −1 and all j ≥ 0, M j+1

n ⊂M j
n. For n ≥ −1, we define

Mn = ∩j≥0M
j
n.

Each Mn consists of closed half-infinite vertical lines. The set Mn may or may not be
connected. By Corollary 3.2, for real t, it ∈ M−1 if and only if (it + 1) ∈ M−1. We may
define

(3.9) Âα =
{

s(e2πiw) | w ∈M−1

}

∪ {0}, and Aα = ∂Âα.

The set Aα is the topological model for the post-critical set. It is defined for irrational values
of α, and depends only on the arithmetic of α.
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Remark 3.3. — An alternative approach for building a topological model for Λ(f) was
introduced by Buff and Chéritat in 2009 [BC09]. In their model, they use rational ap-
proximation of α, and some conformal changes of coordinates, in order to build topological
objects invariant for parabolic maps. Then, the model for irrational values of α is obtained
from taking Hausdorff limits of those objects. The loss of control along the limit presents
obstacles in further study of that model.

3.4. Hairy Cantor sets and Cantor bouquets. — A Cantor bouquet is any subset
of C which is ambiently homeomorphic to a set of the form

{re2πiθ ∈ C | 0 ≤ θ ≤ 1, 0 ≤ r ≤ R(θ)},

where R : R/Z → [0, 1] satisfies the following:

(a) R = 0 on a dense subset of R/Z, and R > 0 on a dense subset of R/Z,
(b) for each θ0 ∈ R/Z we have

lim sup
θ→θ+

0

R(θ) = R(θ0) = lim sup
θ→θ−

0

R(θ).

A one-sided hairy Jordan curve is any subset of C which is ambiently homeomorphic
to a set of the form

{re2πiθ ∈ C | 0 ≤ θ ≤ 1, 1 ≤ r ≤ 1 +R(θ)},

where R : R/Z → [0, 1] satisfies properties (a) and (b) in the above definition.

Remark 3.4. — The Cantor bouquet and one-sided hairy Jordan curve enjoy similar topo-
logical features as the standard Cantor set. Under an additional mild condition (topological
smoothness) they are uniquely characterised by some topological axioms, see [AO93].

3.5. Topology of the model. —

Theorem 3.5 ([Che23]). — For every irrational number α the following hold.

(i) If α is a Herman number, Aα is a closed Jordan curve around 0.

(ii) If α is a Brjuno but not a Herman number, Aα is a one-sided hairy Jordan curve

around 0.

(iii) If α is not a Brjuno number, Aα is a Cantor Bouquet at 0.

In the remaining of Section 3.5, we briefly sketch a proof of the above result, outlining the
role of the properties of the changes of coordinates stated in Proposition 3.1. One may skip
the rest of this section, and move to Section 3.6, without detriment to the main purpose of
this paper, which is to show that the post-critical set is homeomorphic to Aα.

Brief sketch of the proof of Theorem 3.5. — Recall that the sets M j
n and Mn consist of

closed half-infinite vertical lines. Each of these sets lies above the graph of a function,
which may be conveniently used to study these sets. For n ≥ −1, and j ≥ 0, define
bjn : [0, 1/αn] → [−1,+∞) according to

M j
n = {w ∈ C | 0 ≤ Rew ≤ 1/αn, Imw ≥ bjn(Rew)}.
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By Equations (3.3)–(3.4), each bjn is continuous, and since M j+1
n ⊂ M j

n, bj+1
n ≥ bjn on

[0, 1/αn]. Thus, for n ≥ −1, we may define bn : [0, 1/αn] → [−1,+∞] as

bn(x) = lim
j→+∞

bjn(x) = sup
j≥0

bjn(x).

Note that bn may attain +∞. Evidently,

(3.10) Mn = {w ∈ C | 0 ≤ Rew ≤ 1/αn, Imw ≥ bn(Rew)}.

By Corollary 3.2, bjn(0) = bjn(1/αn), and bjn(x + 1) = bjn(x) for all x ∈ [0, 1/αn − 1]. Thus,
for all n ≥ −1,

(3.11) bn(0) = bn(1/αn), and bn(x+ 1) = bn(x), ∀x ∈ [0, 1/αn − 1].

Using Yn(0) = 0 for all n ≥ 0, and the uniform contraction of the Yn, for all n ≥ −1,

(3.12) bn(0) = 0.

The collection of the functions bjn and bn enjoy equivariant relations induced by the maps

Yn. That is, the graph of bjn is obtained from the graph of bj−1
n+1 by applying Yn+1 and its

translations. Similarly, bn is related to bn+1 through Yn+1. Each Yn exhibits two distinct
behaviour. Above the line Imw = 1/αn it nearly acts as the linear map multiplication by
αn. Below that line, it has a logarithmic behaviour.

Now assume that α is a Brjuno number, and for n ≥ −1 and j ≥ 0 inductively define the
functions

pjn : [0, 1/αn] → [−1,+∞).

For all n ≥ −1, set p0n ≡ (B(αn+1) + 5π)/(2π). Assuming pjn is defined for some j ≥ 0 and
all n ≥ −1, define pj+1

n on [0, 1/αn] so that the graph of pj+1
n is obtained from applying

Yn+1 and its integer translations to the graph of pjn+1 : [0, 1/αn+1] → [−1,+∞). As for bjn,

each pjn is continuous, 1-periodic and pjn(0) = pjn(1/αn). By explicit calculations, one may
see that p1n ≤ p0n for all n ≥ −1, and then by an inductive argument, one may show that for
all n ≥ −1 and j ≥ 0, pj+1

n ≤ pjn. Therefore, we may define

pn(x) = lim
j→+∞

pjn(x), ∀x ∈ [0, 1/αn].

A main difference with the functions bjn here is that the convergence in the above equation
is uniform on [0, 1/αn]. This is because the maps Yn behave better near the top end of M0

n,
where they are close to multiplication by αn. Then, each pn is continuous. Moreover,

(3.13) pn(0) = pn(1/αn), pn(x) = pn(x+ 1), ∀x ∈ [0, 1/αn − 1].

By definition, p0n ≥ b0n, for all n ≥ −1. Then, by the equivariant properties of bjn and pjn one
concludes that for all n ≥ −1 and j ≥ 0, pjn ≥ bjn. In particular,

(3.14) pn(x) ≥ bn(x), ∀x ∈ [0, 1/αn].

Using bn(0) = 0 for all n, the 1-periodicity of the functions bn, and their equivariant property,
one concludes that for every n ≥ −1, bn(x) < +∞ holds for a dense set of x in [0, 1/αn].
In the same fashion, if some bm attains +∞ at a single point, then every bn attains +∞
on a dense subset of [0, 1/αn]. Whether those happen or not depend on the arithmetic of
α. Indeed, by explicit calculations, maxx∈[0,1/αn] b

1
n(x) is uniformly close to log 1/αn. Then,
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because of the functional relations in Equation (2.5) and Proposition 3.1-(vi), it follows that
for all n ≥ −1,

(3.15)
∣

∣

∣
2π sup

x∈[0,1/αn]

bn(x) − B(αn+1)
∣

∣

∣
≤ 5π.

In the above relation, ∞ −∞ is assumed to be 0. It follows that if α is a Brjuno number,
every bn is bounded, and if α is not a Brjuno number, every bn attains +∞ at a single point,
and hence on a dense set of points.

Also, by Equation (3.15), when α is a Brjuno number, bn is uniformly close to p0n at some
points. Then, by the uniform contraction of the maps Yn, and the equivariant properties of
the functions bn and pn, we must have pn(x) = bn(x) on a dense set of points x in [0, 1/αn].
Indeed, one may see that these equalities occur near the vertical line Rew = 1/(2αn), due
to the extreme contracting factor of each map Yn near that line. Among the vertical lines
in the domain of Yn, the least amount of contraction occurs near the vertical line Rew = 0.
So, 0 is the least likely place to have bn = pn. The answer to this question depends on the
arithmetic of α as we briefly explain below.

Because of the uniform contraction of the maps hαn
, the criterion for the Herman numbers

is stable under uniform changes to the maps hαn
. More precisely, if one replaces hαn

by
uniformly nearby maps, say Y −1

n , the corresponding set of rotation numbers stays the same.
Indeed, one may employ the estimate in Proposition 3.1-(v) to show that for integers m >
n ≥ 0 and y ∈ (1,+∞),

∣

∣2π ImYn ◦ · · · ◦ Ym(iy/(2π))− h−1
αn

◦ · · · ◦ h−1
αm

(y)
∣

∣ ≤ 10π,

provided h−1
αn

◦ · · · ◦ h−1
αm

(y) is defined. This estimate, and the uniform contraction of the
maps Yn, is used to show that α belongs to H , if and only if, for all x > 0 there is m ≥ 1
such that

ImY0 ◦ · · · ◦ Ym−1(iB(αm)/(2π)) ≤ x.

Thus, α is a Herman number if and only if pn(0) = 0 for all n ≥ −1. Combining with
earlier arguments, one concludes that when α is a Herman number, bn ≡ pn, and when α is
a Brjuno but not a Herman number, bn < pn holds on a dense subset of [0, 1/αn].

As each Mn is closed, for every x ∈ [0, 1/αn), lim infs→x+ bn(s) ≥ bn(x), and for all
x ∈ (0, 1/αn], lim infs→x− bn(s) ≥ bn(x). In fact, both of “≥” are “=”. That is because,
for large values of m, bn+m is 1-periodic and by the equivariant property of the maps bj ,
and the uniform contraction of the maps Yj , one may obtain a sequence of points on the
graph of bn which converges to (x, bn(x)). That requires a detailed combinatorial analysis
of the trajectories of points for consecutive iterates of the maps Yj . These relations imply
the property (b) in the definition of the hairy Jordan curve and the Cantor bouquet.

3.6. Dynamics on the topological model. — In this section we present the (toy) map

(3.16) Tα : Aα → Aα,

which serves as the model for f : Λ(f) → Λ(f). This is also a brief description of the detailed
arguments presented in [Che23].
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Let us fix α ∈ R \ Q, and let M−1 be the corresponding topological model defined in
Section 3.3. Given w−1 ∈ M−1, we inductively identify li ∈ Z, and then wi+1 ∈Mi+1, such
that

(3.17) −εi+1 Re(wi − li) ∈ [0, 1) and Yi+1(wi+1) + li = wi.

Then, for all n ≥ 0,

(3.18) w−1 = (Y0 + l−1) ◦ (Y1 + l0) ◦ · · · ◦ (Yn + 1n−1)(wn),

and by (3.7) and (3.8), for all i ≥ 0,

(3.19) 0 ≤ li ≤ ai + εi+1, and 0 ≤ Rewi < 1/αi.

We refer to the sequence (wi; li)i≥−1 as the trajectory of w−1.
Consider the map

(3.20) T̃α :M−1 →M−1,

defined as follows. For w−1 in M−1 with trajectory (wi; li)i≥−1,

(i) if there is n ≥ 0 such that wn ∈ Kn, and for all 0 ≤ i ≤ n− 1, wi ∈Mi \Ki, then

T̃α(w−1) =

(

Y0 +
ε0 + 1

2

)

◦

(

Y1 +
ε1 + 1

2

)

◦ · · · ◦

(

Yn +
εn + 1

2

)

(wn + 1);

(ii) if for all n ≥ 0, wn ∈Mn \Kn, then

T̃α(w−1) = lim
n→+∞

(

Y0 +
ε0 + 1

2

)

◦

(

Y1 +
ε1 + 1

2

)

◦ · · · ◦

(

Yn +
εn + 1

2

)

(wn + 1− 1/αn).

Evidently, item (i) leads to continuous maps on pieces of M−1. There might be a vertical
half-infinite line where item (ii) applies. On that set, the uniform contractions of the maps
Yj imply that the sequence of maps in item (ii) converges to a well-defined map. Moreover, it
follows from (3.3) and (3.4) that these piece-wise defined maps match together and produce
a well-define homeomorphism

T̃α :M−1/Z →M−1/Z.

One may compare the above definition of T̃α to the action of f on its renormalisation tower
in Section 7.4. By the definition of Aα in (3.9), T̃α induces a homeomorphism

Tα : Âα → Âα,

which may be restricted to the homeomorphism

Tα : Aα → Aα.

Recall that Tα : Aα → Aα is called topologically recurrent, if for every x ∈ Aα there is
a strictly increasing sequence of positive integers (mi)i≥0 such that T ◦mi

α (x) → x as i→ +∞.
A set K ⊂ Aα is called invariant under Tα, if Tα(K) = K = T−1

α (K). We use the notation
ω(z) to denote the set of accumulation points of the orbit of a given point z ∈ Aα. That is,
the set of limit points of all convergent subsequences of the orbit of z.

Define rα ∈ [0, 1] according to

[rα, 1] = {z ∈ Aα | Im z = 0,Re z ≥ 0}.
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By Theorem 3.5, when α is a Herman number we have rα = 1, when α is a Brjuno but not
a Herman number we have rα ∈ (0, 1), and when α is not a Brjuno number we have rα = 0.

Below, we summarise the dynamical behaviour of Tα on Aα which are established in
[Che23].

Theorem 3.6 ([Che23]). — For every α ∈ R \ Q, Tα : Aα → Aα satisfies the following

properties.

(i) Tα : Aα → Aα is a topologically recurrent homeomorphism.

(ii) The map

ω : [rα, 1] → {X ⊆ Aα | X is non-empty, closed and invariant}

is a homeomorphism with respect to the Hausdorff metric on the range. In particular,

every non-empty closed invariant subset of Aα is equal to ω(z), for some z ∈ Aα.

(iii) The map ω on [rα, 1] is strictly increasing with respect to the linear order on [rα, 1]
and the inclusion on the range.

(iv) If α is not a Brjuno number, ω(t) is a Cantor bouquet for every t ∈ (rα, 1], and

ω(1) = Aα.

(v) If α is a Brjuno but not a Herman number, ω(t) is a hairy Jordan curve for every

t ∈ (rα, 1], and ω(rα) is a Jordan curve.

4. Near-parabolic renormalisation scheme

In this section we present the near-parabolic renormalisation scheme introduced by Inou
and Shishikura [IS06]. This consists of a class of maps discussed in Section 4.1, and a
renormalisation operator acting on that class discussed in Section 4.2. Our presentation of
the renormalisation operator is slightly different from the one by Inou and Shishikura, but
produces the same map.

4.1. Inou-Shishikura class of maps. — Let Ĉ denote the Riemann sphere. Consider
the filled-in ellipse

E =
{

x+ iy ∈ C

∣

∣

∣

(x+ 0.18

1.24

)2

+
( y

1.04

)2

≤ 1
}

,

and the domain

(4.1) U = g(Ĉ \ E), where g(z) = −4z/(1 + z)2.

The domain U is simply connected and contains 0.
The restriction of the polynomial P (z) = z(1 + z)2 on U has a specific covering structure

which plays a central role in the near-parabolic renormalisation scheme. The polynomial P
has a parabolic fixed point at 0 with multiplier P ′(0) = 1. It has a simple critical point at
cpP = −1/3 ∈ U and a critical point of order two at −1 ∈ C \U . The critical point −1/3 is
mapped to cvP = −4/27 ∈ U , and −1 is mapped to 0. See Figure 7.

Let IS0 denote the class of all maps of the form

h = P ◦ ϕ−1: Uh → C

where
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(i) ϕ : U → Uh is holomorphic, one-to-one, onto; and
(ii) ϕ(0) = 0 and ϕ′(0) = 1.

By (i), every map in IS0 has the same covering structure on its domain as the one of P on
U . By (ii), every map in IS0 has a fixed point at 0 with multiplier +1, and a unique critical
point at cph = ϕ(−1/3) ∈ Uh which is mapped to cvh = −4/27.

For α ∈ R, let Rα(z) = e2παiz, and define

ISα = {h ◦Rα | h ∈ IS0}.

We continue to use the notation Uf to denote the domain of definition of f ∈ ISα. That is,
if f = h ◦Rα with h ∈ IS0, then Uf = R−1

α (Uh).
We equip

⋃

α∈R ISα with the topology of uniform convergence on compact sets. That
is, given h : Uh → C, a compact set K ⊂ Uh and an ε > 0, a neighbourhood of h (in the
compact-open topology) is defined as the set of maps g ∈ ∪α∈RISα such that K ⊂ Ug and for
all z ∈ K we have |g(z)− h(z)| < ε. There is a one-to-one correspondence between IS0 and
the space of normalised univalent maps on the unit disk. By the Koebe distortion theorem
[Dur83, Thm 2.5], for any closed set A ⊂ R,

⋃

α∈A ISα is compact in this topology.
We normalise the family of quadratic polynomials by placing a fixed point at 0 and the

finite critical value at −4/27;

Qα(z) = e2παiz +
27

16
e4παiz2.

Then, Q′
α(0) = e2παi, Q′

α(−8e−2παi/27) = 0, and Qα(−8e−2παi/27) = −4/27. We set the
notation

QISα = ISα ∪ {Qα}.

When h = Qα, we set Uh = C. We referred to the class of maps ∪α∈HTN
QISα as the class

F in the introduction. In Proposition 6.1 we determine the value of N for Theorem A.
Let h = h0 ◦ Rα ∈ ISα with h0 ∈ IS0 and α ∈ R. The map h0 has a double fixed point

at 0. For α small enough and non-zero, h is a small perturbation of h0, and hence, it has
a non-zero fixed point near 0 which has split from 0 at α = 0. We denote this fixed point
by σh. It follows that σh depends continuously on h0 and α, with asymptotic expansion
σh = −4παi/h′′0(0) + o(α), as α tends to 0. Evidently, σh → 0 as α → 0.

Given a set X in a topological space, X denotes the closure of X , int (X) its interior, and
∂X its boundary.

Proposition 4.1 ([IS06]). — There is r1 > 0 such that for every h : Uh → C in
⋃

α∈(0,r1]
QISα, there exist a simply connected domain Ph ⊂ Uh and a univalent map

Φh : Ph → C

satisfying the following properties:

(a) Ph is bounded by piecewise smooth curves and Ph ⊂ Uh;

(b) cph, 0, and σh belong to ∂Ph, while cvh belongs to int (Ph);
(c) Φh(Ph) contains the set {w ∈ C | Rew ∈ (0, 2]};
(d) Φh(cvh) = 1, ImΦh(z) → +∞ as z → 0 in Ph, and ImΦh(z) → −∞ as z → σh in Ph;
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(e) If z and h(z) belong to Ph, then

Φh(h(z)) = Φh(z) + 1;

(f) the induced map Φh : Ph/∼ → C/Z, where z ∼ h(z), is a biholomorphism;

(g) Φh is unique, and depends continuously on h.

The class IS0 is denoted by F1 in [IS06]. One may refer to Theorem 2.1 as well as Main
Theorems 1 and 3 in [IS06], for further details on the above proposition.

In the next proposition we state some crucial properties of Ph and Φh.

cph
cvh

0

σh

Figure 5. The domain Ph and the special points associated to some h ∈ ISα.
The alternating coloured croissants are the pre-images of vertical strips of width
one by Φh.

Proposition 4.2. — There exist r2 ∈ (0, r1], as well as integers c1 ≤ 1/r2 − 3/2 and c2
such that for every h : Uh → C in

⋃

α∈(0,r2]
QISα, the domain Ph ⊂ Uh in Proposition 4.1

may be chosen to satisfy the additional properties:

(a) there exists a continuous branch of argument defined on Ph such that

max
w,w′∈Ph

| arg(w) − arg(w′)| ≤ 2πc2,

(b) Φh(Ph) = {w ∈ C | 0 < Re(w) < α−1 − c1}.

See [Che13, Prop. 2.4] or [BC12, Prop. 12] for proofs. The map Φh : Ph → C is called
the perturbed Fatou coordinate or simply the Fatou coordinate of h. See Figure 5.

4.2. Near-parabolic renormalisation operator. — For h : Uh → C in
⋃

α∈(0,r2]
QISα,

with Fatou coordinate Φh : Ph → C, let

(4.2)
Ah = {z ∈ Ph : 1/2 ≤ Re(Φh(z)) ≤ 3/2 , −2 ≤ ImΦh(z) ≤ 2},

Bh = {z ∈ Ph : 1/2 ≤ Re(Φh(z)) ≤ 3/2 , 2 ≤ ImΦh(z)}.

By Proposition 4.1, cvh ∈ int (Ah) and 0 ∈ ∂Bh. See Figure 6.
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It follows from [IS06] (see Remark 4.4 below) that there is a positive integer kh, depending
on h, such that the following four properties hold:

(i) For every integer k, with 1 ≤ k ≤ kh, there exists a unique connected component
of h−k(Bh) which is compactly contained in Uh and contains 0 on its boundary. We

denote this component by B−k
h .

(ii) For every integer k, with 1 ≤ k ≤ kh, there exists a unique connected component of

h−k(Ah) which has non-empty intersection with B−k
h , and is compactly contained in

Uh. This component is denoted by A−k
h .

(iii) The sets A−kh

h and B−kh

h are contained in
{

z ∈ Ph | 1/2 < ReΦh(z) < 1/α− c1
}

.

(iv) The maps h : A−k
h → A−k+1

h , for 2 ≤ k ≤ kh, and h : B−k
h → B−k+1

h , for 1 ≤ k ≤ kh,

are one-to-one. The map h : A−1
h → Ah is a degree two proper branched covering.

Assume that kh is the smallest positive integer for which the above properties hold. Then
define

Sh = A−kh

h ∪B−kh

h .

Proposition 4.3. — There is a constant k ∈ Z such that for all h ∈
⋃

α∈(0,r2]
QISα,

kh ≤ k.

See [Che13] or [Che19] for the proof of the above proposition.

Sh

A−1
h

B−1
h

b
bcph

cvh

b b bb b

1
1
α

− c1

−2

Φ

Φh ◦ h◦kh ◦ Φ
−1

h

e2πiw

b

R(h)

0

h

Figure 6. Illustration of the sets Ah, Bh,..., A
−kh

h , B
−kh

h , and the sector Sh. The
amoeba shaped red curve denotes a large number of iterates of cph under h.
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Since h◦kh : Sh → Ah ∪Bh, the composition

(4.3) Eh = Φh ◦ h◦kh ◦ Φ−1
h : Φh(Sh) → C

is a well-defined map. Also, consider the covering map

(4.4) Exp(w) = (−4/27)e2πiw.

By Proposition 4.1-(e), Eh(w+1) = Eh(w)+1, when both w and w+1 belong to the closure
of Φh(Sh). Thus, Eh induces, via Exp, a unique map R(h) defined on a set containing a
punctured neighbourhood of 0. It follows from Proposition 4.1-(d) that R(h)(z) → 0 as
z → 0. Therefore, 0 is a removable singularity of R(h). Basic calculations show that near 0,

R(h)(z) = e−2πi/αz +O(z2).

The map R(h), restricted to the interior of Exp(Φh(Sh)), is called the near-parabolic
renormalisation of h. We may simply refer to this operator as renormalisation.

Because Φh(cvh) = +1 and Exp(+1) = −4/27, the critical value of R(h) is placed at
−4/27. See Figure 6. It is also worth noting that the action of the renormalisation on the
asymptotic rotation number at 0 is

α 7→ −1/α mod Z.

Remark 4.4. — Inou and Shishikura give a somewhat different definition of this renor-
malisation operator using slightly different regions Ah and Bh compared to the ones here.
However, the two processes produce the same map R(h) modulo their domains of definition.

More precisely, there is a natural extension of Φh onto the sets A−k
h ∪B−k

h , for 0 ≤ k ≤ kh,

such that each set Φh(A
−k
h ∪B−k

h ) is contained in the union

D♯
−k ∪D−k ∪D

′′
−k ∪D

′
−k+1 ∪D−k+1 ∪D

♯
−k+1

in the notations used in [IS06, Section 5.A].

Consider the domain

(4.5) V = P−1
(

B(0, 4e4π/27)
)

\
(

(−∞,−1] ∪B
)

where B is the component of P−1(B(0, 4e−4π/27)) containing −1. By an explicit calculation
(see [IS06, Prop. 5.2]) one can see that U ⊂ int (V ). See Figure 7.

×
cvP

0
×
cpP

0

−1

P

V

Figure 7. Covering structure of the polynomial P ; similar colors and line styles
are mapped on one another.
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Theorem 4.5 ([IS06]). — There exist r3 ∈ (0, r2] such that for every h ∈
⋃

α∈(0,r3]
QISα,

R(h) is defined and belongs to the class IS−1/α. That is, there exists a one-to-one holomor-

phic map ψ : U → C with ψ(0) = 0 and ψ′(0) = 1 so that

R(h)(z) = P ◦ ψ−1(e−2πi/αz), ∀z ∈ ψ(U) · e2πi/α.

Furthermore, ψ : U → C extends to a univalent map on V .

Theorem 4.5 is a refinement of earlier constructions by Lavaurs [Lav89] and Shishikura [Shi98].
See also [Yam08] for an alternative point of view. Two applications of a similar renor-
malisation led to the remarkable result of Shishikura [Shi98] on the boundary of the
Mandelbrot set. Even one application of the operator in a specific setting may be fruitful,
as in [ACE22]. The results stated in the Introduction, and the technical statements proved
in this paper, apply to all the maps in QISα, provided α is of high type. Slightly modified
renormalisation schemes are introduced for uni-singular maps in [Chfrm-e2], and for cubic
maps in [Yan25]. It is likely that suitable modifications of the arguments presented here
may be applied in those settings as well.

5. Comparing the changes of coordinates

Given α ∈ (0, r3] and h ∈ QISα, the change of coordinate Exp ◦Φh relates the iterates of
h to the iterates of R(h). When studying repeated renormalisations, one needs to study long
compositions of such changes of coordinates. As we shall do in later sections, it is convenient
to consider suitable inverse branch of Exp−1 ◦Φ−1

h , and study their compositions. In this

section we show that Exp−1 ◦Φ−1
h behaves like the (model) map Yα introduced in Section 3.

5.1. Change of coordinates in the near-parabolic renormalisation. — Let us fix
an arbitrary h : Uh → C in

⋃

α∈(0,r3]
QISα. Recall from Propositions 4.1 and 4.2, the Fatou

coordinate

Φh : Ph → {w ∈ C | 0 ≤ Rew ≤ 1/α− c1}.

Also, recall from Section 4.2 the domain Sh ⊂ Ph and the integer kh satisfying h◦kh(Sh) ⊂
Ph. Consider the set

Πh = {w ∈ C | 0 ≤ Rew ≤ 1/α − c1, Imw ≥ −2} ∪ {Φh(Sh) + l | l ∈ Z, 0 ≤ l ≤ kh}.

The functional relation in Proposition 4.1-(e) allows one to extend Φ−1
h onto Πh. For w ∈

Φh(Sh) + l one defines Φ−1
h (w) = h◦l ◦ Φ−1

h (w − l). It follows from Proposition 4.1-(e) that

this is a well-defined holomorphic map, and satisfies Φ−1
h (w + 1) = h ◦ Φ−1

h (w) whenever

both sides are defined. However, Φ−1
h : Πh → C \ {0} is not univalent any longer. It has a

critical point which is mapped to −4/27.
We may lift Φ−1

h : Πh → C \ {0} via Exp : C → C \ {0} to define the holomorphic map

(5.1) Υh = Exp−1 ◦Φ−1
h : Πh → C, Υh(+1) = +1.



26 DAVOUD CHERAGHI

5.2. Estimates on the change of coordinates. — To understand the behaviour of Υh,
we need some estimates on Φh. However, obtaining good estimates on Φh are not trivial.
Following [Shi98], a general idea is to compare Φh to an explicit formula, as we explain
below.

Recall that h has two fixed points 0 and σh on ∂Ph. Consider the covering map

τh(ζ) =
σh

1− e−2παiζ
: C → Ĉ \ {0, σh}.

Evidently, τh(ζ + 1/α) = τh(ζ), limIm ζ→+∞ τh(ζ) = 0, and limIm ζ→−∞ τh(ζ) = σh.

We may lift Φ−1
h : Πh → C \ {0, σh} via the covering τh : C → Ĉ \ {0, σh}, to define

Lh : Πh → C.

That is, τh ◦ Lh = Φ−1
h on Πh. However, this map is only determined up to translations by

elements of Z/α. We choose the branch so that Lh(Πh) separates 0 from 1/α. Such branch
exists because Lh(Πh) ∩ (Z/α) = ∅, and τ−1

h (Ph) is a 1/α-periodic set, whose components
are simply connected regions in C \ (Z/α) which spread from +i∞ to −i∞.

Estimates on Lh lead to estimates on Φh through the explicit formula τh. One may
employ classic distortion estimates on univalent mappings from complex analysis to derive
some estimates on Lh. One may refer to [Shi98, Yoc95b] for some general results about
this. For specific estimates on Lh, one may refer to [IS06], [Che13, Section 5] and [Che19,
Section 6]. Below, we present only the estimates we need in this paper (these are only used
in Section 5).

Proposition 5.1. — There is a constant C1 such that for all h ∈
⋃

α∈(0,r3]
QISα, we have

(i) for all w ∈ Πh with Imw ≥ 1, |L′
h(w) − 1| ≤ C1/ Imw,

(ii) for all w ∈ Πh, |Lh(w) − w| ≤ C1 log(1/α),
(iii) as Imw → +∞ in Πh, Lh(w)− w tends to a constant,

(iv) for all w ∈ Πh, |Lh(w) − w| ≤ C1 log(2 + d(w,Z/α)).

Part (i) is an application of the Koebe distortion theorem and the functional equation
for the Fatou coordinates, see for instance [Che19, Lemma 6.7-(4)]. For (ii) see [Che19,
Proposition 6.19], and for (iii) see [Che19, Lemma 6.9]. To get (iv), when Imw ≥ 1/α one
uses part (ii), and when Imw < 1/α one uses [Che19, Proposition 6.15, Proposition 6.17],
integrates the bound in part (i), and uses the inequality log(a) + log(b) ≤ 2 log(a+ b) for all
a, b > 0.

In [Che13], quasi-conformal methods have been employed to obtain an exponentially
decaying estimate on |L′

h(w)− 1|. We do not need that fine estimate here.
By Proposition 5.1-(i), and differentiation of the explicit formula τh, we get

(5.2) lim
Imw→+∞,w∈Πh

Υ′
h(w) = α.

5.3. Dropping the non-linearity. — Recall that Yα is defined on H′ = {w ∈ C | Imw >
−1}. We aim to compare Υh to Yα, knowing that they have different domains of definitions.
Below, we state a general form of such estimates, and later apply it to more specific domains.
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Proposition 5.2. — There is a constant C3 such that for all h ∈
⋃

α∈(0,r3]
QISα, all

w1 ∈ H′ and all w2 ∈ Πh, we have

|Υh(w2)− Yα(w1)| ≤ C3 max{1, |w1 − w2|}.

Proof. — We shall use the decomposition of Υh as Exp−1 ◦τh ◦ Lh on Πh. Let gh =
Exp−1 ◦τh. We divide the proof into two steps.

Step 1. There is a constant D1, independent of α and h, such that for every w1 ∈ H′, we
have

(5.3) |gh(w1 + 1/2 + 3i/2)− Yα(w1)| ≤ D1.

In the above inequality, the constant 1/2+ 3i/2 is chosen to make sure that gh is defined,
and also to simplify the calculations. Let us set w′

1 = w1+1/2+3i/2. By explicit calculations,

(5.4) Im gh(w
′
1)− ImYα(w1) =

1

2π
log

∣

∣

∣

4(e−3πα − eπαi)

27e−3πασh

∣

∣

∣
.

It follows from the Koebe distortion theorem that {h′′(0) | h ∈ IS0} is relatively compact in
C \ {0} (see [IS06] for more details). This implies that there is a constant D, independent
of α and h, such that α/D ≤ |σh| ≤ Dα. On the other hand, for all α ∈ (0, 1/2], we have

(5.5) |e−3πα − eπαi| ≤ |e−3πα − 1|+ |1− eπαi| ≤ 3πα+ πα = 4πα,

and

(5.6) |e−3πα − eπαi| ≥ | Im(e−3πα − eπαi)| = sin(πα) ≥ πα/2.

These imply that π/(2D) ≤ |(e−3πα − eπαi)/σh| ≤ 4πD. Combining with e−3π/2 ≤ e−3πα ≤
1, we conclude that the left hand side of (5.4) is uniformly bounded from above and below.

On the other hand, gh maps {w ∈ C | 0 ≤ Rew ≤ 1/α, Imw ≥ 1/2} into a vertical
strip of width +1 whose projection onto the real axis contains +1. Similarly, Yα maps
{w ∈ H′ | 0 ≤ Rew ≤ 1/α} into the vertical strip {w ∈ C | 0 ≤ Rew ≤ 1}. Using
Yα(w + 1/α) = Yα(w) + 1 and gh(w + 1/α) = gh(w) + 1, one concludes that

|Re gh(w
′
1)− ReYα(w1)| ≤ |Re gh(w

′
1)− ReYα(w

′
1)|+ |ReYα(w

′
1)− ReYα(w1)|

≤ 2 + α/2 ≤ 9/4.

This completes the proof of Step 1.

Step 2. There is a constant D2, independent of α and h, such that for all w3 ∈ Πh and
all w4 ∈ C with Imw4 ≥ 1/2 we have

(5.7)
∣

∣gh ◦ Lh(w3)− gh(w4)
∣

∣ ≤ D2 max{1, |w3 − w4|}.

Recall the constant C1 from Proposition 5.1, and choose a constant D such that D/α−
C1 log(1 + 1/α) ≥ 1/α for all α ∈ (0, 1/2]. We break the proof into three cases.

• Imw3 ≥ D/α: By Proposition 5.1-(ii), |Lh(w3) − w3| ≤ C1 log(1 + 1/α), and hence
ImLh(w3) ≥ 1/α. For Imw ≥ 1/α, |g′h(w)| = O(α), and for Imw ≥ 1/2, |g′h(w)| = O(1),
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with uniform constant in O independent of α, h and w. Then,

|gh ◦ Lh(w3)− gh(w4)| ≤ |gh ◦ Lh(w3)− gh(w3)|+ |gh(w3)− gh(w4)|

≤ O(α) · |Lh(w3)− w3|+O(1) · |w3 − w4|

≤ O(α) ·O(log(1/α)) +O(|w3 − w4|) ≤ O(1) +O(|w3 − w4|).

• 1/2 ≤ Imw3 ≤ D/α: By Proposition 5.1-(iv), |Lh(w3)− w3| ≤ C1 log(2 + d(w3,Z/α)).
For 1/2 ≤ Imw ≤ D/α, |g′h(w)| = O(1/d(w,Z/α)). Because log(1+d(w,Z/α)) ·1/d(w,Z/α)
is uniformly bounded from above, we conclude that |gh ◦ Lh(w3) − gh(w3)| is uniformly
bounded from above. As in the above equation, one obtains the desired inequality in this
case as well.

• Imw3 ≤ 1/2: Let w′
3 = Rew3 + i/2. It follows from the Koebe distortion theorem that

Imw3 is uniformly bounded from below (see proof of Proposition 2.7 in [Che19]), and hence
|w′

3 − w3| = O(1). As in the previous cases, we get |gh ◦ Lh(w3) − gh(w
′
3)| = O(1), and

therefore

|gh ◦ Lh(w3)− gh(w4)| ≤ |gh ◦ Lh(w3)− gh(w
′
3)|+ |gh(w

′
3)− gh(w4)|

= O(1) +O(1)|w′
3 − w4|

= O(1) +O(1 + |w3 − w4|).

To complete the proof of the proposition, one uses (5.3), (5.7), and the triangle inequality

∣

∣Υh(w2)− Yα(w1)
∣

∣ ≤
∣

∣gh ◦ Lh(w2)− gh(w
′
1)
∣

∣+
∣

∣gh(w
′
1)− Yα(w1)

∣

∣.

Proposition 5.3. — For all α ∈ (0, r3] and all h ∈ QISα,

lim
Imw→+∞;w∈Πh

(Υh(w)− Yα(w)),

exists and is finite.

Proof. — Recall that Υh = Exp−1 ◦τh◦Lh on Πh, and define gh = Exp−1 ◦τh. By elementary
calculations one may see that gh(w)−Yα(w) tends to a finite constant as Imw → +∞. Also,
for all w1 and w2 ∈ C, gh(w1 + w2) − gh(w1) tends to a finite constant as Imw1 → +∞.
On the other hand, by Proposition 5.1-(iii), Lh(w) − w tends to a constant as Imw → +∞
within Πh.

6. Marked critical curve

In this section we identify a collection of simple curves with special parametrisation (mark-
ing), which satisfy some geometric and equivariant properties under the renormalisation.
These will be employed to build partitions of the post-critical set in Section 7.
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6.1. Repeated renormalisations. — Fix an arbitrary α ∈ R \Q, and let (αi)i≥0 denote
the sequence generated by the modified continued fraction algorithm in Section 2.1. Recall
the complex conjugation map s(z) = z.

Proposition 6.1. — There exists a positive integer N such that for all α in HTN and all

f in QISα, the following sequence of maps is defined

f0 =

{

f if ε0 = +1,

s ◦ f ◦ s if ε0 = −1,
fn+1 =

{

R(fn) if εn+1 = −1,

s ◦ R(fn) ◦ s if εn+1 = +1,

and for all n ≥ 0 we have f0 ∈ QISα0
, fn+1 ∈ ISαn+1

, fn : Ufn → C, fn(0) = 0, f ′
n(0) =

e2πiαn .

Proof. — Let N ≥ 1/r3 + 1/2, where r3 is introduced in Theorem 4.5. Assume that α has
modified continued fraction a−1 + ε0/(a0 + ε1/(a1 + . . . )) with ai ≥ N , for all i ≥ 0. For all
i ≥ 0,

1/αi = ai + εi+1αi+1 ≥ N − 1/2 ≥ 1/r3,

and hence αi ∈ (0, r3].
First we note that for every γ ∈ R, h ∈ QISγ iff s ◦ h ◦ s ∈ QIS−γ . When h = Qγ ,

we have s ◦ Qγ ◦ s = Q−γ . So assume that h ∈ ISγ , with h(z) = P ◦ ψ−1(e2πiγz). Since,
s ◦ P = P ◦ s, and s(U) = U , we have

s ◦ h ◦ s(z) = s ◦ P ◦ ψ−1(e2πiγz) = P ◦ s ◦ ψ−1 ◦ s(e−2πiγz),

where s ◦ ψ ◦ s : U → C is holomorphic, maps 0 to 0, and has derivative +1 at 0.
If ε0 = +1, then α = a−1 + α0, and hence f0 = f ∈ QISα = QISα0

. If ε0 = −1,
then α = a−1 − α0, and hence f ∈ QISα = QIS−α0

. Then, by the above paragraph,
f0 = s ◦ f ◦ s ∈ QISα0

.
Now assume that fn is defined and belongs to ISαn

. Since αn ∈ (0, r3], by Theorem 4.5,
R(fn) is defined and belongs to IS−1/αn

. Recall that −1/αn = −an−εn+1αn+1, which gives
R(fn) ∈ IS−εn+1αn+1

. If εn+1 = +1, by the above paragraph, fn+1 = s◦R(fn)◦s ∈ ISαn+1
.

If εn+1 = −1, then fn+1 = R(fn) ∈ ISαn+1
.

6.2. Successive changes of coordinates. — Recall Πh, Φ
−1
h : Πh → C \ {0}, and Υh :

Πh → C from Section 5.1. For n ≥ 0, we use the notations

(6.1) Υn =

{

Exp−1 ◦Φ−1
n if εn = −1,

Exp−1 ◦s ◦ Φ−1
n if εn = +1,

, Πn = Πfn , Φ−1
n = Φ−1

fn
: Πn → C \ {0}.

with the normalisations

(6.2) Υn(+1) = +1.

Each Υn is either holomorphic or anti-holomorphic. See Figure 8.
Consider the set

Π = {w ∈ C | 1/2 ≤ Rew ≤ 3/2, Imw ≥ −2}.
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C

Exp

{{✇✇
✇
✇
✇
✇
✇
✇
✇

C \ {0} Πn
s◦Φ−1

n

oo

Υn

OO C

Exp

{{✇✇
✇
✇
✇
✇
✇
✇
✇

C \ {0} Πn
Φ−1

n

oo

Υn

OO

Figure 8. The change of coordinate Υn, with εn = +1 on the left and εn = −1
on the right.

Lemma 6.2. — There is a constant δ1 > 0 such that for all h ∈
⋃

α∈(0,r3]
QISα, we have

Bδ1(Υh(Π)) ⊆ Π.

Proof. — By [IS06], for every h ∈ QIS0, A
−k
h and B−k

h are contained in the repelling Fatou
coordinate of h for large enough k, and hence they are defined for all values of k ≥ 0.

Comparing to their notations, Ah∪Bh is contained in the union ψ0(D0)∪ψ0(D1)∪ψ0(D
♯
0)∪

ψ0(D
♯
1), where ψ0(z) = −4/z. See Section 5.A–Outline of the proof in [IS06]. They prove

in Propositions 5.6 and 5.7 that the closure of D0 ∪ D1 ∪ D♯
0 ∪ D♯

1 does not intersect the

negative real axis. In particular, it follows that for all z ∈ Ah∪Bh, d(ReExp
−1(z),Z) < 1/2.

By the compactness of QIS0, there is a constant C < 1/2 such that for all h ∈ QIS0 and
all z ∈ Ah ∪Bh, d(ReExp

−1(z),Z) < C. Then, by the continuous dependence of the Fatou
coordinate on the map, one may see that there is C′ < 1/2 such that for all small enough α, all
h ∈ QISα, and all z ∈ Ah ∪Bh, d(ReExp

−1(z),Z) < C′ < 1/2. Since, Φ−1
h (Π) = Ah ∪ Bh,

we conclude that there is δ1 > 0 such that Bδ1(Υh(Π)) is contained in the vertical strip
1/2 ≤ Rew ≤ 3/2. On the other hand, Ah ∪ Bh is contained in the image of h, and the
image of h is contained well-inside the disk of radius 4e4π/27 centred at 0. Therefore, by
making δ1 smaller if necessary, Im(Bδ1(Υh(Π)) ⊂ [−2,+∞).

In [IS06], the constant r3 in Theorem 4.5 is obtained from a continuity property of the

locations of D0 ∪D1 ∪D
♯
0 ∪D

♯
1 with respect to h. As such, it is implicitly assumed that the

inclusion in the lemma also holds for small perturbations of h ∈ QIS0. Because of this we
do not introduce a new constant for small enough α, and assume that the same constant r3
works here as well.

Let ρ(z)|dz| denote the Poincaré metric of constant curvature −1 on int (Π). By classic
complex analysis, when f : D → D is holomorphic with f(D) compactly contained in D, f is
uniformly contracting with respect to the Poincaré metric on D. However, here Υn(Π) is not
compactly contained in Π. Despite that, the uniform space provided by Lemma 6.2 allows
us to recover the uniform contraction, as we discuss below. Let Υ∗

nρ denote the pull-back of
ρ on int (Π) by Υn : Π → Π.

Proposition 6.3. — There is a constant δ2 < 1 such that for every n ≥ 0 and every

w ∈ int (Π),

(Υ∗
nρ)(w) ≤ δ2ρ(w).
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Proof. — Let ρn(z)|dz| denote the Poincaré metric on Υn(int (Π)). By the Schwartz-Pick
Lemma, Υn : (int (Π), ρ) → (Υn(int (Π)), ρn) is non-expanding. It is enough to show that
the inclusion map from (Υn(int (Π)), ρn) to (int (Π), ρ) is uniformly contracting.

Fix an arbitrary ξ0 in Υn(Π). Using δ1 from Lemma 6.2, consider H : Υn(Π) → C defined
as

H(ξ) = ξ +
δ1(ξ − ξ0)

ξ − ξ0 + 2
.

For ξ ∈ Υn(Π) we have |Re(ξ − ξ0)| < 1. This implies that |ξ − ξ0| < |ξ− ξ0 +2|, and hence
|H(ξ) − ξ| < δ1. It follows from Lemma 6.2 that H maps Υn(Π) into Π. By Schwartz-Pick
Lemma, H is non-expanding with respect to the corresponding metrics. In particular, at
H(ξ0) = ξ0,

ρ(ξ0)|H
′(ξ0)| = ρ(ξ0)(1 + δ1/2) ≤ ρn(ξ0).

Hence,

ρ(ξ0) ≤

(

2

2 + δ1

)

ρn(ξ0).

The uniform (independent of n) contraction factor is δ2 = 2/(2 + δ1).

6.3. Critical curve. — Inductively, we define the curves

ujn : i[0,+∞) → Π,

for j ≥ 0 and n ≥ −1. For j = 0 and all n ≥ −1, let u0n(it) = 1 + it. Assume that for some
j ≥ 0, and all n ≥ −1, ujn is defined. Then, for all n ≥ −1, let

(6.3) uj+1
n = Υn+1 ◦ u

j
n+1 ◦ Y

−1
n+1.

Lemma 6.4. — For all n ≥ −1 and j ≥ 0, ujn : i[0,+∞) → Π is a well-defined analytic

map satisfying ujn(0) = +1.

Proof. — Recall that each Υn is either holomorphic or anti holomorphic, and each Yn is real
analytic. By (3.2), for every t ≥ 0, ImY −1

n+1(it) ∈ [0,+∞), and by Lemma 6.2, Υn(Π) ⊂
Π. These imply that each ujn is well-defined and analytic. Also, since Yn+1(0) = 0 and
Υn+1(+1) = +1, for all n ≥ −1, inductively, one concludes that ujn(0) = 1.

Recall the constant δ2 introduced in Proposition 6.3.

Proposition 6.5. — There is a constant C2 such that for all n ≥ −1, all j ≥ 0, and all

t ≥ 0,

|uj+1
n (it)− ujn(it)| ≤ C2(δ2)

j .

In particular, for every n ≥ −1, as j → +∞, ujn converges to a continuous map un :
i[0,+∞) → Π.

Proof. — By Proposition 5.2, with α = αn+1, h = fn+1, w1 = Y −1
n+1(it) and w2 = Y −1

n+1(it)+
1,

|u1n(it)− u0n(it)| = |Υn+1(Y
−1
n+1(it) + 1)− (it+ 1)|

≤ |Υn+1(Y
−1
n+1(it) + 1)− Yn+1(Y

−1
n+1(it))|+ 1 ≤ C3 + 1.
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Recall the Poincaré metric ρ(z)|dz| on int (Π). One has the classic bounds 1/(2d(z, ∂Π)) ≤
ρ(z) ≤ 2/d(z, ∂Π). In particular, ρ ≥ 1 on int (Π). On the other hand, by Lemma 6.2,
d(u1n(it), ∂Π) ≥ δ1 which implies that dρ(u

1
n(it), u

0
n(it)) ≤ 2(C3 + 1)/δ1. Now we apply

Proposition 6.3, to see that for j ≥ 1,

dρ(u
j+1
n (it), ujn(it)) = dρ

(

Υn+1 ◦ u
j
n+1 ◦ Y

−1
n+1(it),Υn+1 ◦ u

j−1
n+1 ◦ Y

−1
n+1(it)

)

≤ δ2dρ

(

ujn+1

(

Y −1
n+1(it)

)

, uj−1
n+1

(

Y −1
n+1(it)

)

)

.

Then, by induction,

dρ(u
j+1
n (it), ujn(it)) ≤ (δ2)

jdρ
(

u1n+j(it
′), u0n+j(it

′)
)

,

where it′ = Y −1
n+j ◦ · · · ◦ Y

−1
n+1(it). Therefore, as ρ ≥ 1 on int (Π),

(6.4)
|uj+1

n (it)− ujn(it)| ≤ dρ(u
j+1
n (it), ujn(it)) ≤ (δ2)

jdρ(u
1
n+j(it

′), u0n+j(it
′)) ≤ (δ2)

j2(C3 +1)/δ1.

For each n ≥ −1, ujn forms a Cauchy sequence on i[0,+∞), which implies that ujn converges
to a continuous map un, as j → +∞.

Proposition 6.6. — For all n ≥ 0 and all t ≥ 0 we have

Υn ◦ un(it) = un−1 ◦ Yn(it), and un(0) = 1.

Proof. — These follow from taking limits as j → +∞ in (6.3) and Lemma 6.4.

Proposition 6.7. — For every n ≥ −1, and every t ≥ 0, we have

|un(it)− (1 + it)| ≤ C2/(1− δ2).

Proof. — By Proposition 6.5, for j ≥ 1 and t ≥ 0, we have

(6.5) |ujn(it)− (1 + it)| =
∣

∣

∣

∑j
l=1(u

l
n(it)− ul−1

n (it))
∣

∣

∣
≤

∑j
l=1C2(δ2)

l−1 ≤ C2/(1− δ2).

Taking limit as j → +∞, we conclude the inequality in the proposition.

Proposition 6.8. — For every n ≥ −1, un : i[0,+∞) → Π is injective.

Proof. — Fix an arbitrary n ≥ −1. Let 0 ≤ tn < sn be arbitrary real values. Inductively,
define the sequence of numbers tl+1 = ImY −1

l+1(itl) and sl+1 = ImY −1
l+1(isl), for l ≥ n. By

(3.5), for l ≥ n, |tl − sl| ≥ (10/9)l−n|tn − sn|. In particular, for large enough l, |tl −
sl| ≥ 3C2/(1 − δ2). By virtue of Proposition 6.7, this implies that ul(itl) 6= ul(isl). Now,
inductively using the commutative relation in Proposition 6.6, and the injectivity of Yk and
Υk for all k, we conclude that un(itn) 6= un(isn).

Proposition 6.9. — For every n ≥ −1, limt→+∞(un(it)− (1 + it)) exists and is finite.
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Proof. — By Proposition 5.3 and the explicit formula for Yn+1, the following limit exists
and is finite

lim
t→+∞

(u1n(it)− u0n(it)) = lim
t→+∞

(

Υn+1(Y
−1
n+1(it) + 1)− (1 + it)

)

= lim
t→+∞

(

Υn+1(Y
−1
n+1(it) + 1)− Yn+1(Y

−1
n+1(it) + 1)

)

+ lim
t→+∞

(

Yn+1(Y
−1
n+1(it) + 1)− Yn+1(Y

−1
n+1(it))

)

− 1.

By an inductive argument, one may see that for every j ≥ 1, limt→+∞(ujn(it) − uj−1
n (it))

exists and is finite. Indeed, by (6.4), the absolute value of this limit is bounded from above
by (δ2)

j−12(C3 +1)/δ1. It follows that limt→+∞(ujn(it)− (1 + it)) exists and is finite. Since
ujn converges to un uniformly on i[0,+∞), we conclude the proposition.

Remark 6.10. — By the argument in this section the limiting curves un and their
parametrisations do not depend on the particular choice of u0n. Any other choice for u0n
which lies within some uniform distance from u0n leads to the same limiting curve un. For
this reason, one may see that when α ∈ B, the intersection of Φ−1

n (un) and the Siegel disk
of fn coincides with an internal ray of the Siegel disk of fn.

6.4. An equivariant extension of the critical curve. — We need to extend the curves
un at the end points un(0), while maintaining the functional relation in Proposition 6.6.
There are many choices for such extensions, as we present the details below. This is rather
arbitrary, and will be only used for technical aspects in the later parts of the paper.

Let us define the numbers tjn, for n ≥ −1 and j ≥ 0 according to

t0n = −1, for n ≥ −1, and tjn = ImYn+1(it
j−1
n+1), for n ≥ −1 and j ≥ 1.

Lemma 6.11. — For every n ≥ −1, we have t0n < t1n < t2n < · · · < 0 with tjn → 0 as

j → +∞.

Proof. — By Proposition 3.1-(i) and the definition of Yn in (3.1), for all n ≥ −1,
ImYn+1(−i) > −1. This implies that t0n < t1n, for all n ≥ −1. Since each Yn is injective and
maps i[−1,+∞) into itself, t 7→ ImYn(it) is order preserving, for all n ≥ 0. This implies
that for all n ≥ −1 and j ≥ 0, tjn < tj+1

n . Also, by (3.5), |tjn| ≤ (9/10)j, which implies the
latter part of the lemma.

Recall the set Πn = Πfn defined in Section 6.2.

Lemma 6.12. — For each n ≥ −1, there is a continuous and injective map

u0n : i[t0n, t
1
n] → Π \ int (Υn+1(Πn+1))

such that

(i) u0n(it
0
n) = 1− 2i and u0n(it

1
n) = Υn+1(1− 2i),

(ii) sup{Imu0n(is) | n ≥ −1, t0n ≤ s ≤ t1n} < +∞,

(iii) u0n(i(t
0
n, t

1
n)) ⊂ int (Π \Υn+1(Πn+1).
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Proof. — Recall that Exp(1 − 2i) = −4e4π/27, and Exp(Υn+1(1 − 2i)) is either equal to
Φ−1

n+1(1 − 2i) or s ◦ Φ−1
n+1(1 − 2i) depending on εn+1. Also, recall that Φ−1

n+1(Πn+1) is a
finite union of sectors bounded by analytic curves landing at 0. Moreover, this set contains
a punctured neighbourhood of 0, is compactly contained in B(0, 4e4π/27), and Φ−1

n+1(1− 2i)
lies on its boundary. Let us assume that εn+1 = −1. There is a continuous curve γ :
[0, 1] → B(0, 4e4π/27) such that γ(0) = −4e4π/27, γ(1) = Φ−1

n+1(1 − 2i), and γ((0, 1)) does

not meet the sets Φ−1
n+1(Πn+1) and [0,+∞). We may choose this curve to be uniformly away

from 0. One may lift the curve γ via Exp to define the desired curve u0n, which may be
re-parametrised on i[t0n, t

1
n].

When εn+1 = +1, one only needs to insert the complex conjugation map s in the appro-
priate places in the above argument.

Now, by induction on j ≥ 0, we define the maps ujn on i[tjn, t
j+1
n ], for all n ≥ −1. Assume

that for some j ≥ 0 and all n ≥ −1, ujn is defined on i[tjn, t
j+1
n ]. For all n ≥ −1, we define

uj+1
n on i[tj+1

n , tj+2
n ] as

(6.6) uj+1
n = Υn+1 ◦ u

j
n+1 ◦ Y

−1
n+1.

Note that, by Lemma 6.12-(i),

u1n(it
1
n) = Υn+1 ◦ u

0
n+1 ◦ Y

−1
n+1(it

1
n) = Υn+1 ◦ u

0
n+1(it

0
n+1) = Υn+1(1− 2i) = u0n(it

1
n).

In other words, u0n and u1n match at the intersection of their respective domains of definitions.
Repeating the above argument inductively, one may see that for all n ≥ −1 and j ≥ 0,
uj+1
n (itj+1

n ) = ujn(it
j+1
n ). Thus we may define un on i[−1, 0) as

un(it) = ujn(it), for t ∈ [tjn, t
j+1
n ].

We set un(0) = +1, for each n ≥ −1.

Lemma 6.13. — For every n ≥ −1, un : i[−1, 0] → Π is continuous. Moreover, there is

C5 > 0 such that for all n ≥ −1 and all t ∈ [−1, 0] we have |un(it)− (1 + it)| ≤ C5.

Proof. — Fix an arbitrary n ≥ −1. By Lemma 6.12 and (6.6), the restriction of un to each
closed interval i[tjn, t

j+1
n ] is continuous, for j ≥ 0. Hence, un is continuous on i[−1, 0).

Fix an arbitrary n ≥ −1 and an arbitrary j ≥ 1. By Lemma 6.12-(ii), the Euclidean
diameter of the curve un+j(i[t

0
n+j , t

1
n+j ]) is uniformly bounded from above. By the compact-

ness of IS, it follows that the Euclidean diameter of the curve Υn+j(un+j(i[t
0
n+j , t

1
n+j])) is

uniformly bounded from above, independent of n + j. On the other hand, this curve also
lies in Υn+j(Π), which is contained well inside Π, by Lemma 6.2. These imply that the hy-
perbolic diameter of the curve Υn+j(un+j(i[t

0
n+j, t

1
n+j ])) in int (Π) is uniformly bounded

from above, independent of n + j. Then, we employ Proposition 6.3 to conclude that
there is a constant C, independent of n and j, such that the hyperbolic diameter of the
curve Υn+1 ◦ · · · ◦ Υn+j(un+j(i[t

0
n+j , t

1
n+j ])) is bounded from above by C(δ2)

j−1. Simi-
larly, by making C larger if necessary, we also conclude that the hyperbolic distance from
Υn+1 ◦ · · · ◦Υn+j(un+j(it

1
n+j)) to +1 is bounded from above by C(δ2)

j−1.
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By (6.6),

Υn+1 ◦ · · · ◦Υn+j(un+j(i[−1, t1n+j])) = un(i[t
j
n, t

j+1
n ]),

Υn+1 ◦ · · · ◦Υn+j(un+j(it
1
n+j)) = un(it

j+1
n ).

Thus, by the above paragraph, the hyperbolic diameter of un(i[t
j
n, t

j+1
n ]) is bounded from

above by C(δ2)
j−1, and the hyperbolic distance from un(it

j+1
n ) to +1 is bounded from above

by C(δ2)
j−1. These imply that un is continuous at 0. Moreover, the hyperbolic diameter of

un(i[t
1
n, 0]) is bounded from above by C

∑∞
j=1(δ2)

j−1 = C/(1− δ2). In particular, combining

with Lemma 6.12-(ii), we conclude that the Euclidean diameter of the curve un(i[−1, 0])
is uniformly bounded from above, independent of n. This implies the latter part of the
lemma.

Proposition 6.14. — For every n ≥ −1, un : i[−1,+∞) → Π is injective.

Proof. — Fix an arbitrary n ≥ −1. We already proved in Proposition 6.8 that un is injective
on i[0,+∞).

Let us fix arbitrary points yn < xn in [−1,+∞) with yn < 0. We aim to show that
un(iyn) 6= un(ixn). First assume that there is j ≥ 0 such that both xn and yn belong to the
same interval [tjn, t

j+1
n ]. Then, un on i[tjn, t

j+1
n ] is given by

un = Υn+1 ◦ · · · ◦Υn+j ◦ un+j ◦ Y
−1
n+j ◦ · · · ◦ Y

−1
n+1,

while

Y −1
n+j ◦ · · · ◦ Y

−1
n+1(i[t

j
n, t

j+1
n ]) = i[t0n+j, t

1
n+j ].

However, each Υl is injective on Π, Yl is injective on its domain, and by Lemma 6.12, un is
injective on i[t0n+j , t

1
n+j]. In particular, un(iyn) 6= un(ixn).

Now assume that both xn and yn do not belong to one interval [tjn, t
j+1
n ]. By Lemma 6.11,

there is j ≥ 0 such that tjn ≤ yn < tj+1
n < xn. Let yl+1 = ImY −1

l+1(iyl) and xl+1 =

ImY −1
l+1(ixl), for n ≤ l ≤ n+ j − 1. By the choice of j, we have −1 ≤ yn+j < t1n+j < xn+j .

Then, by Lemma 6.2,

un+j(iyn+j) ∈ Π \Υn+j+1(Πn+j+1),

while

un+j(ixn+j) = Υn+j+1 ◦ un+j+1 ◦ Y
−1
n+j+1(ixn+j) ⊂ Υn+j+1(Π) ⊂ Υn+j+1(Πn+j+1).

In particular, un+j(ixn+j) 6= un+j(iyn+j). Now, inductively one uses (6.6), and the injectiv-
ity of Yl and Υl, to conclude that un(ixn) 6= un(iyn).

The particular choice of the curve un on [−1, 0]i and its parametrisation does not play
any role in the sequel. But the feature we shall use is the equivariant property

(6.7) Υn+1 ◦ un+1(it) = un ◦ Yn+1(it), t ∈ [−1, 0].
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7. Marked dynamical partitions for the post-critical set

In this section we build a nest of dynamical partitions for the post-critical set. The
elements of the partition are Jordan domains, whose boundaries are equipped with a param-
eterisation (marking). The markings match where the boundaries of pieces meet. This is
analogous to the Yoccoz puzzle pieces in polynomial dynamics. This nest of partitions is sim-
ilar to the nest of partitions Ωj

n introduced in [Che13, Che19, AC18]. However, the nest
introduced here has simpler combinatorial and geometric features, and enjoys equivariant
properties with respect to the renormalisation.

7.1. Marked curves w±
n and v±n . — Recall the curves un : i[−1,+∞) → Π, for n ≥ −1,

defined in Sections 6.3 and 6.4, as well as the sets Πn and the maps Υn : Πn → C defined in
Section 6.2.

For Υn, un(i[−1,+∞)) plays the role of i[−1,+∞) for Yn. Here we define two other curves
for Υn which play the analogous role of the lines 1/αn+i[−1,+∞) and 1/αn−1+i[−1,+∞)
for Yn (see (3.3) and (3.4)). Due to the presence of a critical point of Υn, as opposed to the
injectivity of Yn, we need to consider a pair of curves for the role of 1/αn − 1 + i[−1,+∞).
See Figure 9. For the sake of simplifying the arguments, as in un, we parametrise these
curves on the corresponding lines 1/αn + i[−1,+∞) and 1/αn − 1 + i[−1,+∞).

Proposition 7.1. — For every n ≥ 0, there are continuous and injective maps

w+
n : 1/αn + i[−1,+∞) → Πn, w−

n : 1/αn + i[−1,+∞) → Πn

such that

(i) for all t ∈ [−1,+∞) we have

Υn ◦ w+
n (1/αn + it) = Υn ◦ w−

n (1/αn + it) = Υn ◦ un(it)− εn,

(ii) on 1/αn + i[0,+∞), w+
n = w−

n ,

(iii) w+
n (1/αn + i[−1, 0)) ∩w−

n (1/αn + i[−1, 0)) = ∅,
(iv) Υn has a critical point at w+

n (1/αn) = w−
n (1/αn).

Proof. — From Section 4.2, recall the sets An = Afn , Bn = Bfn , and Sn = Sfn , as well as
the integer kn = kfn , associated to h = fn. Also, recall from Section 6 that un(i[−1,+∞))
is contained in Π = Φn(An∪Bn) ⊂ Πn. Then, Φ

−1
n ◦un(i[−1,+∞)) is contained in An∪Bn.

Recall that Φ−1
n : Πn → C covers An ∪ Bn several times, while Φ−1

n : Π → An ∪ Bn is
univalent. The restriction Φ−1

n : Φn(Sn)+ kn → An ∪Bn has a specific covering structure; it
covers Bn in a one-to-one fashion, and covers An by a two-to-one proper branched covering
map. The branch point is mapped to −4/27 = Φ−1

n (+1); the critical value of fn. See the
discussion in Section 4.2. In particular, there is a unique continuous curve w+

n : 1/αn +
i[0,+∞) → Φn(Sn) + kn, such that

(7.1) Φ−1
n (w+

n (1/αn + it)) = Φ−1
n (un(it)).

This defines w+
n on 1/αn + i[0,+∞). We let w−

n = w+
n on 1/αn + i[0,+∞).

There are two ways to extend w+
n on 1/αn + i[−1, 0) so that the above equation holds.

These come from the double covering structure of Φ−1
n from Φn(A

−kn
n )+ kn onto An. Let us

denote these maps by w+
n and w−

n . The three curves w
+
n (1/αn+i[−1, 0]), w−

n (1/αn+i[−1, 0]),



TOPOLOGY OF IRRATIONALLY INDIFFERENT ATTRACTORS 37

and w+
n (1/αn+i[0,+∞)) land at w+

n (1/αn). There is a cyclic order on these curves consistent
with the positive orientation on an infinitesimal circle at w+

n (1/αn). We relabel these curves
so that w+

n (1/αn + i[0,+∞)) < w+
n (1/αn + i[−1, 0]) < w−

n (1/αn + i[−1, 0]). See Figure 9.
Evidently, Υn has a critical point at w+

n (1/αn), and w+
n (1/αn + i[−1, 0)) ∩ w−

n (1/αn +
i[−1, 0)) = ∅.

By the above argument, the images of the curves w±
n are contained in Φn(Sn) + kn, that

is, for all s ∈ {+,−},

(7.2) ws
n : 1/αn + i[−1,+∞) → Φn(Sn) + kn.

Recall that Υn = Exp−1 ◦s◦Φ−1
n or Υn = Exp−1 ◦Φ−1

n , depending on the sign εn. Therefore,
by (7.1) and the continuity of un, w

+
n , and Υn, there is an integer in such that for s ∈ {+,−}

and all t ≥ −1, Υn◦ws
n(1/αn+it) = Υn◦un(it)+in. On the other hand, the region bounded

by the curves un and w+
n near +i∞ is mapped by Φ−1

n to a slit neighbourhood of 0 in a
one-to-one fashion. It follows that in = −εn.

Proposition 7.2. — There exists a constant C6 such that for every n ≥ 0, and every

t ≥ −1,

|w+
n (it+ 1/αn)− (un(it) + 1/αn)| ≤ C6.

Moreover, for every ε > 0 there is Cε such that for every n ≥ 0 and every t ≥ Cε, we have

|w+
n (1/αn + it)− (un(it) + 1/αn)| ≤ ε.

Proof. — Consider En = Φn ◦ Φ−1
n : Φn(Sn) + kn → Π, (compare with (4.3)). By Proposi-

tion 4.1-(e), En(w+1) = En(w)+1 whenever both sides are defined. Therefore, En induces a

holomorphic map, say Ẽn, from Φn(Sn)/Z ⊂ C/Z onto {w ∈ C/Z | Imw ≥ −2}. Moreover,

by (7.1), Ẽn maps the curve w+
n /Z to the curve un/Z.

The image of Ẽn covers the region above the circle Imw = +2 in a univalent fashion.
Also, we have limImw→+∞ Im Ẽn(w) = +∞. We may apply the Koebe distortion theorem

to Ẽ−1
n on the annulus {w ∈ C/Z | Imw > 2}. It implies that there is a constant cn such

that |un(it) + cn − w+
n (1/αn + it)| converges to 0, uniformly independent of n, as t → +∞.

Moreover, |un(it)+cn−w
+
n (1/αn+it)| is uniformly bounded from above when Imun(it) ≥ 3.

By (5.2), cn = 1/αn.
By Proposition 6.7, if t ≥ C2/(1 − δ2) + 3, Imun(it) ≥ 3. On the other hand, for

−1 ≤ t ≤ C2/(1− δ2)+ 3, by the compactness of QIS and the continuous dependence of Φh

on h ∈ QIS, |un(it) + 1/αn − w+
n (1/αn + it)| is uniformly bounded from above.

For n ≥ 0, we define the maps

v+n : 1/αn − 1 + i[−1,+∞) → Πn, v−n : 1/αn − 1 + i[−1,+∞) → Πn

according to

(7.3) v+n (1/αn − 1 + it) = w+
n (1/αn + it)− 1, v−n (1/αn − 1 + it) = w−

n (1/αn + it)− 1.

See Figure 11 for an illustration of the following proposition.

Proposition 7.3. — For every n ≥ 0 and every t ≥ −1 the following hold.
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(i) If εn+1 = −1, then

Υn+1 ◦ v
+
n+1(1/αn+1 − 1 + it) + an + εn+1 = w+

n (Yn+1(it) + 1/αn),

Υn+1 ◦ v
−
n+1(1/αn+1 − 1 + it) + an + εn+1 = w−

n (Yn+1(it) + 1/αn).

(ii) If εn+1 = +1, then

Υn+1 ◦ v
+
n+1(1/αn+1 − 1 + it) + an + εn+1 = w−

n (Yn+1(it) + 1/αn),

Υn+1 ◦ v
−
n+1(1/αn+1 − 1 + it) + an + εn+1 = w+

n (Yn+1(it) + 1/αn).

Proof. — Fix an arbitrary n ≥ 0 and s ∈ {+,−}. Let us first assume that εn+1 = −1 so
that fn+1 = R(fn).

By (7.2), for all t′ ≥ −1, ws
n(1/αn+ it

′)−kn ∈ Φn(Sn). By Proposition 4.1-(e), and (7.1),

fkn

n

(

Φ−1
n (ws

n(1/αn + it′)− kn)
)

= Φ−1
n (ws

n(1/αn + it′)) = Φ−1
n (un(it

′)).

Hence, by the definition of renormalisation R(fn) = fn+1, see (4.3), the above relation
implies that

(7.4)
fn+1 (Exp (w

s
n(1/αn + it′))) = fn+1 (Exp (w

s
n(1/αn + it′)− kn))

= Exp(un(it
′)).

Let it′ = Yn+1(it). The right hand side of the above equation becomes

Exp(un(it
′)) = Exp(un(Yn+1(it))) = Exp ◦Υn+1 ◦ un+1(it) (Proposition 6.6)

= Φ−1
n+1(un+1(it)) ((6.1))

= Φ−1
n+1(w

s
n+1(1/αn+1 + it)) ((7.1))

= fn+1 ◦ Φ
−1
n+1(w

s
n+1(1/αn+1 + it)− 1) (Proposition 4.1-e)

= fn+1 ◦ Φ
−1
n+1(v

s
n+1(1/αn+1 − 1 + it)). ((7.3))

Combining the above equations, we conclude that

fn+1 (Exp (w
s
n(1/αn + Yn+1(it))) = fn+1

(

Φ−1
n+1(v

s
n+1(1/αn+1 − 1 + it))

)

.

The above equation implies that

Exp (ws
n(1/αn + Yn+1(it))) = Φ−1

n+1(v
s
n+1(1/αn+1 − 1 + it))

= Exp ◦Υn+1(v
s
n+1(1/αn+1 − 1 + it)) ((6.1))

Then, for any t ≥ −1, there must be an integer lt, such that

ws
n(1/αn + Yn+1(it)) = Υn+1(v

s
n+1(1/αn+1 − 1 + it)) + lt.

However, since Υn+1(v
s
n+1(1/αn+1 − 1 + it)) and ws

n(1/αn + Yn+1(it)) depend continuously
on t, lt must be independent of t. In order to identify the value of lt we look at the limiting
behaviour of the relation as t→ +∞.

By Proposition 7.2,

lim
t→+∞

(

Re
(

vsn+1(1/αn+1 − 1 + it)− un+1(it)
))

= lim
t→+∞

(

Re(ws
n+1(1/αn+1 + it)− un+1(it))

)

− 1 = 1/αn+1 − 1.
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Applying Υn+1 and using (5.2),

lim
t→+∞

(

Re
(

Υn+1(v
s
n+1(1/αn+1 − 1 + it))−Υn+1(un+1(it))

))

= αn+1(1/αn+1−1) = 1−αn+1.

On the other hand, by Propositions 6.6 and 7.2, we have

lim
t→+∞

Re(ws
n(1/αn + Yn+1(it))− Υn+1(un+1(it))

= lim
t→+∞

Re(ws
n(1/αn + Yn+1(it))− un(Yn+1(it))) = 1/αn.

Hence, we must have 1 − αn+1 + lt = 1/αn, which by (2.2) and εn+1 = −1, implies that
lt = an − 1 = an + εn+1. This completes the proof of the desired relation in the proposition
when εn+1 = −1.

Now assume that εn+1 = +1. The argument is similar in this case, so we only look at
the relation for v+n , and emphasis the differences with the above argument. As in the above
argument, we have

fkn
n

(

Φ−1
n

(

w−
n (1/αn + it′)− kn

))

= Φ−1
n (un(it

′)).

When εn+1 = +1, R(fn) = s ◦ fn+1 ◦ s. Therefore,

s ◦ fn+1 ◦ s
(

Exp
(

w−
n (1/αn + it′)

))

= Exp(un(it
′)).

Let it′ = Yn+1(it). The right hand side of the above equation becomes

Exp(un(it
′)) = Exp(un(Yn+1(it))) = Exp ◦Υn+1 ◦ un+1(it) (Proposition 6.6)

= s ◦ Φ−1
n+1(un+1(it)) ((6.1))

= s ◦ fn+1 ◦ Φ
−1
n+1(v

−
n+1(1/αn+1 − 1 + it)). ((7.3))

Combining the above equations, we conclude that

s ◦ fn+1 ◦ s
(

Exp
(

w−
n (1/αn + Yn+1(it)

))

= s ◦ fn+1

(

Φ−1
n+1(v

−
n+1(1/αn+1 − 1 + it))

)

.

The above equation implies that

s ◦ Exp
(

w−
n (1/αn + Yn+1(it))

)

= Φ−1
n+1(v

+
n+1(1/αn+1 − 1 + it))

= s ◦ Exp ◦Υn+1(v
+
n+1(1/αn+1 − 1 + it)) ((6.1)).

Note that the change from v−n+1 to v+n+1 in the above relation is due to the orientation
reversing effect of s ◦ Exp on the left-hand side as opposed to the orientation preserving
effect of s ◦ Exp ◦Υn+1 on the right hand side of the equation.

As in the previous case, there is an integer lt, independent of t, such that

w+
n (1/αn + Yn+1(it)) = Υn+1(v

−
n+1(1/αn+1 − 1 + it)) + lt.

Since Υ′
n+1 is asymptotically equal to −αn+1 near +i∞, in this case we obtain

lim
t→+∞

(

Re
(

Υn+1(v
−
n+1(1/αn+1 − 1 + it))−Υn+1(un+1(it))

))

= −αn+1(1/αn+1−1) = αn+1−1.

Hence, αn+1−1+ lt = 1/αn, which by (2.2) and εn+1 = +1, implies that lt = an+εn+1.

Recall the numbers t1n = ImYn+1(−i) ∈ (−1, 0), for n ≥ −1.
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Proposition 7.4. — For all n ≥ 0 and s ∈ {+,−}, we have

w+
n (1/αn + i[t1n,+∞)) ∩ (un(i[t

1
n,+∞)) + Z) = ∅,

vsn(1/αn − 1 + i[t1n,+∞)) ∩ (un(i[t
1
n,+∞)) + Z) = ∅,

vsn(1/αn − 1 + i[−1,+∞)) ∩ w+
n (1/αn + i[−1,+∞)) = ∅.

Proof. — First assume that εn+1 = −1 so that R(fn) = fn+1. Recall from Section 6.4 that
un+1(i(−1,+∞)) lies in int (Π). Moreover, by Proposition 6.6 and (6.7), we have

Exp ◦un(i(t
1
n,+∞)) = Φ−1

n+1(un+1(i(−1,+∞)).

Thus, Exp ◦un(i(t1n,+∞)) is contained in int (An+1 ∪ Bn+1) = int (Φ−1
n+1(Π)). It follows

from (7.4) that Exp ◦w±
n (1/αn + i(t1n,+∞)) ⊂ int (A−1

n+1 ∪ B
−1
n+1). As int (An+1 ∪ Bn+1) ∩

int (A−1
n+1 ∪B

−1
n+1) = ∅,

Exp ◦un(i(t
1
n,+∞)) ∩ Exp ◦w±

n (1/αn + i(t1n,+∞)) = ∅.

At the end of the interval t1n, by Lemma 6.12-(i) and (7.4),

Exp ◦un(it
1
n) = Φ−1

n+1(un+1(−i)) = Φ−1
n+1(1− 2i) 6= Φ−1

n+1(−2i) ∋ Exp ◦w±
n (1/αn + it1n).

Combining the above equations, we have
(

Exp ◦un(i[t
1
n,+∞)

)

∩
(

Exp ◦w±
n (1/αn + i[t1n,+∞))

)

= ∅.

By the definition of v±n in terms of w±
n , the above equation implies the first two properties

in the proposition.
Since un(i(−1,+∞)) lies in int (Π), w±

n (1/αn + i(−1,+∞)) must lie in the interior of
Φn(Sn) + kn. The sets int (Φn(Sn) + kn) and int (Φn(Sn) + kn − 1) do not meet. Hence,
v±n (1/αn − 1 + i(−1,+∞)) and w+

n (1/αn + i(−1,+∞)) are disjoint. Evidently, v±n (1/αn −
1− i) 6= w+

n (1/αn − i). These imply the last property in the proposition.
The proof for εn+1 = +1 is similar.

7.2. The dynamical partition. — For n ≥ 0, un(i(−1,+∞)), v±n (1/αn−1+ i(−1,+∞))
and w+

n (1/αn + i(−1,+∞)) are pairwise disjoint, and lie in int (Πn). Moreover, un(−i),
v±n (1/αn − 1 − i) and w+

n (1/αn − i) are also pairwise disjoint, but all belong to ∂Πn. The
union of un and w+

n separate a connected region of Πn which contains v±n . Also, v
+
n (1/αn −

1 + i[−1, 0])∪ v−n (1/αn − 1 + i[−1, 0]) divides Πn into two components. Let M0
n denote the

closure of the connected component of

Πn\un(i[−1,∞))
⋃

w+
n (1/αn+i[−1,∞))

⋃

v+n (1/αn−1+i[−1, 0])
⋃

v−n (1/αn−1+i[−1, 0])

which contains v+n (1/αn − 1 + i(0,∞)).
Similarly, v+n (1/αn − 1 + i[0,+∞)) divides M0

n into two components. Let J 0
n denote the

closure of the component of M0
n \ v+n (1/αn − 1 + i[0,+∞)) which contains w+

n , and let K0
n

denote the closure of the component of M0
n \ v+n (1/αn − 1 + i[0,+∞)) which contains un.

Evidently, M0
n = K0

n ∪ J 0
n . These are analogous to M0

n, J
0
n and K0

n in Section 3.3. See
Figure 9.

Lemma 7.5. — For every n ≥ 0, Υn is injective on M0
n.
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b

un v+n v−n w+
n w−

n

K
0
n J

0
n

Figure 9. Illustration of the curves un, v
±
n and w±

n . The set K
0
n is coloured in

blue and J
0
n is coloured in orange.

Proof. — Recall that Φ−1
n is injective on M0

n \ (un∪w
+
n ), (see the proof of Proposition 7.1).

This implies that Υn is injective on M0
n \ (un ∪ w+

n ). Also, by Proposition 7.1, Υn maps
un and w+

n to disjoint curves on the boundary of Υn(int M
0
n). Therefore, Υn is injective on

M0
n.

Now we define the sets Mj
n, J

j
n , and Kj

n, for n ≥ 0 and j ≥ 0, in analogy with M j
n, J

j
n

and Kj
n in Section 3.3. Assume that Mj

n, J
j
n , and Kj

n are defined for some j ≥ 0 and all
n ≥ 0. We define Mj+1

n , J j+1
n , and Kj+1

n for all n ≥ 0 by following the below two cases.
If εn+1 = −1, we define

(7.5) Mj+1
n =

⋃an−2
l=0

(

Υn+1(M
j
n+1) + l

)
⋃
(

Υn+1(K
j
n+1) + an − 1

)

.

If εn+1 = +1, we define

(7.6) Mj+1
n =

⋃an

l=1

(

Υn+1(M
j
n+1) + l

)
⋃
(

Υn+1(J
j
n+1) + an + 1

)

.

Recall that when εn+1 = −1, by Proposition 7.1, Υn+1(M
j
n+1) lies between un and

un + 1, and by Proposition 7.3, Υn+1(K
j
n+1) + an − 1 lies between un + an − 1 and w+

n .

Also, when εn+1 = +1, by Proposition 7.1, Υn+1(M
j
n+1) lies between un − 1 and un, and

by Proposition 7.3, Υn+1(J
j
n+1) + an + 1 lies between un + an and w+

n . As in Section 3,

it follows that Mj+1
n is closed, bounded by piece-wise analytic curves, and int (Mj+1

n ) is
connected. Moreover, Mj+1

n ⊂ Mj
n.

Recall the numbers tjn = ImYn+1(it
j−1
n+1), with t

0
n = −1, for n ≥ −1 and j ≥ 0. One may

see that when εn+1 = −1,

un
(

i[tjn,+∞)
)

⊂ ∂Mj
n, Υn+1

(

v+n+1

(

1/αn+1 − 1 + i[tj−1
n+1,∞)

))

+ an − 1 ⊂ ∂Mj
n.

When εn+1 = +1,

Υn+1

(

w+
n+1

(

1/αn+1 + i[tj−1
n+1,+∞)

))

+ 1 ⊂ ∂Mj
n,

and

Υn+1

(

v−n+1

(

1/αn+1 − 1 + i[tj−1
n+1,∞)

))

+ an + 1 ⊂ ∂Mj
n.
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By Proposition 7.3,

Υn+1(v
+
n+1(1/αn+1 − 1 + i[0,+∞)) + an + εn+1 − 1 = v+n (1/αn − 1 + i[0,+∞)).

In particular, v+n (1/αn − 1 + i[0,+∞)) divides Mj+1
n into two connected components. Let

J j+1
n denote the closure of the connected component of Mj+1

n \ v+n (1/αn − 1 + i[0,+∞))
which meets w+

n , and let Kj+1
n denote the closure of the connected component of Mj+1

n \
v+n (1/αn − 1 + i[0,+∞)) which meets un. This completes the induction step to define Mj

n,
Kj

n, and J k
n .

For n = −1, we may let

Mj
−1 = Υ0(M

j+1
0 ) + (ε0 + 1)/2.

For each n ≥ −1, define

(7.7) Mn =
⋂∞

j=0M
j
n.

7.3. Hyperbolic contraction of the changes of coordinates. — In this section we
establish a uniform contraction of the maps Υn on M0

n, with respect to suitable hyperbolic
metrics on the domain and range. This will be similar to Lemma 6.2 and Proposition 6.3.

Lemma 7.6. — There is δ3 > 0 such that for every n ≥ 0, there are open sets M̃0
n, K̃

0
n

and J̃ 0
n satisfying the following properties:

(i) M0
n ⊂ M̃0

n, K
0
n ⊂ K̃0

n, J
0
n ⊂ J̃ 0

n , J̃
0
n ∪ K̃0

n = M̃0
n,

(ii) for all integers l with (εn+1 +1)/2 ≤ l ≤ an + εn+1 − 1, Bδ3(Υn+1(M̃0
n+1) + l) ⊂ M̃0

n,

(iii) if εn+1 = −1, Bδ3(Υn+1(K̃0
n+1) + an − 1) ⊂ M̃0

n,

(iv) if εn+1 = +1, Bδ3(Υn+1(J̃ 0
n+1) + an + 1) ⊂ M̃0

n.

Proof. — Recall the Poincaré metric ρ on int (Π). Fix an arbitrary constant R > 0, and let
Un denote the set of all points in int (Π) which lie at hyperbolic distance at most R from
un. (Because un(−i) = 1 − 2i ∈ ∂Π, and ρ behaves like 1/(Imw + 2) near the bottom end
of Π, Un asymptotically resembles a cone at un(−i).) The curve un divides Un into two
components; we denote the one on the right hand side of un by U+

n and the one on the left
hand side of un by U−

n .
As in the proof of Proposition 7.1, we may use Φn ◦ Φ−1

n to lift U+
n and U−

n to define the
sets W±

n ⊂ Πn such that

Φ−1
n (U+

n ) = Φ−1
n (W+

n ), Φ−1
n (U−

n ) = Φ−1
n (W−

n ),

with w−
n (1/αn − i) ∈ W+

n , and w+
n (1/αn − i) ∈ W−

n . Then, W+
n is on the right side of w−

n

and W−
n is on the left side of w+

n . See Figure 10 for an illustration of these sets. Now, let

V+
n = W+

n − 1, V−
n = W−

n − 1.

Then, V+
n lies on the right hand side of v−n with v−n (1/αn − 1− i) ∈ V+

n , and V−
n lies on the

left hand side of v+n with v+n (1/αn − 1− i) ∈ V−
n .

Recall that w+
n (1/αn + i[−1, 0]) ∪ w−

n (1/αn + i[−1, 0]) divides Πn into two components,
one of which is bounded, and denoted by W∗

n here. Let V∗
n = W∗

n − 1.
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Figure 10. Illustration of the sets U±
n , V±

n and W
±
n in the proof of Lemma 7.6.

We define

(7.8)

M̃0
n = int

(

M0
n ∪ U−

n ∪W+
n ∪W∗

n ∪ V∗
n

)

,

K̃0
n = int

(

K0
n ∪ U−

n ∪ V+
n ∪ V∗

n

)

,

J̃ 0
n = int

(

J 0
n ∪ V−

n ∪W+
n ∪W∗

n ∪ V∗
n

)

.

Since Υn+1(un+1) ⊂ un, and Υn+1 is uniformly contracting with respect to ρ,
Υn+1(Un+1) ⊂ Un. Indeed, it follows from Lemma 6.2 and Proposition 6.3 that there
is a uniform δ > 0 such that

– Bδ(Υn+1(Un+1)) ⊂ Un,

– when εn+1 = −1, Bδ(Υn+1(U
−
n+1)) ⊂ M̃0

n, Bδ(Υn+1(V
+
n+1)) + an − 1 ⊂ M̃0

n,

– when εn+1 = +1, Bδ(Υn+1(W
−
n+1)) + 1 ⊂ M̃0

n and Bδ(Υn+1(V
+
n+1)) + an + 1 ⊂ M̃0

n.

The set ∪kn

i=0f
◦i
n (Sn) is compactly contained in both the domain of fn and the image

of fn. By Proposition 4.3, kn is uniformly bounded from above, independent of n. By
the compactness of QIS, there is δ′ > 0, independent of n, such that δ′-neighbourhood
of ∪kn

i=0f
◦i
n (Sn) is contained in the domain and also in the image of fn. This implies that

there is δ′′ > 0, independent of n, such that δ′′-neighbourhood of Υn(∂M̃0
n \ (U−

n ∪W+
n )) is

contained in M0
n−1.

We define δ3 = min{δ, δ′′}.

Let ̺n|dz| denote the hyperbolic metric of constant curvature −1 on M̃0
n, for n ≥ 0.

Proposition 7.7. — There is a constant δ5 ∈ (0, 1) such that for all n ≥ 0 we have,

(i) for all integers l with (εn+1 + 1)/2 ≤ l ≤ an + εn+1 − 1, and all z ∈ M0
n+1,

(Υn+1 + l)∗̺n(z) ≤ δ5̺n+1(z);

(ii) if εn+1 = −1, for all z ∈ K0
n+1, (Υn+1 + an − 1)∗̺n(z) ≤ δ5̺n+1(z);
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(iii) if εn+1 = +1, for all z ∈ J 0
n+1, (Υn+1 + an + 1)∗̺n(z) ≤ δ5̺n+1(z).

Proof. — One may repeat the proof of Proposition 6.3; replacing Lemma 6.2 by Lemma 7.6.
We obtain the uniform contractions with respect to ̺n+1 on M̃0

n+1 and ̺n on M̃0
n. In

particular, the uniform contractions hold on M0
n+1, K

0
n+1 and J 0

n+1.

7.4. Iterates, shifts, and lifts. — In this section we relate the iterates of f to integer
translations and lifts in the renormalisation tower of f . To do that, we need to define the
notion of trajectory of a given point, analogous to the one for the toy model in Section 3.6.

Given z−1 ∈ M−1, there is a unique z0 ∈ M0 such that z−1 = Υ0(z0)+ (ε0+1)/2. Then,
inductively for i ≥ 0 we identify li ∈ Z and zi+1 ∈ Mi+1 so that

(7.9) zi − li ∈ Υi+1(Mi+1) and Υi+1(zi+1) + li = zi.

It follows that for all n ≥ 0, we have

(7.10) z−1 = (Υ0 + (ε0 + 1)/2) ◦ (Υ1 + l0) ◦ · · · ◦ (Υn + ln−1)(zn),

and by (7.5) and (7.6), for all i ≥ 0,

(7.11) (1 + εi+1)/2 ≤ li ≤ ai + εi+1.

We refer to the sequence (zi; li)i≥0 as the trajectory of z−1. Although the trajectory is not
uniquely determined, (for some zi there might be two integers li satisfying (7.9)), we refer
to any sequence (zi; li)i≥0 which satisfies both (7.10) and (7.11) as the trajectory of z−1.

Lemma 7.8. — Let p ≥ 0, and assume that for some w1 ∈ J 0
p and w2 ∈ Υp+1(M0

p+1) +

(εp + 1)/2 we have R(fp)(Exp(w1)) = Exp(w2). Then, fp(Φ
−1
p (w1)) = Φ−1

p (w2).

Proof. — Recall Sp = Sfp from Section 4.2, and that Exp(Φp(Sp)) = DomR(fp). Since
Exp(w1) belongs to DomR(fp), there is an integer l1 such that w1 − l1 ∈ Φp(Sp). By the
definition of renormalisation, see Section 4.2,

Exp ◦Φp ◦ f
◦kp

p ◦ Φ−1
p (w1 − l1) = R(fp)(Exp(w1 − l1)) = R(fp)(Exp(w1)).

Therefore, by the hypothesis in the lemma, we must have

Exp ◦Φp ◦ f
◦kp

p ◦ Φ−1
p (w1 − l1) = Exp(w2).

This implies that there is l2 ∈ Z such that

(7.12) Φp ◦ f
◦kp

p ◦ Φ−1
p (w1 − l1) + l2 = w2.

Recall that J 0
p is enclosed by the curves w+

p , v
−
p = w−

p − 1 and ∂(Φp(Sp) + Z). By

(7.2), w+
p is contained in Φp(Sp) + kp and v−p is contained in Φp(Sp) + kp − 1. Thus,

J 0
p ⊂ (Φp(Sp) + kp − 1) ∪ (Φp(Sp) + kp). Because w1 − l1 ∈ Φp(Sp) and w1 ∈ J 0

n , either
l1 = kp or l1 = kp − 1.

Recall that up and up + 1 lie on the boundary of Υp+1(M0
p+1) + (εp + 1)/2, and up is

contained in Π = Φp(Afp ∪ Bfp). This implies that l2 ∈ {0, 1}. However, using (7.1), one
notes that when l1 = kp − 1 we must have l2 = 0, and when l1 = kp we must have l2 = 1.
When l1 = kp− 1 and l2 = 0, (7.12) implies the desired relation in the proposition, using the
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functional relation in Proposition 4.1-(e). When l1 = kp and l2 = 1, we apply Φ−1
p to both

sides of (7.12) and use Proposition 4.1-(e), to conclude that

Φ−1
p (w2) = Φ−1

p

(

Φp ◦ f
◦kp

p ◦ Φ−1
p (w1 − kp) + 1

)

= fp◦
(

f◦kp

p ◦ Φ−1
p (w1 − kp)

)

= fp(Φ
−1
p (w1)).

Recall that for n ≥ 0, Mn ⊂ M0
n = K0

n∪J
0
n . For n ≥ 0, we define the map En : J0

n → M0
n

as

(7.13) En = Φn ◦ fn ◦ Φ−1
n .

Compare the above map to the one in (4.3).

Proposition 7.9. — Assume that α ∈ HTN , f ∈ QISα, and z−1 ∈ M−1 is an arbitrary

point with trajectory (zi; li)i≥0. The following hold:

(i) if there is n ≥ 0 such that zn ∈ Kn and for all 0 ≤ i ≤ n− 1, zi ∈ Mi \ Ki, then

s ◦ f ◦ s(Exp(z−1)) = Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υn +
εn + 1

2

)

(zn +1).

(ii) if for all i ≥ 0, zi ∈ Mi \ Ki, then for all n ≥ 0,

s◦f ◦s(Exp(z−1)) = Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υn +
εn + 1

2

)

(En(zn)).

Proof. — Part (i). Since zn ∈ K0
n, zn + 1 ∈ M0

n and Υn(zn + 1)+ (εn + 1)/2 is defined and
belongs to M0

n−1. By Proposition 4.1-(e), we have

(7.14) fn ◦ Φ−1
n (zn) = Φ−1

n (zn + 1).

Now we consider two cases, based on whether n = 0 or n ≥ 1.
First assume that n = 0. If ε0 = −1, then, by Proposition 6.1, f0 = s◦ f ◦ s, and by (6.1),

Exp ◦Υ0 = Φ−1
0 . Then, by the definition of trajectory, Exp(z−1) = Φ−1

0 (z0). Using (7.14)
with n = 0, and Proposition 4.1-(e), we get

s ◦ f ◦ s(Exp(z−1)) = f0(Φ
−1
0 (z0)) = Φ−1

0 (z0 + 1)

= Exp ◦Υ0(z0 + 1) = Exp ◦(Υ0 + (ε0 + 1)/2)(z0 + 1).

Similarly, if ε0 = +1, f0 = f and Exp ◦Υ0 = s ◦ Φ−1
0 . Then, Exp(z−1) = s ◦ Φ−1

0 (z0).
Therefore,

s ◦ f ◦ s(Exp(z−1)) = s ◦ f(Φ−1
0 (z0)) = s ◦ f0(Φ

−1
0 (z0))

= s ◦ Φ−1
0 (z0 + 1) = Exp ◦(Υ0 + (ε0 + 1)/2)(z0 + 1).

Now assume that n ≥ 1. By considering two cases based on εn = ±1, as in the previous
case, one may see that (7.14) and (7.9) imply that

(7.15) R(fn−1)(Exp(zn−1)) = Exp ◦

(

Υn +
εn + 1

2

)

(zn + 1).
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Then, applying Lemma 7.8 with p = n− 1, w2 = (Υn + (εn + 1)/2)(zn + 1) and w1 = zn−1

we get

(7.16) fn−1 ◦ Φ
−1
n−1(zn−1) = Φ−1

n−1 ◦ (Υn + (εn + 1)/2)(zn + 1).

Compare the above relation to the one in (7.14).
We repeat the above paragraph, replacing the relation in (7.14) with the one in (7.16). If

n− 1 = 0, we get

s ◦ f ◦ s(Exp(zn−2)) = Exp ◦

(

Υn−1 +
εn−1 + 1

2

)

◦

(

Υn +
εn + 1

2

)

(zn + 1).

which is the desired relation in Part (i). If n− 1 ≥ 1, (7.16) implies that

R(fn−2)(Exp(zn−2)) = Exp ◦

(

Υn−1 +
εn−1 + 1

2

)

◦

(

Υn +
εn + 1

2

)

(zn + 1).

Repeating the above process, until we reach level 0, leads to the desired relation in Part (i).
Part(ii). By the definition of renormalisation in Section 4.2, En induces the relation

R(fn)(Exp(zn)) = Exp(En(zn)).

By Lemma 7.8, the above relation implies that

(7.17) fn ◦ Φ−1
n (zn) = Φ−1

n (En(zn)).

Now one may repeat the argument in Part (i); replacing (7.14) with (7.17).

Proposition 7.10. — Assume that α ∈ HTN , f ∈ QISα, and z−1 ∈ M−1 with trajectory

(zi; li)i≥0. For every ℓ ≥ 1, there is a finite sequence of integers (ji)
v
i=0 such that either

(7.18) s ◦ f◦ℓ ◦ s(Exp(z−1))

= Exp ◦(Υ0 + (ε0 + 1)/2) ◦ (Υ1 + j0) ◦ (Υ2 + j1) ◦ · · · ◦ (Υv + jv−1)(zv + jv),

or

(7.19) s ◦ f◦ℓ ◦ s(Exp(z−1))

= Exp ◦(Υ0 + (ε0 + 1)/2) ◦ (Υ1 + j0) ◦ (Υ2 + j1) ◦ · · · ◦ (Υv + jv−1)(Ev(zv)).

Each map Υj on the right hand side of (7.18) and (7.19) is only considered on Mj.

Proof. — Proposition 7.9 readily implies the statement for ℓ = 1. Assume that the statement
holds for some ℓ − 1 ≥ 1. We aim to prove it for ℓ. By the induction hypothesis, there is a
finite sequence of integers (ji)

n
i=0 such that either

(7.20) s ◦ f◦(ℓ−1) ◦ s(Exp(z−1))

= Exp ◦(Υ0 + (ε0 + 1)/2) ◦ (Υ1 + j0) ◦ (Υ2 + j1) ◦ · · · ◦ (Υn + jn−1)(zn + jn),

or

(7.21) s ◦ f◦(ℓ−1) ◦ s(Exp(z−1))

= Exp ◦(Υ0 + (ε0 + 1)/2) ◦ (Υ1 + j0) ◦ (Υ2 + j1) ◦ · · · ◦ (Υn + jn−1)(En(zn)).

We consider two cases, based on which of (7.20) and (7.21) holds.
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Case 1. Assume that (7.20) holds.

Define

w−1 = (Υ0 + (ε0 + 1)/2) ◦ (Υ1 + j0) ◦ (Υ2 + j1) ◦ · · · ◦ (Υn + jn−1)(zn + jn).

The point w−1 has a trajectory (wi; si)i≥0 which satisfies the relations

(7.22) wi = (Υi+1 + ji) ◦ · · · ◦ (Υn + jn−1)(zn + jn), for 0 ≤ i ≤ n− 1,

(7.23) wn = zn + jn,

(7.24) wi = zi, for i ≥ n+ 1.

By (7.20),

(7.25) s ◦ f◦ℓ ◦ s(Exp(z−1)) = (s ◦ f ◦ s) ◦ s ◦ f◦(ℓ−1) ◦ s(Exp(z−1)) = s ◦ f ◦ s(Exp(w−1)).

Now, we consider two scenarios.
Case 1.1: There is m ≥ 0 such that wm ∈ K0

m, and for all 0 ≤ i ≤ m− 1, wi ∈ Mi \ Ki.
We may employ Proposition 7.9, to obtain

(7.26) s ◦ f ◦ s(Exp(w−1))

= Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υm +
εm + 1

2

)

(wm + 1).

There are three scenarios based on the value of m relative n.
Case 1.1.1: m ≤ n− 1. By (7.22), the right hand side of (7.26) may be written as

Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υm +
εm + 1

2

)

◦ (Υm+1 + jm + 1) ◦ · · · ◦ (Υn + jn−1) (zn + jn).

Case 1.1.2: m = n. By (7.23), the right hand side of (7.26) may be written as

Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υn +
εn + 1

2

)

(zn + jn + 1).

Case 1.1.3: m ≥ n+ 1. By (7.24), the right hand side of (7.26) may be written as

Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υm +
εm + 1

2

)

(zm + 1).

Case 1.2: There is no m ≥ 0 satisfying wm ∈ Km.
By Proposition 7.9, and (7.24), we obtain

s ◦ f ◦ s(Exp(w−1))

= Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υn+1 +
εn+1 + 1

2

)

(En+1(wn+1))

= Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υn+1 +
εn+1 + 1

2

)

(En+1(zn+1)).

Case 2. Assume that (7.21) holds.
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Define

w−1 = (Υ0 + (ε0 + 1)/2) ◦ (Υ1 + j0) ◦ (Υ2 + j1) ◦ · · · ◦ (Υn + jn−1)(En(zn)).

The point w−1 has a trajectory (wi; si)i≥0 which satisfies

(7.27) wi = (Υi+1 + ji) ◦ · · · ◦ (Υn + jn−1)(En(zn)), for 0 ≤ i ≤ n− 1,

(7.28) wn = En(zn).

By (7.21),

(7.29) s ◦ f◦ℓ ◦ s(Exp(z−1)) = (s ◦ f ◦ s) ◦ s ◦ f◦(ℓ−1) ◦ s(Exp(z−1)) = s ◦ f ◦ s(Exp(w−1)).

Now we consider two scenarios.
Case 2.1: There ism ≤ n−1, such that wm ∈ K0

m, and for all 0 ≤ i ≤ m−1, wi ∈ M0
i \K

0
i .

Using Proposition 7.9, and (7.27),

s ◦ f ◦ s(Exp(w−1))

= Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υm +
εm + 1

2

)

(wm + 1)

= Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υm +
εm + 1

2

)

◦ (Υm+1 + jm + 1) ◦ · · · ◦ (Υn + jn−1) (En(zn)).

Case 2.2: For all m with 0 ≤ m ≤ n− 1, wm ∈ M0
m \ K0

m.
By Proposition 7.9, and using wn = En(zn) ∈ K0

n, we get

(7.30) s ◦ f ◦ s(Exp(w−1))

= Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υn +
εn + 1

2

)

(wn + 1)

= Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υn +
εn + 1

2

)

(En(zn) + 1).

There are two scenarios based on whether zn+1 ∈ K0
n+1, or not.

Case 2.2.1: zn+1 ∈ Kn+1. Then zn+1 + 1 ∈ Mn+1, and hence fn+1 ◦ Φ−1
n+1(zn+1) =

Φ−1
n+1(zn+1 + 1). The latter relation implies that

R(fn)(Exp(zn)) = Exp ◦(Υn+1 + (εn+1 + 1)/2)(zn+1 + 1).

We may apply Lemma 7.8, to get

fn ◦ Φ−1
n (zn) = Φ−1

n ◦ (Υn+1 + (εn+1 + 1)/2)(zn+1 + 1).

This implies that

En(zn) = Φn ◦ fn ◦ Φ−1
n (zn) = (Υn+1 + (εn+1 + 1)/2)(zn+1 + 1).

By (7.28), and the above relation, the right hand side of (7.30) may be written as

Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦· · ·◦

(

Υn +
εn + 1

2

)

◦

(

Υn+1 +
εn+1 + 1

2
+ 1

)

(zn+1+1).
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Case 2.2.2: zn+1 ∈ Mn+1 \ Kn+1. As in the previous case, one may see that

En(zn) = (Υn+1 + (εn+1 + 1)/2)(En+1(zn+1)).

Therefore, by (7.28), and the above relation, the right hand side of (7.30) may be written as

Exp ◦

(

Υ0 +
ε0 + 1

2

)

◦

(

Υ1 +
ε1 + 1

2

)

◦ · · · ◦

(

Υn +
εn + 1

2

)

◦

(

Υn+1 +
εn+1 + 1

2
+ 1

)

(En+1(zn+1)).

Remark 7.11. — Assume that z−1 in M−1 has a trajectory (zi; li)i≥0 such that for in-
finitely many distinct n ≥ 0 we have zn ∈ K0

n. It is evident from the proof of Proposition 7.10
that for every ℓ ≥ 1, (7.18) holds for some (ji)

v
i=0. For instance, if α is an irrational number

with εi = −1 for all i ≥ 0, one may employ Proposition 7.7 to conclude that for every
z−1 ∈ M−1, infinitely often zn ∈ K0

n. However, if α is an irrational number with εi = +1
for all i ≥ 0, there are z−1 ∈ M−1 such that for all n ≥ 0, zn ∈ Mn \K0

n. For such z−1, it is
not possible to have (7.18) for all ℓ ≥ 1. Once we establish the relation between M−1 and
M−1 in Section 8, it becomes clear that the set of such z−1 forms a countable union of arcs
in M−1.

The inverse of the statement in Proposition 7.10 is also true, which we state below.

Proposition 7.12. — Assume that α ∈ HTN , f ∈ QISα, and z−1 ∈ M−1 is an arbitrary

point with trajectory (zi; li)i≥0. Then, the following hold:

(i) for every sequence of integers (ji)
v
i=0 with jv ≥ 1, there is ℓ ≥ 1 such that (7.18) holds,

provided each Υj in the right hand side of (7.18) is considered on Mj.

(ii) for every sequence of integers (ji)
v−1
i=0 , there is ℓ ≥ 1 such that (7.19) holds, provided

each Υj in the right hand side of (7.19) is considered on Mj.

We will not use the above proposition in this paper, it is only stated for the record.

Proof. — By Proposition 4.1-(e), each translation in Mj corresponds to an iterate of fj .
Each iterate of fj corresponds to an iterate of R(fj−1). Each iterate of R(fj−1) corresponds
to a finite number of iterates by fj−1. Combining these steps, one concludes that the
translations and lifts correspond to some iterate of f under the changes of coordinates. The
argument is similar to the proof of Lemma 7.8, so we leave the details to the reader. One
may consult the proofs of similar statements in [Che13, Che19, AC18].

The following lemma will not be formally used in this paper, but it sheds some light on
the argument presented in Section 8.

Lemma 7.13. — For every n ≥ 0, and every integer l ∈ [0, an + εn], we have

(un(i[−1, 0)) + l) ∩M0
n = ∅, w±

n (1/αn + i[−1, 0)) ∩M0
n = ∅, v±n (1/αn − 1 + i[−1, 0)) ∩M0

n = ∅.

Proof. — Fix arbitrary n ≥ 0 and 0 ≤ l ≤ an + εn. Recall from Proposition 7.1 and
(7.3) that for all i ≥ 0, w+

i (1/αi) = w−
i (1/αi) and v+i (1/αi − 1) = v−i (1/αi − 1). By

propositions 7.1 and 7.3, for every zi in {ui(0) + l, w+
i (1/αi), v

+
i (1/αi − 1)}, there are zi+1
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in {ui+1(0), w
+
i+1(1/αi), v

+
i+1(1/αi − 1)} and ji ∈ Z such that Υi+1(zi+1) + ji = zi. This

implies that zn has a trajectory (zi; ji)i≥n+1, such that for all i ≥ n + 1, zi belongs to
{ui(0), w

+
i (1/αi), v

+
i (1/αi − 1)}.

Now assume that there is t ∈ [−1, 0) such that un(it)+l belongs toMn. Let wn = un(it)+l
and zn = un(0)+ l. It follows from Propositions 7.1 and 7.3, that zn and wn have trajectories
(zi; ji)i≥n+1 and (wi; ji)i≥n+1, respectively. That is, the integers ji in the corresponding
trajectories are identical. By the definition of trajectories, for all m ≥ n+ 2, we have

zn = (Υn+1 + (εn+1 + 1)/2 + l) ◦ (Υn+2 + jn+1) ◦ · · · ◦ (Υm + jm−1)(zm),

wn = (Υn+1 + (εn+1 + 1)/2 + l) ◦ (Υn+2 + jn+1) ◦ · · · ◦ (Υm + jm−1)(wm).

Recall the hyperbolic metric ̺m on M̃0
m ⊃ M0

m, discussed in Section 7.3. Since zm+1 and

wm+1 belong to Mm+1 ⊂ M0
m+1 ⊂ M̃0

m+1, it follows from Lemma 7.6, that the distance
between wm and zm with respect to ̺m is uniformly bounded from above, independent of m.
Then, by Proposition 7.7, we must have wn = zn. That is, un(0) = un(it). This contradicts
the injectivity of un on [−1,+∞), proved in Proposition 6.8.

The latter two properties in the lemma are proved similarly, where one employs the
injectivity of w±

n and v±n in Propositions 7.1 and 7.3.

7.5. Capturing the post-critical set. — Let us define the sets

(7.31) Âf = s ◦ Exp(M−1) ∪ {0}, and Af = ∂Âf .

When α ∈ B, s ◦ Exp(M−1) contains a punctured neighbourhood of 0, so we have added 0
to that set, to avoid including 0 in Af . When α /∈ B, as we shall see in the next section,
s ◦Exp(M−1)∪ {0} has empty interior, so its boundary is itself. Recall from Section 1 that

the post-critical set of f is denoted by Λ(cf ). In this section we prove that Λ(cf ) ⊆ Âf .

Proposition 7.14. — For every α ∈ HTN and f ∈ QISα, f(Âf ) ⊆ Âf , and Λ(cf) ⊆ Âf .

Proof. — The first part of the proposition follows from Proposition 7.10. For the latter part
of the proposition we note that 1 = u−1(0) ∈ M−1, and s ◦Exp(1) is the critical value of f .
Thus, by the first part of the proposition, the orbit of the critical value of f is contained in
Âf . Because Âf is a closed set, it must contain Λ(cf ).

8. Uniformisation of the post-critical set

In this section we complete the proofs of the theorems stated in the Introduction. There
remains to show that Aα is homeomorphic to the topological model Aα.

RecallM j
n and Yn employed to build the topological model in Section 3, and the correspond

dynamical objects Mj
n and Υn from Section 7. We aim to build homeomorphisms from each

Mj
n to M j

n which collectively enjoy equivariant properties with respect to Yn and Υn. Then
we pass to limit to obtain a homeomorphism from Mn to Mn, which in turn will induce a
topological conjugacy from Af to Aα, conjugating f to the model map Tα.
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8.1. Summary of the markings. — In Sections 6 and 7 we introduced the curves un,
v±n , and w

±
n , for n ≥ 0. We also established some remarkable equivariant properties of these

curves, which play a fundamental role in this section. For the convenience of the reader, we
collect (and reformulate some of) those relations, and present them below.

For every n ≥ 0, the following hold:

(E1) un : i[−1,+∞) → ∂M0
n, and for all t ≥ −1,

Υn ◦ un(it) = un−1 ◦ Yn(it).

(E2) w+
n : (1/αn+ i[−1,+∞)) → ∂M0

n, w
−
n : (1/αn+ i[−1,+∞)) → Πn, and for all t ≥ −1,

Υn ◦ w+
n (1/αn + it) = Υn ◦w−

n (1/αn + it) = un−1 ◦ Yn(it)− εn;

(E3) v±n : (1/αn − 1 + i[−1,∞)) → Mn, and for all t ≥ −1,

Υn ◦ v±n (1/αn − 1 + it) + an−1 + εn = w±
n−1(1/αn−1 + Yn(it)), if εn = −1,

Υn ◦ v±n (1/αn − 1 + it) + an−1 + εn = w∓
n−1(1/αn−1 + Yn(it)), if εn = +1.

See Figure 11 for an illustration of the above relations.

8.2. Partial uniformisations matching the markings. — Let n ≥ 0 and j ≥ 0. We
say that a map Ω : Mj

n →M j
n matches (un, v

±
n , w

+
n ), if the following four properties hold:

(M1) for every z ∈M j
n with Re z = 0 we have Ω ◦ un(z) = z;

(M2) for every z ∈M j
n with Re z = 1/αn we have Ω ◦ w+

n (z) = z;

(M3) for every z ∈M j
n with Re z = 1/αn − 1 we have Ω ◦ v+n (z) = z;

(M4) for every z ∈M j
n with Re z = 1/αn − 1 we have Ω ◦ v−n (z) = z;

In other words, Ω : Mj
n →M j

n matches (un, v
±
n , w

+
n ) if it is equal to the inverses of the maps

un, v
+
n , v

−
n , and w+

n , where they are defined.
By Propositions 7.1 and 7.4, v+n = v−n on 1/αn − 1 + i[0,∞). This implies that (M3) and

(M4) do not contradict. However, because v+n (1/αn−1+i[−1, 0))∩v−n (1/αn−1+i[−1, 0)) = ∅,
Ωn may not be injective. For this reason, maps from M j

n to Mj
n matching the markings

must be multivalued (hence the reason for working with maps from Mj
n to M j

n). As we
shall see in a moment, this does not cause any problems, since by Lemma 7.13 the curves
v+n (1/αn − 1 + i[−1, 0)) and v−n (1/αn − 1 + i[−1, 0)) do not meet Mn.

Proposition 8.1. — There is a constant C8 such that for every n ≥ 0 there exists a

continuous and surjective map

Ω0
n : M0

n →M0
n

which matches (un, v
±
n , w

+
n ), and for all z ∈ M0

n, |Ω
0
n(z)− z| ≤ C8.

In light of Lemma 7.13, we may choose the map Ω0
n in the above proposition to be injective

on Mn. But this will not be needed for the overall argument to work in this section.

Proof. — Recall that M0
n is bounded by the curves un, w

+
n , and a continuous curve µn

which connects un(−i) to w+
n (1/αn − i). By Propositions 6.7 and 7.2, the maps un, v

±
n and

w+
n are uniformly close to the identity map. By Theorem 4.5, µn may also be parameterised

to be uniformly close to the identity map. These imply that one may extend the inverses



52 DAVOUD CHERAGHI

of these maps to a continuous surjective map from M0
n to M0

n. This may be carried out
by partitioning the sets M0

n and M0
n into Jordan domains with uniformly bounded diame-

ters, and mapping the corresponding pieces one to another, while respecting the boundary
conditions. We present more details below.

The curves v±n lie in M0
n, and v±n (1/αn − 1 − i) belong to µn. By Proposition 7.4, v±n

are disjoint from w+
n and un, and moreover un + Z is disjoint from v±n and w+

n . Recall
that {w ∈ C | 0 ≤ Rew ≤ 1/αn − c1} is contained in M0

n, where c1 is the constant in
Proposition 4.2. Thus, for integers j with 0 ≤ j ≤ 1/αn − c1 − 1, the curves un + j are
contained in M0

n and lie on the left hand side of v+n . Moreover, by the definition of µn, all
those curves un + j meet the curve µn. Let us define ln as the largest integer less than or
equal to 1/αn − c1 − 1. The curves un + j, for 0 ≤ j ≤ ln, v

+
n , and w

+
n partition M0

n into
ln + 2 pieces, say A0

n,k, for 1 ≤ k ≤ l + 2. Each A0
n,k is uniformly close to a half-infinite

vertical strip of width one. Next, we divide each A0
n,k into infinitely many nearly-square

Jordan domains with uniformly bounded diameters. To see this, we note that for each A0
n,k,

with “vertical” boundary curves, say un+j and un+j+1, and any parameter t ∈ [−1,+∞),
the points un(it) + j and un(it) + j + 1 may be connected by a path in A0

n,k which has a

uniformly bounded diameter. We may use countably many such paths to partition each A0
n,k

into Jordan domains with uniformly bounded diameters.

8.3. Lifting partial uniformisations. —

Proposition 8.2. — Let n ≥ 1 and j ≥ 0. Assume that Ωj
n : Mj

n → M j
n is a continu-

ous and surjective map which matches (un, v
±
n , w

+
n ). Then, there exists a continuous and

surjective map

Ωj+1
n−1 : Mj+1

n−1 →M j+1
n−1

which matches (un−1, v
±
n−1, w

+
n−1), and for all integers l satisfying (εn + 1)/2 ≤ l ≤ an−1 +

(εn − 1)/2,

Ωj+1
n−1 ◦ (Υn + l) = Yn ◦ Ωj

n + l,

whenever both sides of the equation are defined.

See Figure 11 for an illustration of the proof of Proposition 8.2.

Proof. — Fix an arbitrary n ≥ 1 and j ≥ 0. Let us first assume that εn = −1. Recall from
(3.7) and (7.5) that

M j+1
n−1 =

an−1−2
⋃

l=0

(

Yn(M
j
n) + l

)

⋃

(

Yn(K
j
n) + an−1 − 1

)

.

and

Mj+1
n−1 =

an−1−2
⋃

l=0

(

Υn(M
j
n) + l

)

⋃

(

Υn(K
j
n) + an−1 − 1

)

.

For each 0 ≤ l ≤ an−1 − 2, define Ωj+1
n−1 : Υn(Mj

n) + l → Yn(M
j
n) + l as

Ωj+1
n−1(z) = Yn ◦ Ωj

n ◦Υ−1
n (z − l) + l.
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b

0
1

αn
− 1 1

αn

un

v±n

w+
n

+1

+an−1 + ǫn

0
1

αn−1
− 1 1

αn−1

un−1

v±n−1

w±

n−1

Υn

Υn

Yn

Υn + an−1 + ǫn

Figure 11. Illustration of the markings and commutative relations, when ǫn = −1.

Since Yn, Ω
j
n and Υn are continuous, the above map is continuous. As Ωj

n is surjective, Ωj+1
n−1

covers Yn(M
j
n) + l. Similarly, we define Ωj+1

n−1 : Υn(Kj
n) + an−1 − 1 → Yn(K

j
n) + an−1 − 1 as

Ωj+1
n−1(z) = Yn ◦ Ωj

n ◦Υ−1
n (z − an−1 + 1) + an−1 − 1.

Since Ωj
n : Mj

n → M j
n matches un and v+n , it follows that Ω

j
n : Kj

n → Kj
n is continuous and

surjective.
We need to show that Ωj+1

n−1 is well-defined on the common boundaries of Υn(Mj
n)+ l and

Υn(M
j
n) + l + 1, for integers l with 0 ≤ l ≤ an−1 − 2. Fix an arbitrary z on the common

boundary. There is t′ ≥ ImYn(−i) such that z = un−1(it
′)+ l+1. Let it′ = Yn(it), for some
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t ≥ −1, (see (3.2)). The map induced from the left-hand component provides

Ωj+1
n−1(z) = Yn ◦ Ωj

n ◦Υ−1
n (un−1(it

′) + l + 1− l) + l

= Yn ◦ Ωj
n ◦w+

n (1/αn + Y −1
n (it′)) + l (by (E2))

= Yn(1/αn + Y −1
n (it′)) + l (by (M2))

= it′ + 1 + l. ((3.3))

The map induced from the right-hand component provides

Ωj+1
n−1(z) = Yn ◦ Ωj

n ◦Υ−1
n (un−1(it

′) + l + 1− l− 1) + l + 1

= Yn ◦ Ωj
n ◦ un(Y

−1
n (it′)) + l + 1 (by (E1))

= Yn(Y
−1
n (it′)) + l + 1 (by (M1))

= it′ + l + 1.

Thus, the two induced maps are identical on the common boundaries.
By the definition of Ωj+1

n−1, the functional equations in the proposition hold. There remains

to show that Ωj+1
n−1 matches (un−1, v

±
n−1, w

+
n−1).

• Ωj+1
n−1 matches un−1: Let z = un−1(it

′) = Yn(it) for some t′ ≥ ImYn(−i) and t ≥ −1.

By the definition of Ωj+1
n−1 (use l = 0), we have

Ωj+1
n−1(un−1(it

′)) = Yn ◦ Ωj
n ◦Υ−1

n (un−1(it
′)) = Yn ◦ Ωj

n ◦ un(Y
−1
n (it′)) = Yn(Y

−1
n (it′)) = it′.

In the above equation we have employed (E1) and (M1).

• Ωj+1
n−1 matches w+

n−1: Let z = w+
n−1(it

′ + 1/αn−1) for some t′ ≥ −1. As w+
n−1(it

′ +

1/αn−1) belongs to Υn(Kj
n) + an−1 − 1, by the definition of Ωj+1

n−1,

Ωj+1
n−1(z) = Yn ◦ Ωj

n ◦Υ−1
n (w+

n−1(it
′ + 1/αn−1)− (an−1 − 1)) + an−1 − 1

= Yn ◦ Ωj
n ◦ v+n (1/αn − 1 + Y −1

n (it′)) + an−1 − 1 (by (E3))

= Yn(1/αn − 1 + Y −1
n (it′)) + an−1 − 1 (by (M3))

= Yn(Y
−1
n (it′)) + 1− αn + an−1 − 1 ((3.4))

= it′ + 1/αn−1. ((2.2))

• Ωj+1
n−1 matches v+n−1: Let z = v+n−1(it

′ +1/αn−1 − 1) for some t′ ≥ −1. Using Ωj+1
n−1(z +

1) = Ωj+1
n−1(z) + 1, we have

Ωj+1
n−1(v

+
n−1(it

′ + 1/αn−1 − 1)) = Ωj+1
n−1(v

+
n−1(it

′ + 1/αn−1 − 1) + 1)− 1

= Ωj+1
n−1(w

+
n−1(it

′ + 1/αn−1))− 1

= it′ + 1/αn−1 − 1. (by (M2))

• Ωj+1
n−1 matches v−n−1: Let z = v−n−1(it

′ + 1/αn−1 − 1) and it′ = Yn(it) for some t′ ≥
ImYn(−i) and t ≥ −1. Since εn = −1, 1/αn−1 = an−1 − αn, and hence 1/αn−1 − 1 lies
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strictly between an−1 − 2 and an−1 − 1. By the definition of Ωj+1
n−1 (here use l = an−1 − 2),

we have

Ωj+1
n−1(v

−
n−1(it

′ + 1/αn−1 − 1))

= Yn ◦ Ωj
n ◦Υ−1

n (v−n−1(it
′ + 1/αn−1 − 1)− (an−1 − 2)) + an−1 − 2

= Yn ◦ Ωj
n ◦Υ−1

n (w−
n−1(it

′ + 1/αn−1)− (an−1 − 1)) + an−1 − 2

= Yn ◦ Ωj
n ◦ v−n (Y

−1
n (it′) + 1/αn − 1)) + an−1 − 2 (by (E3))

= Yn(Y
−1
n (it′) + 1/αn − 1)) + an−1 − 2 (by (M4))

= Yn(Y
−1
n (it′) + 1− αn + an−1 − 2 ((3.4))

= it′ + 1/αn−1 − 1. ((2.2))

This completes the proof of the proposition when εn = −1. The proof for the case εn = +1
is similar, so we briefly explain the two parts which require attention.

• Ωj+1
n−1 matches w+

n−1: Let z = w+
n−1(it

′+1/αn−1) for some t′ ≥ −1. Note that w+
n−1(it

′+

1/αn−1) ∈ Υn(J
j
n ) + an−1 + 1. Then, by the definition of Ωj+1

n−1,

Ωj+1
n−1(w

+
n−1(it

′ + 1/αn−1))

= Yn ◦ Ωj
n ◦Υ−1

n (w+
n−1(it

′ + 1/αn−1)− (an−1 + 1)) + an−1 + 1

= Yn ◦ Ωj
n ◦ v−n (Y

−1
n (it′) + 1/αn − 1) + an−1 + 1 (by (E3))

= Yn(Y
−1
n (it′) + 1/αn − 1) + an−1 + 1 (by (M4))

= Yn(Y
−1
n (it′) + αn − 1 + an−1 + 1 ((3.4))

= it′ + 1/αn−1. ((2.2))

• Ωj+1
n−1 matches v−n−1: Let z = v−n−1(it

′ + 1/αn−1 − 1) for some t′ ≥ ImYn(−i). Let
it′ = Yn(it). Since εn = +1, 1/αn−1 = an−1 + αn. Thus, 1/αn−1 − 1 lies strictly between
an−1 − 1 and an−1, and hence

Ωj+1
n−1(v

−
n−1(it

′ + 1/αn−1 − 1))

= Yn ◦ Ωj
n ◦Υ−1

n (v−n−1(it
′ + 1/αn−1 − 1)− an−1) + an−1

= Yn ◦ Ωj
n ◦Υ−1

n (w−
n−1(it

′ + 1/αn−1)− (an−1 + 1)) + an−1

= Yn ◦ Ωj
n ◦ v+n (Y

−1
n (it′) + 1/αn − 1)) + an−1 (by (E3))

= Yn(Y
−1
n (it′) + 1/αn − 1) + an−1 (by (M3)))

= Yn(Y
−1
n (it′) + αn − 1 + an−1 ((3.4))

= it′ + 1/αn−1 − 1. ((2.2))

8.4. Convergence of the partial uniformisations. — Fix an arbitrary n ≥ 0. By
Proposition 8.1, for each j ≥ 0, there is a continuous and surjective map Ω0

n+j : M0
n+j →

M0
n+j which matches (un+j , v

±
n+j , w

+
n+j). Inductively applying Proposition 8.2, we obtain a

continuous and surjective map
Ωj

n : Mj
n →M j

n.
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Proposition 8.3. — There is C9 ∈ R such that for every n ≥ 0 and every j ≥ 0, on Mj+1
n ,

∣

∣Ωj+1
n − Ωj

n

∣

∣ ≤ C9(0.9)
j .

In particular, for each n ≥ 0, as j → ∞, the sequence Ωj
n converges to a continuous map

Ωn : Mn →Mn.

Proof. — First we show that there is C9 ∈ R such that |Ω1
n−Ω0

n| ≤ C9 on M1
n, for all n ≥ 0.

Fix an arbitrary n ≥ 0. Let zn ∈ M1
n. There is an integer ln such that zn−ln ∈ Υn+1(M0

n+1)

and zn+1 = Υ−1
n+1(zn − ln) is defined. Note that Ω0

n : M0
n → M0

n and Ω1
n : M1

n → M1
n. As

M1
n ⊂ M0

n, both maps are defined on M1
n. By Theorem 4.5, there is a uniform constant

C ≥ 0, independent of n, such that for all z ∈ M0
n, Im z+C ≥ −1. Employing Proposition 5.2

with w1 = Υ−1
n+1(zn − ln) + C and w2 = Υ−1

n+1(zn − ln), and then using Proposition 3.1-(iv)
and Proposition 8.1, we obtain

|Ω1
n(zn)− zn| =

∣

∣

(

Yn+1 ◦ Ω
0
n+1 ◦Υ

−1
n+1(zn − ln) + ln

)

− zn
∣

∣

≤
∣

∣

(

Yn+1 ◦ Ω
0
n+1(w2) + ln

)

− (Yn+1(w1) + ln)
∣

∣

+ |(Yn+1(w1) + ln)− (Υn+1(w2) + ln)|

≤ 0.9 ·
∣

∣Ω0
n+1(w2)− w1

∣

∣+ C3 max{C, 1}.

≤
∣

∣Ω0
n+1(w2)− w2|+ |w2 − w1

∣

∣+ C3(C + 1).

≤ C8 + C + C3(C + 1).

Therefore,

|Ω1
n(zn)− Ω0

n(zn)| ≤ |Ω1
n(zn)− zn|+ |zn − Ω0

n(zn)| ≤ C8 + C + C3(C + 1) + C8.

Let us introduce C9 = 2C8 + C + C3(C + 1).
Now assume that the inequality holds on Mj

n, for some j − 1 ≥ 0 and all n ≥ 0. For zn ∈

Mj+1
n , Υ−1

n+1(zn − ln) ∈ Mj
n+1. Using Proposition 3.1-(iv), and the induction hypothesis,

for all n ≥ 0,
∣

∣Ωj+1
n (zn)− Ωj

n(zn)
∣

∣ =
∣

∣Yn+1 ◦ Ω
j
n+1 ◦Υ

−1
n+1(zn − ln)− Yn+1 ◦ Ω

j−1
n+1 ◦Υ

−1
n+1(zn − ln)

∣

∣

≤ 0.9 · C9(0.9)
j−1 = C9(0.9)

j.

The sequence (Ωj
n)j≥0 is uniformly Cauchy on Mn ⊂ Mj

n. It converges to a continuous
map.

Corollary 8.4. — For every n ≥ 1 and all integers l satisfying (εn + 1)/2 ≤ l ≤ an−1 +
(εn − 1)/2,

Ωn−1 ◦ (Υn + l) = Yn ◦ Ωn + l,

whenever both sides of the equation are defined.

Proof. — This follows from Proposition 8.3 and the functional relation in Proposition 8.2.
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We may define Ω−1 : M−1 →M−1, as

Ω−1(z) = Y0 ◦ Ω0 ◦Υ
−1
0 (z − (ε0 + 1)/2) + (ε0 + 1)/2.

By Proposition 7.1, and since Ω0 satisfies (M2), for t ≥ 0,

Ω−1(it+ 1) = Ω−1(it) + 1.

Proposition 8.5. — There is a constant C10 such that for every n ≥ −1 and every z ∈ Mn,

|Ωn(z)− z| ≤ C10.

Proof. — By Propositions 8.1 and 8.3, for all n ≥ −1, all j ≥ 0, and all z ∈ Mn we have
∣

∣Ωj
n(z)− z

∣

∣ ≤
∑j−1

l=0

∣

∣Ωl+1
n (z)− Ωl

n(z)
∣

∣+
∣

∣Ω0
n(z)− z

∣

∣ ≤
∑+∞

l=0C9(0.9)
l + C8.

Proposition 8.6. — For every n ≥ −1, Ωn : Mn →Mn is injective.

Proof. — Fix an arbitrary n ≥ −1. Let zn 6= z′n be arbitrary points in Mn. Since Mn =
∩j≥0Mj

n, we may inductively identify integers li and l
′
i such that zi − li and z

′
i − l′i belong

to Υi+1(Mi+1) \ ui+1(i[−1,+∞)), and zi+1 = Υ−1
i+1(zi − li) and z′i+1 = Υ−1

i+1(z
′
i − l′i) are

defined.
If there is a smallest i ≥ n such that li 6= l′i, then Ωi(zi) 6= Ωi(z

′
i). Using the commutative

relations in Corollary 8.4, one concludes that Ωn(zn) 6= Ωn(z
′
n).

Now assume that for all i ≥ n, li = l′i. Recall the sets M̃0
n and the hyperbolic metrics ̺n

defined in Section 7.3. By the uniform contraction of the maps Υi + li−1 in Proposition 7.7,
we must have d̺i

(zi, z
′
i) → +∞ as i → +∞. By Lemma 7.6, M1

n+j is well-contained in

M̃0
n+1. This implies that |zi − z′i| → +∞, as i → +∞. In particular, there is i ≥ n, such

that |zi − z′i| > 2C10. By virtue of Proposition 8.5, we must have Ωi(zi) 6= Ωi(z
′
i). Using the

functional relations in Corollary 8.4 as well as the injectivity of Yl on M0
l and Υl on M0

l ,
we must have Ωn(zn) 6= Ωn(z

′
n).

Proposition 8.7. — For every n ≥ −1, Ωn : Mn →Mn is surjective.

Proof. — Fix an arbitrary n ≥ −1, and z ∈ Mn. As Mn = ∩j≥0M
j
n and for each j ≥ 0,

Ωj
n : Mj

n → M j
n is surjective, there is zj ∈ Mj

n with Ωj
n(zj) = z. By Proposition 8.5, zj are

contained in a bounded subset ofM0
n. Thus, there is a subsequence, say zjk , for k ≥ 1, which

converges to some z′ ∈ M0
n. However, because ∩j≥0Mj

n is a nest of closed sets, we must
have z′ ∈ Mn. Then, the uniform convergence of Ωj

n to Ωn implies that Ωn(z
′) = z.

8.5. Proofs of the main theorems, and corollaries. — Recall the straight topological
model Aα = ∂Âα and the model map Tα : Âα → Âα from Section 3, and the closed set
Af = ∂Âf from Section 7.5. In this section we show that f : Λ(cf ) → Λ(cf ) is topologically
conjugate to Tα : Aα → Aα, and transfer the features of the latter system to the former one.

Theorem 8.8. — There is N ∈ N such that for every α ∈ HTN and every f ∈ QISα, there

is a homeomorphism Ψf : Âf → Âα which satisfies Tα ◦ Ψf = Ψf ◦ f on Âf . Moreover,

Ψf(Λ(cf )) = Aα.
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Proof. — Let N be the integer in Proposition 6.1. For α ∈ HTN and f ∈ QISα, by following
the constructions in Sections 6, 7 and 8, we obtain the homeomorphism Ω−1 : M−1 →M−1,
which satisfies Ω−1

−1(it + 1) = Ω−1
−1(it) + 1, for t ≥ 0. Then, U−1 induces a homeomorphism

Ψf : Âf → Âα.

By Proposition 7.14, f(Âf ) ⊆ Âf . By Proposition 7.9, the definition of Tα, and Corol-

lary 8.4, Tα ◦ Ψf = Ψf ◦ f on Âf . Indeed, one only needs to verify the conjugacy on the
set of points which satisfy item (i) in the definition of Tα, because the set of such points is

dense in Âα.
By Proposition 7.14, Λ(cf ) ⊆ Âf . Since U−1(+1) = 0, Ψf maps the critical value of f

to +1 in Âα. Then, Ψf maps Λ(cf) to the closure of the orbit of +1 in Âα. On the other
hand, by Theorem 3.6, the orbit of +1 by Tα is, contained in and, dense in Aα. Thus,
Ψ(Λ(cf )) = Aα.

Proofs of Theorems A, B and C. — Recall from Section 4 that the class of maps ∪α∈HTN
QISα

is the class F in the introduction. Theorem A follows from Theorem 8.8 and the trichotomy
of Aα in Theorem 3.5. Theorems B and C follow from Theorem 8.8 and Theorem 3.6.

We make the following connection to the set Af for future purposes.

Corollary 8.9. — For every α ∈ HTN and every f ∈ QISα, Λ(cf ) = Af .

Proof. — Because Âf is closed, Af ⊆ Âf . By Theorem 8.8 and the invariance of domain
theorem,

Ψf (Af ) = Ψf (∂Âf ) = ∂Âα = Aα = Ψf (Λ(cf )).

Therefore, Af = Λ(cf ).

Combining Theorems 3.6 and 8.8, we obtain a proof of the following result in [AC18,
Thm 4.6].

Corollary 8.10. — For every α ∈ HTN and every f ∈ QISα, f : Λ(cf ) → Λ(cf ) is

injective.

Given a connected set X ⊂ C, let us say that x ∈ X is an end point of X if X \ {x} is
connected.

Theorem 8.11. — For every α ∈ HTN \ H , every f ∈ QISα, and every integer k ≥ 0,
f◦k(cf ) is an end point of Λ(cf ).

Proof. — Recall that Ψf maps the critical value of f to 1 in Aα. By (3.12), 1 is an end
point of Aα when α is an irrational number outside H . Then, by Theorem 8.8, the critical
value of f is an end point of Λ(cf ). Then, by Corollary 8.10, every f◦k(cf ) must be an end
point of Λ(cf ).

As an immediate corollary of Theorem 8.8 we obtain the following.

Corollary 8.12. — For every α ∈ HTN and every f and g in QISα with f ′(0) = g′(0) =
e2πiα, Ψ−1

g ◦ Ψf : Λ(cf ) → Λ(cg) topologically conjugates f with g, and satisfies Ψ−1
g ◦

Ψf(cf ) = cg.
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Remark 8.13. — One may give a different proof of the above corollary using the holo-
morphic motion of the critical orbits of the maps, parametrised over the infinite dimensional
complex manifold ISα. The proof of Theorem 8.8 only uses the compactness of ISα, and
does not require any complex structure on ISα.

By a general result in dynamics of polynomials [Mil06, thm 18.5], having no critical
point on the boundary of the Siegel disk makes the Julia set non locally connected; see also
[Kiw00, KLCN15].

Corollary 8.14. — For every α ∈ HTN ∩ (B \ H ) and every polynomial P ∈ QISα, the

Julia set of P is not locally connected.

In light of this, we make the following conjecture.

Conjecture 8.15. — For every α ∈ R \ Q, the Julia set of Qα is locally connected iff

α ∈ H .

In [BBCO10], some progress is made in describing the topology of the Julia set of Qα

when it is not locally connected.

Remark 8.16. — In [PM97a], Perez-Marco introduced the notion of hedgehogs, or Siegel-
compacta, for a general holomorphic map with an irrationally indifferent fixed point. That
is a non-trivial local invariant compact set containing the fixed point. In general, a Siegel
compacta may have a complicated topology, see for instance [Che11]. But, if the holomor-
phic map is a restriction of an element of QISα to a neighbourhood of the fixed point, then
the hedgehog may not have a complicated topology, provided α ∈ HTN . Indeed, using a gen-
eral result of Mañé, and the lack of expansion along orbits in a Siegel compacta, any Siegel
compacta of a rational function must be contained in the post-critical set. This is true for
any element of QISα, [AC18, Section 4.3]. Thus, such Siegel compacta and hedgehogs must
be one of the invariant sets presented in Theorem C. Our work suggests that for rational
functions of the Riemann sphere the hedgehogs and Siegel compacta have tame topologies.
In contrast, for an arbitrary holomorphic germ of diffeomorphism of (C, 0), this is far from
true as it is shown in [Bis16].

Remark 8.17. — Cantor bouquets also appear as the closure of the set of escaping points
of the maps λez , for 0 < λ < 1/e, see [DK84, AO93, Rem06]. The analysis of the
renormalisation in this paper, among others, presents the similarity between these dynamical
systems. Naively speaking, that is due to the behaviour of the changes of coordinates in the
renormalisation tower of a given map in QISα. Each change of coordinate behaves like the
log function below a certain horizontal line (while behaving like a linear map above that
line).

Evidently, the analysis of the renormalisation scheme presented in this paper provides
some geometric features of the post-critical set as well. For example, we have the following
result.

Corollary 8.18. — For every non-Brjuno number α ∈ HTN and every f ∈ QISα, every

connected component of Λ(f) \ {0} lands at 0 at a well-defined angle.
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Proof. — By Proposition 6.9, for every n ≥ −1, limt→+∞ Reun(it) exists and is finite. This
implies that the connected component of Λ(f) \ {0} which contains the critical value of f
lands at 0 at a well-defined angle. Any iterate of this curve by f lands at 0 at a well-defined
angle. Since the set of the angles of all those rays is dense on R/Z, any other component of
Λ(f) \ {0} must also land at 0 at a well-defined angle.

Acknowledgement: The author acknowledges financial support from EPSRC of the UK
- grant no EP/M01746X/1 - while working on this project.
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[Yoc95b] , “Théorème de Siegel, nombres de Bruno et polynômes quadratiques”, Astérisque
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