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ABSTRACT. We prove that cubic polynomial maps with a fixed Siegel disk and a critical orbit
eventually landing inside that Siegel disk lie in the support of the bifurcation measure pip;s.
This answers a question of Dujardin in positive. Our result implies the existence of holomorphic
disks in the support of pi¢, and also implies that the set of rigid parameters is not closed in the
moduli space of cubic polynomials.

1. INTRODUCTION

Let Poly, denote the space of monic centred polynomial maps of degree d > 2, and let M,
denote the moduli space of rational maps of degree d > 2 on the Riemann sphere. In general,
we let M = Poly, or M,. By definition, the bifurcation locus Bif C M is the complement
of the set of J-stability, that is, Bif is the set of parameters around which the Julia set does
not locally move holomorphically. The celebrated results of Mafié-Sad-Sullivan [MSS83]] and
Lyubich [Lyu83]] provide several other equivalent characterisations of the bifurcation locus,
in terms of the behaviour of the critical orbits or in terms of periodic cycles changing from
repelling to attracting or vice-versa.

In [DeMO01], DeMarco introduced a bifurcation current Ty, which is a closed positive cur-
rent of bidegree (1, 1) whose support is equal to Bif. Bassanelli and Berteloot [BB0O7] studied
the higher degree currents Té“if = Thir A ... ANTig, 1 < k < dim M, which detect higher codi-
mensional bifurcation phenomena. When k = dim M, T}, is called the bifurcation measure
and is denoted by uyi. This is a finite positive measure, which is the Monge-Ampere measure
of the plurisubharmonic potential M > f — L(f), where L(f) is the Lyapunov exponent
of the unique measure of maximal entropy. The support of uy; is also called the maximal
bifurcation locus, in the sense that it detects maximal codimension bifurcation phenomena.

In recent years, the study of the bifurcation measure p,; and its support has attracted con-
siderable attention. For instance, by the works of Bassanelli-Berteloot [BBO7]], Buff-Epstein
[BEO9] and Dujardin-Favre [DF08], it is known that the support of u;s coincides with the
closure of the set of parameters with the maximal number of non-repelling cycles (namely
d in the case of Poly, or 2d — 2 in the case of M), and also with the closure of the set of
parameters for which all critical points are strictly preperiodic to repelling cycles.

For parameters in the support of ju;¢, all critical points must be active. However, this is not
a sufficient condition. For instance, the following example is due to Douady [DF08], Example
6.13]. The polynomial map f(¢) := ¢ + (/2 + ¢3 € Poly, has one parabolic fixed point
which attracts both critical points, so they are both active at f in the family Poly;. However,
f is parabolic attracting, which means that any small perturbation of f possesses either a
parabolic or an attracting fixed point. It follows that f ¢ supp pupir. A more subtle example
is given in [IM20] by Inou and Mukherjee, where they construct a real-analytic family (f;):cr
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of parabolic repelling cubic polynomials, for which both critical points are attracted to the
parabolic fixed point, but none of the f; is in the support of ;. Loosely speaking, these
examples show that in general a certain independence of the critical orbits is required for a
map f € M to be in the support of jips.

In this paper, we address the following question stated by Dujardin in [Duj09]]: Given a
cubic polynomial map with a Siegel disk and a critical orbit which eventually lands inside
the Siegel disk, does that cubic polynomial belong to the support of uy;s? Note that the
second critical orbit must accumulate on the boundary of the Siegel disk, so that both critical
points are active in Poly; but are related through the Siegel disk. Such maps also have a
one-parameter family of quasi-conformal deformations, similar to the examples of Douady
and Inou-Mukherjee. However, in our case the parameter family is complex.

We work with the family of cubic polynomials with a marked fixed point placed at 0,
parametrised as

¢)) Fra(Q) =X +ac®+¢, MaeC.

Let A = %™ for an irrational number §. The map f , is linearisable near the origin if
there is a conformal change of coordinate ¢, : V' — D(0, r) defined on a neighbourhood V' of
the origin such that ¢, o f\, = A¢,. The maximal domain of that linearisation is called the
Siegel disk of fy ,. By the classic work of Siegel [Sie42] and Brjuno [Brj71]], if 6 satisfies the
so-called Brjuno condition ), - q, 'og gni1 < +oo, then for every a € C, fx,q is linearisable
near the origin. Here (p, /g, )nen is the sequence of best rational approximants of 6.

Let us say that a cubic polynomial f) , is a Siegel polynomial of capture type, if f, has a
Siegel disk containing the origin and a critical point whose orbit eventually lands inside that
Siegel disk. Our main theorem is the following:

Theorem 1.1. Any Siegel polynomial of capture type f» , is contained in the support of fips.

For a fixed A\ = €2 it is not difficult to prove that the bifurcation locus of the slice
{fxa : @ € C} is contained in the support of ju,;;. However, if 6 is a Brjuno number and f,2ixo ,
is a Siegel polynomial of capture type, then it belongs to the stability locus of this slice. This
implies the following two consequences:

Corollary 1.2. There are holomorphic disks in the support of pys in Polys.

Recall that a polynomial P is called conformally rigid if any polynomial which is quasi-
conformally conjugate to P is affinely conjugate to P. Following the pioneering works of
Sullivan [Sul85] and Thurston [DH93]], now there is substantial body of work related to the
quasi-conformal and conformal rigidity conjectures in complex dynamics (MLC conjecture
and higher degree analogues).

Corollary 1.3. The set of conformally rigid cubic polynomials is not closed in Poly;.

Indeed, Siegel polynomials of capture type are not conformally rigid (see Section [2.1)), but
strictly post-critically finite maps are conformally rigid [DH93]], and form a dense subset of
supp upie by [BEQ9].
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2. FROM ELLIPTIC TO PARABOLIC

Within Section [2] we assume that # € R\ Q is a bounded type number. In particular, 6 is a
Brjuno number.
Let us fix A = ¢ and consider the family of maps

HalQ) =X +a®>+¢% acC.

We shall denote the Siegel disk of fy , with the notation Ay(a).

2.1. Capture components. By a capture component we mean a connected component of the
set

{a € C: f), is a polynomial of capture type }.

By [Zak99, Theorem 7.3], capture components are (open) stability components in the slice
of maps {f\, : a € C}, and are contained in the connectedness locus. In particular, they
are simply connected (by the maximum principle). By [Zak99, Lemma 7.4], each capture
component V' contains a unique centre, that is, a parameter ag € V where a critical point of
[ao is pre-periodic to 0. Moreover, all cubic polynomials in a capture component minus its
center point are quasi-conformally conjugate to each other on the Riemann sphere ([Zak99,
Theorem 7.5 (a)]).

2.2. Asymptotic size and conformal radius. Let p,/q,, for n > 1, be the sequence of the
best rational approximants of 6. Define \,, = 2™/

By [Che20], for all n € N* there is a degree ¢,, polynomial map b,, such that
2) S () = ¢+ b (a)( 4+ O(¢In ).

An,a

Let us say that an open set Q2 C C is a non-degenerate parabolic locus, if for all sufficiently
large n > 1, b, is non-zero on ).
Let Cy denote the Zakeri curve [|Zak99], i.e.

Cp = {a € C: both critical points of f) , belong to dAy(a)}.

Let rp(a) denote the conformal radius of the Siegel disk Ay(a) of f,, at 0.
The following result will be crucial to our argument:

Theorem 2.1 ([[Che20]). For every irrational number of bounded type 6 and every a € C,

3 1/Qn _
Jim_ [by,(a) [/ = 1/rg(a).

Moreover, the convergence is uniform on compact subsets of any non-degenerate parabolic locus
in C.

The first part of the above theorem is readily presented in [[Che20]. The latter part also
follows from that paper. Indeed, if Q C C is a non-degenerate parabolic locus, for large n,
the sequence of maps ¢, ' log|b,(a)| are harmonic on 2, and by [Che20, Proposition 541,
converge to —logrg(a) in L}, (2). Then, the L} . convergence implies uniform convergence
on compact sets for harmonic functions.
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2.3. Convergence of parabolic petals to Siegel internal rays. In this section we construct
some forward-invariant regions for f ;z’ja (parabolic petals); see Proposition Although we
shall not directly use it, the estimates from Lemma |2.6| imply that those petals converge to
Siegel internal rays as n — +oc.

Let U C C be an arbitrary capture component. There exists a critical point ¢, and an
integer k > 1 such that for all a € U, f3%(ca) € Ag(a). Welet U := {a € U : f3¥ (ca) # 0}.
For a € U, let ¢, : Ag(a) — D(0,79(a)) denote the linearising coordinate, normalised by
¢,(0) = 1.

There is a holomorphic motion of the boundary of Ay(a) over U. The map (a, () — ¢4(¢)
is holomorphic over a € U and ( € Ay(a), and the map a — logry(a) is harmonic on U,
see [Sul] or [Zakl16]. In particular, there exists a holomorphic function v : U — C such that
Reu = logrg. We let v := e, so that v is also holomorphic and |v| = ry.

For a € U and n > 1, let us consider the map

Ln,a(z) = U(a)ild)a © f/\n,a © ¢(;1 (ZU(CL)) )

which is defined on a neighbourhood of 0.
We need the following, uniform parameter dependent, version of a lemma of Jellouli
[Jelo4].

Lemma 2.2. For every r € (0,1) and every compact set A C U, there exists M € Nand C € R
such that for all a € A and all n > M, Ly% is defined on D(0,r), and for all z € D(0,r), and all
0 < k < gy, we have

Lyt (2) = Myz| < Cklzl/q;.

Proof. For (u,a) € C x U, let us consider f,.(¢) = p¢ + a¢? + ¢3. Recall that for all a € U,
/r.o has a Siegel disk Ag(a) centred at 0. Let us fix constants 0 < r < r’ < 1, and a compact
set A CU.

For (u,a) € C x U, consider the composition

-1
F,u,a = Qq Of,u,a O¢a )

which is a priori defined on a neighbourhood of 0. Evidently, | f,, o — f1.«| = O(|u—A|) on every
compact subset of C, independent of a € A. Combining with the holomorphic dependence of
$4(¢) on a and ¢, it follows that there is € > 0 such that for all © € D(\,¢) and alla € A, F), 4
is defined on ID(0, '), and as ;1 converges to A, F}, , converges to the map

Fyo(2) = Az,

uniformly on D(0,r’). Moreover, F},,(0) = 0 and F}, ,(0) = pu. By the holomorphic depen-
dence of ¢,(¢) on a and ¢, it follows that the family of maps {F),, | © € D()\,€),a € A} forms
a pre-compact class of analytic maps.

For 1 € D(\, €) and a € A, define the map G, , on D(0,7’), according to

Fyﬂa(Z) - IU'ZGAUHG‘(Z)'

It follows from the above pre-compactness argument that by making e smaller if necessary,
we may assume that G, , takes values in D(1,2/3). Then, for ;1 € D(),€) and a € A, on the
left half-plane Re w < logr’, we may define the map

H, .(w) =1og G, ().
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By the above pre-compactness, there exists a constant C’ > 0 such that for all y € D(),¢),
a € A, and Rew < logr’, we have

| Hya(w)] < C'p— Al
Consider the map
Tya(w) =w+log 4+ Hya(e),
so that
F

H,a
When |27ip,, /g, — 27if] < €, we obtain

[Dna(w) = w = 2mipy /qn| = |Hy,a(€")] < C'2mipn /qn — 2mi6] < C"21/q5,

(ev) = elua(w)

where we have used the Diophantine estimate |p,/q, — 6| < 1/¢2, for all n. > 1.
For every w with Rew < logr’ — C'27/q,, by induction, for £k = 0,...,q,, the above
inequality implies that
Re (Iifa(w)) <logr' + C2rk/qz,
and
< C"21k/q?.

% (w) — w — 2mikpn /qn

n,a@

In the coordinate z = e¥, we obtain

an’a(z)
AE 2

47C'k

-1
a2

<

In particular, for n large enough, and all 0 < k£ < ¢,, the iterates F/‘\’fa are defined on
D(0,r) and remain inside (0, 1). Because rg(a) is uniformly bounded from above and below
for a € A, the above inequality implies the desired inequality in the lemma, for a suitable
constant C'. O

For a € U and n > 1, consider the normalised map
Gra(2) == 0(a) " ga o [y, 0 ¢, ' (v(a)2),

which is defined on a neighbourhood of 0.
From (2), it is not difficult to see that near 0,

3) Gna(2) = 2z + bp(a)v(a)i 21 + O (24 12) = Lo,

For any r; € (0, 1), there exists N € Nsuch that foralla € U and alln > N, G, , is defined
and univalent on (0, r;). In particular, we may write

Gna(z) = ze9n.a(2)
for some function gy, , : D(0,7;) — C. Then, the map
4 Hpa(w) :=w + gn.ale”)
is defined and univalent on the left half-plane Re w < logr1, and satisfies
expoHy , = Gpqo0exp.

We do not know if U is a non-degenerate parabolic locus. Let {2 C U* be a simply connected
non-degenerate parabolic locus. In particular, the convergence in Theorem is uniform on
compact subsets of (2.



CUBIC SIEGEL POLYNOMIALS AND THE BIFURCATION MEASURE 6

Lemma 2.3. [CheOl, Lem 4.2] Fix an arbitrary 1 € (0,1). Forn > 1, and a € U, let
N(n,a) denote the number of fixed points of G, o in D(0,71)\{0}. Then, as n — oo, N(n,a)/qn
converges to 0 uniformly on compact subsets of €.

Proof. Let A be a compact set in 2. For each n > 1, N(n,a) is uniformly bounded from
above independent of a € U. Let us choose a,, € A so that N(n,a,) = maxsep N(n,a). By
Lemma there exists a sequence r,, — 1~ such that for every n € N, G,,,, is defined
and univalent on D(0, ), and sup|, <, |Gna,(2) — z| — 0. We consider the normalised map
Fo(2) :=1,1Gp 4, (Tn2), so that for every n € N*, F, is defined and univalent on D(0, 1), and
sup|.|<1 [Fn(2) — 2| — 0. In particular, we will always assume in what follows that n is large
enough so that

sup |F(z) — z| < 2.

|21<1
Moreover, we have

Fo(2) = 2+ Cpzi ™ 4 O (29 12)

where C,, := by, (a,)v(a,)ri". By Theorem and the definition of v, we have

5) lim ilog |Cn| = 0.
n—+00 gp,

For each r € (0,1], let N,(r) denote the number of fixed points of F,, in D(0,r) \ {0},
counted with multiplicity. Let z,;, for 1 < j < N,(1), denote the fixed points of F,, in
D(0,1)\ {0}, repeated with multiplicity. There exists a holomorphic function o,, : D(0,1) — C
with no zeroes in D(0, 1) such that for all z € ID(0, 1),

Nn(1)
Z— Zj
Fu(2) = 2+ 29 o,(2) H1 R %:z
]:

Clearly max|,— |05 (2)| < max),—; [Fy(2) — 2| < 2, thus by the maximum principle, |0, (0)| <
2. Moreover, C,, = 0,,(0)(—1)N»(1) H;V:”fl) 2jn. From now on we assume that r € (rq,1). Then

|On| = ‘Un(0)| H |Zj7n| H |zj,n| <2 .an(T) .1,

|2j,n|<r |2j,n |27
Therefore,
)< Nulr) _ log2 — log|C,)

gn Qn| log 7“

Combining with ([5), we get
im M) g,

n—oo Qn

Since N, (r) > N(n,a,) for large enough n, we are done. O

Lemma 2.4. Let r; € (0,1), and A be a compact set in Q). There exists N1 € N such that for all
n > Njand all a € A, Gy, 4 has no fixed points in D(0, 1) except for z = 0.

Proof By Lemma [2.2] there exists M = M(ry) and C' = C(r1) > 0 such that for all n > M,
alla € A, all z € D(0,71),and all 1 < k < ¢,, we have

| Lta(2) = Azl < Cklzl/q;.



CUBIC SIEGEL POLYNOMIALS AND THE BIFURCATION MEASURE 7

Let s := min{1,1/C} > 0. By Lemma [2.3] there exists N; € N such that for all n > N; and
alla € A,

(6) N(n,a) < sqn/2.

Assume for a contradiction that there exists n > Ni, a € A and z € D(0,71) \ {0} such that
Gna(z) = z. Thenforall 1 < k < gy, L;’L’fa(z) is also a fixed point of Gy, ,. We will show that
the set {L;’fa(z) :1 < k < g,,} contains at least sg, elements, which contradicts (6)).
First, observe that by the inequality |¢’® — ¢®| > 2|z — y| for real values of z and y, if
1<k <ko<qn, then
’)‘le - )‘fﬂ > 4/qn.
Then, for all 1 < k1 < ko < 5¢,:

| Loia (2) = L2 ()] 2 AR 2 = A2z| = | L (2) = Aitz| = |L3f2 (=) — A2z

> i\z| B 2C'sq2n|z|
dn an
2|z|
> —.
dn
In particular, L3 (z) # Lg’f; (z). This completes the proof of the claim. O

In the following lemma we assume that r; € (0,1), A C Q and N; € N satisfy Lemma 2.4

Lemma 2.5. For all r; € (0,1), all n > Ny and all a € A, on the left half-plane Rew < logr,
we may write
In,ale’) = ghme®)
where
lna(w) =logbp(a) + gou(a) + guw + kna(e”)

for some holomorphic function ky,, : D(0,r1) — C satisfying k;, o(0) = 0.

Note that log b, (a) is well-defined on (2 for large enough n, because (2 is simply connected
and b, (a) becomes non-zero on 2.

Proof. Recall that by definition, we have g, ,(2) = log(Gy.q(2)/z), well-defined on D(0, r;) for
all n > N; and a € A. Moreover, by and the definition of v, we have

Gn7a(2) =z 4+ bn(a)eqn“(a)zan + O(Zq”+2)'
Therefore,
(7) gn’a(Z) - log (1 + b”(a’)eqnu(a)zqn + O(an+1)> = bn(a)eqnu(a)zq"hn,a(z>

for some function h,, o : D(0,71) — C such that h,, ,(0) = 1. Moreover, because by Lemma
G« has no fixed points inside D(0, 1)\ {0}, hy, o does not vanish on D(0, ). Thus, hy, 4(2) =
exp oky, o(2) for some function k,, , : D(0,71) — C with kj, 4(0) = 0. O

Lemma 2.6. For every ro € (0, 1) and every compact set A C 2, we have

. Rek, a(z) . k%a(z)
lim sup sup —————= =0, and lim sup sup |————
N0 geA |z|<ro dn N0 gel |z|<rg dn

=0.
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Proof. Let us fix an arbitrary o € (0,1), a compact set A C € and an ¢ > 0. We choose
r1 € (1o, 1) such that —logr; < €/2. For n > Ny, let

,_ Gna(2) = 2|
€p i=Sup sup ———————.
a€l |z|<r1 |Z|

By Lemma 2.2} ¢, < C(r1)/qn, and hence ¢, — 0. On the other hand,
Ln,a(?«‘) = ‘log (1 + 7Gn7a(z) — z> ’ .
z z

For n large enough, ¢, is small enough that |log(1 + z)| < |z|/r1 on D(0, €,). It follows from
that for all (z,a) € D(0,71) x A, we have

bn(a)€QHu(a)ZQn+1ekn,a(z) <

|gn,a(2)] = |log

Let (yn,an) € D(0,71) x A be such that

|ek"’“"(y")|: max ]ek"v“(z)|.
|z|<rg,a€A

By the maximum principle, we have |y,,| = r; and a,, € OU. Therefore,
T9(an)qn ‘bn(an) |T?n eRe Fn,an (yn) < 671/7'17
using [e?*(")| = ry(a)?. Applying _-log to both sides of the above inequality, we obtain

1 Rek 1
log rg(an) + — log |by(ay)| + logr; + M < —log n
dn qn qn (]

and hence
Rek 1 1
M < —log fn logry — — log |bn(an)| — log rg(an).
dn qn 1 gn
Using €, < C(r1)/qn, we have limsup,,_, , q% log <= < 0, and by Theorem

T1

1
lim — log |by,(an)|+logre(a,) = 0.

n—oo qn

Therefore, there exists N € N such that for alln > N,
1 1 € €
— IOg |bn(an)|+10g 7"9(0%) + — 10g n < —.
qn qn rl 2

Then, by our choice of r1, foralln > N,

1
—Reknq,(yn) < —logr; + % <e.

dn
On the other hand, %, ,(0) = 0 for all » € N and ¢ € A. Combining with the above
argument, we conclude that for alln > N,

0 < sup sup w < iRe En.an(Un) < €
a€l |z|<rg dn qn
The first inequality implies the second inequality, as a general property. Fix arbitrary r,
r1 € (ro,1) and € > 0. By the first inequality, there is N € N such that for all n > N all
a € Aand all |z| < 71, Rekpq(2)/(egn) < 1. Thus, ky, o/(€eq,) maps the disk D(0,7) into
the left half-plane Rew < 1, with £, ,(0)/(e¢,) = 0. Post-composing the map k;, o/ (egn)
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with a Mobius transformation and applying the Schwarz lemma, we conclude that there is
a constant C, depending only on r; but not on n, € and a, such that on the disk D(0, ),
|kl o(2)/(eqn)| < C. As e was arbitrary, this implies the second inequality. O

n,a

Proposition 2.7. For every ro € (0,1) and every compact set A C (), there exists N € N such
that for allm > N, all a € A, and all k € 7, the regions

C]Tf’a = {w € C: Rew < logrg and 2km + 37 /4 < Im ¥, o(w) < 2km + 5m/4}

are forward invariant by H,_,, and for every w € Ck

n,a?

Re H;"}(w) — —o0 as m — +o0.

The sets C

Im(w)
o

-3.0 -2.5 -2.0 -15 -1.0 -0.5
Re(w)

FIGURE 1. In grey, the regions C’,’;a (sketch), which are H,, ,-invariant.

Before we prove Proposition let us comment on its geometrical meaning. Going back
to the original coordinates, the regions ¢, * oexp(Cf;a) are bounded, forward invariant regions
for f;fl’t"a on which the dynamics converges to 0, i.e. parabolic petals. Lemma essentially
implies that as n — +o0, the regions C,’;”a resemble more and more horizontal bands of height
of order qin, and so tend to horizontal half-lines. In the original coordinates, these horizontal
half-lines correspond to Siegel internal rays, which justifies the title of Section[2.3]

Proof. Fix an arbitrary ry € (0,1). By Lemmas [2.5| and there is N € N such that for all
n > N, all a € U, and all w in the left half-plane Re w < logro, ¢, o(w) is defined, and

1 —logro}

1 -1
Ogro} and |k;’a(ew)|<qnmin{4, .

42

(8) Rek,q(e”) < gpmin {

Below we assume thatn > N. Letus also fix k € Zand a € U.
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We divide the set C?} , into the sets
C’ﬁfl ={w e C:Rew < logrg and 2kw + 7T7/6 < Im ¥, o(w) < 2kmw + 5w /4},
C’k’c ={w e C:Rew < logrg and 2kr + 57/6 < Im ¥, o(w) < 2km + Tm/6},
Ckb {w e C:Rew < logrg and 2kmw + 37/4 < Im ¥, o(w) < 2km + 57/6}.
We also consider the curves
pﬁ:; ={w e C: Rew < logry and Im¥¢,, ,(w) = 2k7 + 37 /4},
pﬁ’,i ={w e C: Rew < logry and Im¥¢,, ,(w) = 2k7 + 57/6},
pfli ={w e C: Rew < logrg and Im¥,, ,(w) = 2k7 + 77 /6},
pl;’;fé ={w € C: Rew < logrg and Im¢,, ,(w) = 2km + 57 /4}.
First we prove some properties of these sets, and the map H, , on them.
P1. For i = 1, 3, we have

inf {Jwy — wa| 1 w1 € P, wy € pfit! Z6q
n

k H—l

Assume in the contrary that there are i € {1,3}, w; € pna and w2 € py ~ such that

|w; — we| < 1/(6¢y,). Then, by (8), we must have

/12 = U, o(w2) — Cy q(w1)
< Jwg — wy | -sup{|€;7a(w)| cw € C,Rew < logrp}

1
< o (anF sup{lK] o (e*)e* | - w € €, Rew < logro})

)
which is a contradiction.
P2. For i = 1,2, 3,4, and all distinct wy, wy € pf{,@,
arg(wg —wy) € (—m/6,4+7/6) + 7.

For all w € pn a> We have |e”| < 1, and hence by Lemma |2 E and (8), we must have
¢, ,(w) # 0. We also note that for every w € pn a, We have

larg £;, ,(w)| = ]arg(qn + ki, o(w)e®)] < arcsin(1/4) < 7/6.
Now, if there are w; # ws on a pn a Vlolatmg the desired relation, by the intermediate value
theorem, there must be a point w on pn « between w; and ws violating the above inequality.
P3. We have
arg(Hy q(w) —w) € (37/4,57/6) + 27Z, forallw e C,];‘;Z

and
arg(Hy,q(w) — w) € (77/6,57/4) + 2xZ  forallw € CIL.

By Lemma [2.5] for all w in the left half-plane Re w < log r,
Hn,a(w) = w + gn7a(€w) = W _|_ een,a(’w)
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Then,
arg(Hy,qo(w) —w) = arg efma(®) — Iy U a(w).
Combining with the definitions of Cﬁjg and Cﬁjﬁ we obtain P3.

P4. For all w € Cﬁjﬁ,
arg(Hy q(w) —w) € (57 /6,71/6) + 2.

We presented P4 separately, for the sake of the clarity of the later arguments. Otherwise,
the proof is already given in P3.

P5. There is N, € N, independent of « € A and k € Z, such that for all n > N> and all
w e CF _ we have

n,a’

| Hpo(w) —w| < 1/(6gn).
To see this, note that by our choice of N for (8),
| Hoa(w) = w] = [efre(®)]
< \bn(a)Heq"“(“)]eq" log ro—gn (logro)/2

= [ba(a)ro(a) et )2
By Theorem limy, o0 |bn(a)|/979(a) = 1. Thus, for large enough n,
bu(@)ra(a)® < e eEroft
Combining with the previous equation, we conclude that for large enough n,
|Hp o (w) — w| < 108704 < 1/(6g,,).

Now we are ready to complete the proof. By P2, every pfl’f;, for i = 1,2,3,4, meets the
vertical line Rew = logry at a single point, and divides the left half-plane Re w < logrg into
two connected components. Thus we may talk about the component below or above p '
in that left half-plane. Let us first show that H, a(C’k 5 c Ck .. F1X an arbitrary w € Cﬁg
Because Rew < logrg, by P3, Re H,, ,(w) < logry. By P3 and P2, H, o(w) lies above the
curve pi's. By P5 and P1, H, a(w) lies below the curve pni Combining these, we conclude
that H, ,(w) € C¥ ,. By a symmetric argument, H, a(C L) C Ck ,. On the other hand, by P5

and P1, H, a(C’n a) is contained in C”‘C Therefore, Cn’a is invariant under H, ,.

By P3 and P4, for every w in the closure of Cﬁ w Re Hp o(w) < Rew. Moreover, the sets
;1o exp(C’k ) are bounded, forward invariant sets for f\" , hence contained in the Fatou
set of fi, and since they contain the parabolic fixed pomt 0 in their closure, they are
contained in the parabolic basin. This implies that for every w € C} ,, Re H."(w) — —oo, as

m — +00. O

Corollary 2.8. For every ki, ks € Z, exp(Cﬁfa) is contained in a connected component P,’fja of
the immediate parabolic basin of fx, o Moreover, if k1 — ky & quZ, then P¥, # Pkz,.

Proof. By Proposition and the definitions of H,, ., G, , and f, 4, the sets ¢;to exp(Cﬁva)
are contained in the immediate parabolic basins of 0 for fy, .. When ki — ko ¢ ¢,27Z,
exp(Ch,) and exp(CF2) land at 0 at well-defined angles, where the angle between them is
a non-zero integer multiple of 27 /g,. On the other hand, since b,,(a) # 0, there are exactly
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qn repelling petals, landing at O at well-defined angles, with equally spaced at angle 27/q,
between consecutive ones. This implies that for &k — ko ¢ ¢,27Z, exp(C’f{}a) and exp(C’f{?a) are
disjoint. O

3. PrROOF OF THEOREM [L.T]

There are two cases to consider, depending on whether a parameter « in a capture compo-
nent U lies in a non-degenerate parabolic locus, or not. The former case is the most difficult
to deal with, and we only look at the latter case near the end of this section. Let us continue
to use the notations introduced in the previous sections. In particular, 2 is a simply connected
non-degenerate parabolic locus in U* and A C (2 is an arbitrary compact set. From now on
we also further assume that 2 is compactly contained in U*.

Recall that c) , is a critical point of f) , which is mapped into the Siegel disk Ay(a) in k&
iterates. Consider the functions

K(a) := log ¢4 o f}?i(ck,a%
and K, : Q — C, where
Ky (a) :=log o, 0 ff\)f’a(ckma).

Because 2 is compactly contained in U*, for large enough n, the corresponding critical point
Crn,a Of [« Will be mapped into Ay(a) \ {0} in k iterates as well. Also, because (2 is chosen
simply connected, the log function is well-defined. For convenience, let us assume that K,
is defined for all n (otherwise we consider n to be sufficiently large). Clearly, K,, uniformly
converges to K on ().

Lemma 3.1. For every ag € €, the sequence of functions

1 1
Xn(a) = 7£n,a o Kn(a) - 7‘€n,ao o Kn(aU)

n n
converges uniformly on compact subsets of §) to a non-constant holomorphic function x : 2 — C.

Proof. As a varies in a compact subset of 2, ¢, o f3¥ (¢, ,) forms a compact subset of D(0, 1).

Employing Lemma we conclude that

! lpqo Kp(a) = 1 log by (a) + u(a) + K(a) + o(1),

n dn
on any compact subset of (2, with the constant in o depending only on that compact set. Thus,

1 1
Re —fy,0.0 Ky(a) = log bu(a)] + logry(a) +10z |6, © £ c0)| +o(1).

n n

By Theorem on any compact subset of €2, qin log |by,(a)| converges to —logry(a). In par-
ticular, on any compact subset of 2, as n — oo, Re x,, converges to

Re (K(a) — K (an)) = log|¢a o f3(ca)l —10g|day © [Ty (Can)|-

By definition, x,(ao) = 0. It follows that y,, converges to K (a) — K (ao), uniformly on compact
subsets of 2.

By a classical argument of quasi-conformal deformation, K (a) — K (ag) is not constant (see
for instance [Zak99, Theorem 7.3]). O
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Proposition 3.2. For every ag € ) and every ¢ > 0 there is N € N satisfying the following
property. For alln > N, there are a,b € B(ay, €) and integers k, and ky with k, — ky ¢ q,Z such
that

Kn(a) € Che,  and  Kn(b) € CI,.

Proof. Fix arbitrary ap € 2 and € > 0. By making e smaller, we may assume that the closure of
B(ag, €) is contained in (2. Since (2 is compactly contained in U*, K (f2) is compactly contain
the left half-plane Rew < 0. As K,, converges to K uniformly on €2, there is o € (0,1) such
that for sufficiently large n, K,,(f2) is contain in the left half-plane Re w < logry.

It follows from Lemma that there is ¢ > 0 such that for large enough n, x,(B(ao,¢€))
contains B(0,0). Then, {{, (K, (a)) : a € B(ag, €)} must contain B(K,(ao), g,0). In particu-
lar, if n is large enough (to also make ¢,0 > 4), {{,, (K, (a)) : a € B(ao, €)} contains a ball of
radius 4 around a point in the left half-plane Re w < log ry.

Now we may employ Proposition with rp and A = B(ag,€), to conclude that for
sufficiently large n, there are a,b in B(ag,¢) and k, and k, = k, + 1 satisfying the desired
properties in the proposition. U

Proposition 3.3. For every ay € §2 and every neighbourhood V' C C of ag, there exists N € N
such that for all n > N, the family {f\, . }acv is not J-stable.

Proof. Let us choose € > 0 so that B(ag,e) C V N 2. Then, we apply Proposition [3.2]to obtain
the N € N. For each n > N, we obtain a,b € V, and k,, k; € Z satisfying the properties in
that proposition.

Assume for a contradiction that the family { f\, ,}acv is J-stable, for some n > N. Com-
bining the above paragraph with Corollary [2.8] we obtain

f;\)f,a(CAn,a) € ,Prlf,aa'
Then by J-stability, we must have

f;k (CAn,S) € lprlfjls

n,S

for all s € V. But this is not the case since
k k
Fanp(@xnnp) € Py O

Remark 3.4. By the seminal work of Yoccoz [Yoc95l, the Brjuno condition is sharp (necessary
and sufficient) for the linearisability of a quadratic polynomial with an irrationally indifferent
fixed point. That optimality remains open for cubic polynomials in general. However, it follows
from a general result of Perez-Marco that if f,2ix0,, is a Siegel polynomial of capture type, for
some § € R\ Q and ay € C, then 6§ must be a Brjuno number. That is because if f,2ix0.a is of
capture type, there is an open set U C C containing ag such that for all a € U, f.2ire. has a
Siegel disk. But by [PMO1], if ¢ € R\ Q is non-Brjuno, then

{a € C: f,2ir0,a has a Siegel disk }

must be a polar set, which is impossible here.

The same result of Perez-Marco [PMO1] implies that if 6 is not Brjuno but f,2ixe ,, has a
Siegel disk containing 0, then ay is in the bifurcation locus of the slice { f,2ix0.a,a € C}. Then by
[MSS83]| or [Lyu83|], arbitrarily close to ao, there must be some a; € C such that f,ixe,.; has a
neutral cycle which is non-persistent in the family { f.zi0..,a € C}. In particular, f,zixo 5 has 2
neutral cycles, therefore by [BEQ9] it is in the support of uw;s. This proves that if there exists cubic
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polynomial maps with Siegel disks with non-Brjuno rotation numbers (which are conjectured not
to exist), then they must also be in jip;s.

We have now completed the ingredients we need to prove Theorem for rotation num-
bers of bounded type. In order to generalise it to all Brjuno numbers, we shall use the
following result due to Avila, Buff and Chéritat.

Theorem 3.5 ([ABC04], Theorem 3, p. 11). Let 6 be a Brjuno number, and let ® denote the
Brjuno-Yoccoz function. Let #,, — 60, where 0,, are Brjuno numbers and
limsup ®(6,,) — ®(0) + C
n—-+00
for some constant C' > 0. Let f,(z) = 2™z + O(2?), for n € N, be a sequence of holomorphic
maps on D(0, 1) such that f,, — Ry (the rigid rotation of angle 0) locally uniformly on (0, 1).
Then
%gilgglogr(Afn) >e .
In the above statement, r(Ay, ) denotes the conformal radius of the Siegel disk Ay, of f,
centred at 0.
We now present the proof of the main result.

Proof of Theorem Let ag be an arbitrary parameter in U, which is not the centre of U. We
consider two cases, based on whether ay lies in a non-degenerate parabolic locus or not.

Case i) The parameter ay does not belong to a non-degenerate parabolic locus.

Let us first show that if b,(c) = 0 for some n € N and ¢ € C, then (\,,c) € supp pnis-
Indeed, by definition of b,,, the map f,, . has a parabolic fixed point of parabolic multiplicity 2
at the origin. The immediate parabolic basin is therefore comprised of 2¢,, Fatou components.
On the other hand, when b,(a) # 0, the parabolic multiplicity is 1 and there are only g,
Fatou components in the immediate parabolic basin of 0. Therefore, the map f,, . cannot
be J-stable in the slice family { f\, , : a € C}. The classical results of [MSS83]] and [Lyu83]
imply the existence of a;, arbitrarily close to ¢ such that f), ., has a neutral cycle which is
non-persistent in the slice {f\, . : a € C}. Therefore f), , has exactly 2 neutral cycles,
including the parabolic fixed point at the origin. By [BEQ9], (\,,al,) € supp upis, and since
we may choose a/, arbitrarily close to ¢, so is (A, ¢).

By definition, if ay does not belong to any non-degenerate parabolic locus, there is a se-
quence of parameters (aj)r>1 in U such that a — ao, by, (ar) = 0 for some n; € N, and
limy_,o, i = oo. By the above paragraph, each (\,,,ar) € supp unir, and hence (X, a) €
SUPP fbif-

Case ii) The parameter ag belongs to a non-degenerate parabolic locus, say 2.

Recall that by Remark our assumptions imply that # is a Brjuno number. Let us first
assume that 6 is bounded type. Fix an arbitrary ¢ > 0. We will find some a,, € C such that
l(An, an) — (A ao)|| < eand (A, an) € Supp pis-

Applying Proposition with V' := D(ay, ¢/2), we conclude that there exists n such that
|An—A| < €/2and a,, € D(ag, €/2) such that fy, ,, has a neutral cycle besides the fixed point 0.
By [BE09, Main Theorem], (A, an) € supp pupis, and by construction ||(A,, an) — (A, ag)|| < e.
Therefore ag € supp pipit-

Now let 6 € R \ Q be Brjuno number and a € C be such that f,2i , is of capture type (we
do not assume anymore that § has bounded type). Let [ag : a; : ...] denote the entries of its
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continued fraction expansion. For all n € N, let #,, be the unique irrational number whose
continued fraction expansion has entries

[ag:...ap:1:1...].

We have
h_)m ®(6,) = ®(0)

where @ is the Brjuno-Yoccoz function. Let ¢ : Ap(a) — D(0, 1) denote the linearising co-
ordinate of the Siegel disk of f.2ixs ,, normalised to map Ay(a) to the unit disk D(0, 1). Let

hn(2) == ¢ 0 fezinon 40 ¢~ (2).

The sequence h,, satisfies the assumptions of Theorem with C' = 0. It follows that for
every compact K C Ag(a), there exists ny € N such that for all n > ng, K C Ay, (a). By
assumption, there exists k£ € N* such that f§§ﬁ97a(ca) € Agy(a), where ¢, is a critical point of

fezino 45 by taking K := D(c,, d) for § > 0 small enough that K C Ag(a), we deduce that for
all n large enough, fgg’ﬁ,rgn J(ca) € Ag,(a). In other words, for all n large enough, f2ixsn ,

is a Siegel polynomial of capture type, with bounded type rotation number. By the above,
(€% ) € supp ppir, and since 20 — 20 (2170 ) must be in supp ;e as well. O
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