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ABSTRACT. We prove that cubic polynomial maps with a fixed Siegel disk and a critical orbit
eventually landing inside that Siegel disk lie in the support of the bifurcation measure µbif .
This answers a question of Dujardin in positive. Our result implies the existence of holomorphic
disks in the support of µbif , and also implies that the set of rigid parameters is not closed in the
moduli space of cubic polynomials.

1. INTRODUCTION

Let Polyd denote the space of monic centred polynomial maps of degree d ≥ 2, and let Md

denote the moduli space of rational maps of degree d ≥ 2 on the Riemann sphere. In general,
we let M = Polyd or Md. By definition, the bifurcation locus Bif ⊂ M is the complement
of the set of J -stability, that is, Bif is the set of parameters around which the Julia set does
not locally move holomorphically. The celebrated results of Mañé-Sad-Sullivan [MSS83] and
Lyubich [Lyu83] provide several other equivalent characterisations of the bifurcation locus,
in terms of the behaviour of the critical orbits or in terms of periodic cycles changing from
repelling to attracting or vice-versa.

In [DeM01], DeMarco introduced a bifurcation current Tbif , which is a closed positive cur-
rent of bidegree (1, 1) whose support is equal to Bif. Bassanelli and Berteloot [BB07] studied
the higher degree currents T k

bif := Tbif ∧ . . . ∧ Tbif , 1 ≤ k ≤ dimM , which detect higher codi-
mensional bifurcation phenomena. When k = dimM , T k

bif is called the bifurcation measure
and is denoted by µbif . This is a finite positive measure, which is the Monge-Ampère measure
of the plurisubharmonic potential M ∋ f 7→ L(f), where L(f) is the Lyapunov exponent
of the unique measure of maximal entropy. The support of µbif is also called the maximal
bifurcation locus, in the sense that it detects maximal codimension bifurcation phenomena.

In recent years, the study of the bifurcation measure µbif and its support has attracted con-
siderable attention. For instance, by the works of Bassanelli-Berteloot [BB07], Buff-Epstein
[BE09] and Dujardin-Favre [DF08], it is known that the support of µbif coincides with the
closure of the set of parameters with the maximal number of non-repelling cycles (namely
d in the case of Polyd or 2d − 2 in the case of Md), and also with the closure of the set of
parameters for which all critical points are strictly preperiodic to repelling cycles.

For parameters in the support of µbif , all critical points must be active. However, this is not
a sufficient condition. For instance, the following example is due to Douady [DF08, Example
6.13]. The polynomial map f(ζ) := ζ + ζ2/2 + ζ3 ∈ Poly3 has one parabolic fixed point
which attracts both critical points, so they are both active at f in the family Poly3. However,
f is parabolic attracting, which means that any small perturbation of f possesses either a
parabolic or an attracting fixed point. It follows that f /∈ supp µbif . A more subtle example
is given in [IM20] by Inou and Mukherjee, where they construct a real-analytic family (ft)t∈I
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of parabolic repelling cubic polynomials, for which both critical points are attracted to the
parabolic fixed point, but none of the ft is in the support of µbif . Loosely speaking, these
examples show that in general a certain independence of the critical orbits is required for a
map f ∈ M to be in the support of µbif .

In this paper, we address the following question stated by Dujardin in [Duj09]: Given a
cubic polynomial map with a Siegel disk and a critical orbit which eventually lands inside
the Siegel disk, does that cubic polynomial belong to the support of µbif? Note that the
second critical orbit must accumulate on the boundary of the Siegel disk, so that both critical
points are active in Poly3 but are related through the Siegel disk. Such maps also have a
one-parameter family of quasi-conformal deformations, similar to the examples of Douady
and Inou-Mukherjee. However, in our case the parameter family is complex.

We work with the family of cubic polynomials with a marked fixed point placed at 0,
parametrised as

(1) fλ,a(ζ) = λζ + aζ2 + ζ3, λ, a ∈ C.

Let λ = e2iπθ, for an irrational number θ. The map fλ,a is linearisable near the origin if
there is a conformal change of coordinate ϕa : V → D(0, r) defined on a neighbourhood V of
the origin such that ϕa ◦ fλ,a = λϕa. The maximal domain of that linearisation is called the
Siegel disk of fλ,a. By the classic work of Siegel [Sie42] and Brjuno [Brj71], if θ satisfies the
so-called Brjuno condition

∑
n≥0 q

−1
n log qn+1 < +∞, then for every a ∈ C, fλ,a is linearisable

near the origin. Here (pn/qn)n∈N is the sequence of best rational approximants of θ.
Let us say that a cubic polynomial fλ,a is a Siegel polynomial of capture type, if fλ,a has a

Siegel disk containing the origin and a critical point whose orbit eventually lands inside that
Siegel disk. Our main theorem is the following:

Theorem 1.1. Any Siegel polynomial of capture type fλ,a is contained in the support of µbif .

For a fixed λ = e2iπθ, it is not difficult to prove that the bifurcation locus of the slice
{fλ,a : a ∈ C} is contained in the support of µbif . However, if θ is a Brjuno number and fe2iπθ,a

is a Siegel polynomial of capture type, then it belongs to the stability locus of this slice. This
implies the following two consequences:

Corollary 1.2. There are holomorphic disks in the support of µbif in Poly3.

Recall that a polynomial P is called conformally rigid if any polynomial which is quasi-
conformally conjugate to P is affinely conjugate to P . Following the pioneering works of
Sullivan [Sul85] and Thurston [DH93], now there is substantial body of work related to the
quasi-conformal and conformal rigidity conjectures in complex dynamics (MLC conjecture
and higher degree analogues).

Corollary 1.3. The set of conformally rigid cubic polynomials is not closed in Poly3.

Indeed, Siegel polynomials of capture type are not conformally rigid (see Section 2.1), but
strictly post-critically finite maps are conformally rigid [DH93], and form a dense subset of
suppµbif by [BE09].
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2. FROM ELLIPTIC TO PARABOLIC

Within Section 2 we assume that θ ∈ R \Q is a bounded type number. In particular, θ is a
Brjuno number.

Let us fix λ = e2iπθ and consider the family of maps

fλ,a(ζ) = λζ + aζ2 + ζ3, a ∈ C.

We shall denote the Siegel disk of fλ,a with the notation ∆θ(a).

2.1. Capture components. By a capture component we mean a connected component of the
set

{a ∈ C : fλ,a is a polynomial of capture type }.

By [Zak99, Theorem 7.3], capture components are (open) stability components in the slice
of maps {fλ,a : a ∈ C}, and are contained in the connectedness locus. In particular, they
are simply connected (by the maximum principle). By [Zak99, Lemma 7.4], each capture
component V contains a unique centre, that is, a parameter a0 ∈ V where a critical point of
fλ,a0 is pre-periodic to 0. Moreover, all cubic polynomials in a capture component minus its
center point are quasi-conformally conjugate to each other on the Riemann sphere ([Zak99,
Theorem 7.5 (a)]).

2.2. Asymptotic size and conformal radius. Let pn/qn, for n ≥ 1, be the sequence of the
best rational approximants of θ. Define λn = e2iπpn/qn .

By [Che20], for all n ∈ N∗ there is a degree qn polynomial map bn such that

(2) f◦qn
λn,a

(ζ) = ζ + bn(a)ζ
qn+1 +O(ζqn+2).

Let us say that an open set Ω ⊂ C is a non-degenerate parabolic locus, if for all sufficiently
large n ≥ 1, bn is non-zero on Ω.

Let Cθ denote the Zakeri curve [Zak99], i.e.

Cθ = {a ∈ C : both critical points of fλ,a belong to ∂∆θ(a)}.

Let rθ(a) denote the conformal radius of the Siegel disk ∆θ(a) of fλ,a at 0.
The following result will be crucial to our argument:

Theorem 2.1 ([Che20]). For every irrational number of bounded type θ and every a ∈ C,

lim
n→∞

|bn(a)|1/qn = 1/rθ(a).

Moreover, the convergence is uniform on compact subsets of any non-degenerate parabolic locus
in C.

The first part of the above theorem is readily presented in [Che20]. The latter part also
follows from that paper. Indeed, if Ω ⊂ C is a non-degenerate parabolic locus, for large n,
the sequence of maps q−1

n log |bn(a)| are harmonic on Ω, and by [Che20, Proposition 54],
converge to − log rθ(a) in L1

loc(Ω). Then, the L1
loc convergence implies uniform convergence

on compact sets for harmonic functions.
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2.3. Convergence of parabolic petals to Siegel internal rays. In this section we construct
some forward-invariant regions for f◦qn

λn,a
(parabolic petals); see Proposition 2.7. Although we

shall not directly use it, the estimates from Lemma 2.6 imply that those petals converge to
Siegel internal rays as n → +∞.

Let U ⊂ C be an arbitrary capture component. There exists a critical point ca and an
integer k ≥ 1 such that for all a ∈ U , f◦k

λ,a(ca) ∈ ∆θ(a). We let U∗ := {a ∈ U : f◦k
λ,a(ca) ̸= 0}.

For a ∈ U , let ϕa : ∆θ(a) → D(0, rθ(a)) denote the linearising coordinate, normalised by
ϕ′
a(0) = 1.
There is a holomorphic motion of the boundary of ∆θ(a) over U . The map (a, ζ) 7→ ϕa(ζ)

is holomorphic over a ∈ U and ζ ∈ ∆θ(a), and the map a 7→ log rθ(a) is harmonic on U ,
see [Sul] or [Zak16]. In particular, there exists a holomorphic function u : U → C such that
Reu = log rθ. We let v := eu, so that v is also holomorphic and |v| = rθ.

For a ∈ U and n ≥ 1, let us consider the map

Ln,a(z) := v(a)−1ϕa ◦ fλn,a ◦ ϕ−1
a (zv(a)) ,

which is defined on a neighbourhood of 0.
We need the following, uniform parameter dependent, version of a lemma of Jellouli

[Jel94].

Lemma 2.2. For every r ∈ (0, 1) and every compact set Λ ⊂ U , there exists M ∈ N and C ∈ R
such that for all a ∈ Λ and all n ≥ M , L◦qn

n,a is defined on D(0, r), and for all z ∈ D(0, r), and all
0 ≤ k ≤ qn, we have ∣∣∣L◦k

n,a(z)− λk
nz

∣∣∣ ≤ Ck|z|/q2n.

Proof. For (µ, a) ∈ C × U , let us consider fµ,a(ζ) = µζ + aζ2 + ζ3. Recall that for all a ∈ U ,
fλ,a has a Siegel disk ∆θ(a) centred at 0. Let us fix constants 0 < r < r′ < 1, and a compact
set Λ ⊂ U .

For (µ, a) ∈ C× U , consider the composition

Fµ,a := ϕa ◦ fµ,a ◦ ϕ−1
a ,

which is a priori defined on a neighbourhood of 0. Evidently, |fµ,a−fλ,a| = O(|µ−λ|) on every
compact subset of C, independent of a ∈ Λ. Combining with the holomorphic dependence of
ϕa(ζ) on a and ζ, it follows that there is ϵ > 0 such that for all µ ∈ D(λ, ϵ) and all a ∈ Λ, Fµ,a

is defined on D(0, r′), and as µ converges to λ, Fµ,a converges to the map

Fλ,a(z) = λz,

uniformly on D(0, r′). Moreover, Fµ,a(0) = 0 and F ′
µ,a(0) = µ. By the holomorphic depen-

dence of ϕa(ζ) on a and ζ, it follows that the family of maps {Fµ,a | µ ∈ D(λ, ϵ), a ∈ Λ} forms
a pre-compact class of analytic maps.

For µ ∈ D(λ, ϵ) and a ∈ Λ, define the map Gµ,a on D(0, r′), according to

Fµ,a(z) = µzGµ,a(z).

It follows from the above pre-compactness argument that by making ϵ smaller if necessary,
we may assume that Gµ,a takes values in D(1, 2/3). Then, for µ ∈ D(λ, ϵ) and a ∈ Λ, on the
left half-plane Rew < log r′, we may define the map

Hµ,a(w) = logGµ,a(e
w).
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By the above pre-compactness, there exists a constant C ′ > 0 such that for all µ ∈ D(λ, ϵ),
a ∈ Λ, and Rew < log r′, we have

|Hµ,a(w)| ≤ C ′|µ− λ|.
Consider the map

Iµ,a(w) = w + logµ+Hµ,a(e
w),

so that
Fµ,a(e

w) = eIµ,a(w).

When |2πipn/qn − 2πiθ| < ϵ, we obtain

|Iλn,a(w)− w − 2πipn/qn| = |Hλn,a(e
w)| ≤ C ′|2πipn/qn − 2πiθ| ≤ C ′2π/q2n,

where we have used the Diophantine estimate |pn/qn − θ| < 1/q2n, for all n ≥ 1.
For every w with Rew < log r′ − C ′2π/qn, by induction, for k = 0, . . . , qn, the above

inequality implies that
Re

(
I◦kλn,a(w)

)
< log r′ + C ′2πk/q2n,

and ∣∣∣I◦kλn,a(w)− w − 2πikpn/qn

∣∣∣ ≤ C ′2πk/q2n.

In the coordinate z = ew, we obtain∣∣∣∣∣F k
λn,a

(z)

λk
nz

− 1

∣∣∣∣∣ < 4πC ′k

q2n
.

In particular, for n large enough, and all 0 ≤ k ≤ qn, the iterates F ◦k
λn,a

are defined on
D(0, r) and remain inside D(0, 1). Because rθ(a) is uniformly bounded from above and below
for a ∈ Λ, the above inequality implies the desired inequality in the lemma, for a suitable
constant C. □

For a ∈ U and n ≥ 1, consider the normalised map

Gn,a(z) := v(a)−1ϕa ◦ f◦qn
λn,a

◦ ϕ−1
a (v(a)z),

which is defined on a neighbourhood of 0.
From (2), it is not difficult to see that near 0,

(3) Gn,a(z) = z + bn(a)v(a)
qnzqn+1 +O(zqn+2) = L◦qn

n,a .

For any r1 ∈ (0, 1), there exists N ∈ N such that for all a ∈ U and all n ≥ N , Gn,a is defined
and univalent on D(0, r1). In particular, we may write

Gn,a(z) = zegn,a(z)

for some function gn,a : D(0, r1) → C. Then, the map

(4) Hn,a(w) := w + gn,a(e
w)

is defined and univalent on the left half-plane Rew < log r1, and satisfies

exp ◦Hn,a = Gn,a ◦ exp .
We do not know if U is a non-degenerate parabolic locus. Let Ω ⊆ U∗ be a simply connected

non-degenerate parabolic locus. In particular, the convergence in Theorem 2.1 is uniform on
compact subsets of Ω.
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Lemma 2.3. [Che01, Lem 4.2] Fix an arbitrary r1 ∈ (0, 1). For n ≥ 1, and a ∈ U , let
N(n, a) denote the number of fixed points of Gn,a in D(0, r1)\{0}. Then, as n → ∞, N(n, a)/qn
converges to 0 uniformly on compact subsets of Ω.

Proof. Let Λ be a compact set in Ω. For each n ≥ 1, N(n, a) is uniformly bounded from
above independent of a ∈ U . Let us choose an ∈ Λ so that N(n, an) = maxa∈ΛN(n, a). By
Lemma 2.2, there exists a sequence rn → 1− such that for every n ∈ N, Gn,an is defined
and univalent on D(0, rn), and sup|z|≤rn |Gn,an(z)− z| → 0. We consider the normalised map
Fn(z) := r−1

n Gn,an(rnz), so that for every n ∈ N∗, Fn is defined and univalent on D(0, 1), and
sup|z|≤1 |Fn(z) − z| → 0. In particular, we will always assume in what follows that n is large
enough so that

sup
|z|≤1

|Fn(z)− z| ≤ 2.

Moreover, we have
Fn(z) = z + Cnz

qn+1 +O(zqn+2)

where Cn := bn(an)v(an)
qnrqnn . By Theorem 2.1 and the definition of v, we have

(5) lim
n→+∞

1

qn
log |Cn| = 0.

For each r ∈ (0, 1], let Nn(r) denote the number of fixed points of Fn in D(0, r) \ {0},
counted with multiplicity. Let zn,j , for 1 ≤ j ≤ Nn(1), denote the fixed points of Fn in
D(0, 1)\{0}, repeated with multiplicity. There exists a holomorphic function σn : D(0, 1) → C
with no zeroes in D(0, 1) such that for all z ∈ D(0, 1),

Fn(z) = z + zqn+1σn(z)

Nn(1)∏
j=1

z − zj,n
1− zj,nz

.

Clearly max|z|=1 |σn(z)| ≤ max|z|=1 |Fn(z)− z| ≤ 2, thus by the maximum principle, |σn(0)| ≤
2. Moreover, Cn = σn(0)(−1)Nn(1)

∏Nn(1)
j=1 zj,n. From now on we assume that r ∈ (r1, 1). Then

|Cn| = |σn(0)|
∏

|zj,n|<r

|zj,n|
∏

|zj,n|≥r

|zj,n| ≤ 2 · rNn(r) · 1.

Therefore,

0 ≤ Nn(r)

qn
≤ log 2− log |Cn|

qn| log r|
.

Combining with (5), we get

lim
n→∞

Nn(r)

qn
= 0.

Since Nn(r) ≥ N(n, an) for large enough n, we are done. □

Lemma 2.4. Let r1 ∈ (0, 1), and Λ be a compact set in Ω. There exists N1 ∈ N such that for all
n ≥ N1 and all a ∈ Λ, Gn,a has no fixed points in D(0, r1) except for z = 0.

Proof. By Lemma 2.2, there exists M = M(r1) and C = C(r1) > 0 such that for all n ≥ M ,
all a ∈ Λ, all z ∈ D(0, r1), and all 1 ≤ k ≤ qn, we have

|L◦k
n,a(z)− λk

nz| ≤ Ck|z|/q2n.
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Let s := min{1, 1/C} > 0. By Lemma 2.3, there exists N1 ∈ N such that for all n ≥ N1 and
all a ∈ Λ,

(6) N(n, a) < sqn/2.

Assume for a contradiction that there exists n ≥ N1, a ∈ Λ and z ∈ D(0, r1) \ {0} such that
Gn,a(z) = z. Then for all 1 ≤ k ≤ qn, L◦k

n,a(z) is also a fixed point of Gn,a. We will show that
the set {L◦k

n,a(z) : 1 ≤ k ≤ qn} contains at least sqn elements, which contradicts (6).
First, observe that by the inequality |eix − eiy| ≥ 2

π |x − y| for real values of x and y, if
1 ≤ k1 < k2 ≤ qn, then

|λk1
n − λk2

n | ≥ 4/qn.

Then, for all 1 ≤ k1 < k2 ≤ sqn:

|L◦k1
n,a (z)− L◦k2

n,a (z)| ≥ |λk1
n z − λk2

n z| − |L◦k1
n,a (z)− λk1

n z| − |L◦k2
n,a (z)− λk2

n z|

≥ 4

qn
|z| − 2Csqn|z|

q2n

≥ 2|z|
qn

.

In particular, L◦k1
n,a (z) ̸= L◦k2

n,a (z). This completes the proof of the claim. □

In the following lemma we assume that r1 ∈ (0, 1), Λ ⊂ Ω and N1 ∈ N satisfy Lemma 2.4.

Lemma 2.5. For all r1 ∈ (0, 1), all n ≥ N1 and all a ∈ Λ, on the left half-plane Rew < log r1,
we may write

gn,a(e
w) = eℓn,a(w)

where
ℓn,a(w) = log bn(a) + qnu(a) + qnw + kn,a(e

w)

for some holomorphic function kn,a : D(0, r1) → C satisfying kn,a(0) = 0.

Note that log bn(a) is well-defined on Ω for large enough n, because Ω is simply connected
and bn(a) becomes non-zero on Ω.

Proof. Recall that by definition, we have gn,a(z) = log(Gn,a(z)/z), well-defined on D(0, r1) for
all n ≥ N1 and a ∈ Λ. Moreover, by (3) and the definition of v, we have

Gn,a(z) = z + bn(a)e
qnu(a)zqn+1 +O(zqn+2).

Therefore,

(7) gn,a(z) = log
(
1 + bn(a)e

qnu(a)zqn +O(zqn+1)
)
= bn(a)e

qnu(a)zqnhn,a(z)

for some function hn,a : D(0, r1) → C such that hn,a(0) = 1. Moreover, because by Lemma 2.5,
Gn,a has no fixed points inside D(0, r1)\{0}, hn,a does not vanish on D(0, r1). Thus, hn,a(z) =
exp ◦kn,a(z) for some function kn,a : D(0, r1) → C with kn,a(0) = 0. □

Lemma 2.6. For every r0 ∈ (0, 1) and every compact set Λ ⊂ Ω, we have

lim
n→∞

sup
a∈Λ

sup
|z|≤r0

Re kn,a(z)

qn
= 0, and lim

n→∞
sup
a∈Λ

sup
|z|≤r0

∣∣∣∣k′n,a(z)qn

∣∣∣∣ = 0.
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Proof. Let us fix an arbitrary r0 ∈ (0, 1), a compact set Λ ⊂ Ω and an ϵ > 0. We choose
r1 ∈ (r0, 1) such that − log r1 < ϵ/2. For n ≥ N1, let

ϵn := sup
a∈U

sup
|z|≤r1

|Gn,a(z)− z|
|z|

.

By Lemma 2.2, ϵn ≤ C(r1)/qn, and hence ϵn → 0. On the other hand,

|gn,a(z)| =
∣∣∣∣log Gn,a(z)

z

∣∣∣∣ = ∣∣∣∣log(1 + Gn,a(z)− z

z

)∣∣∣∣ .
For n large enough, ϵn is small enough that | log(1 + z)| ≤ |z|/r1 on D(0, ϵn). It follows from
(7) that for all (z, a) ∈ D(0, r1)× Λ, we have∣∣∣bn(a)eqnu(a)zqn+1ekn,a(z)

∣∣∣ ≤ |z||gn,a(z)| ≤ ϵn.

Let (yn, an) ∈ D(0, r1)× Λ be such that

|ekn,an (yn)| = max
|z|≤r0,a∈Λ

|ekn,a(z)|.

By the maximum principle, we have |yn| = r1 and an ∈ ∂U . Therefore,

rθ(an)
qn |bn(an)|rqn1 eRe kn,an (yn) ≤ ϵn/r1,

using |eqnu(a)| = rθ(a)
qn . Applying 1

qn
log to both sides of the above inequality, we obtain

log rθ(an) +
1

qn
log |bn(an)|+ log r1 +

Re kn,an(yn)

qn
≤ 1

qn
log

ϵn
r1

and hence
Re kn,an(yn)

qn
≤ 1

qn
log

ϵn
r1

− log r1 −
1

qn
log |bn(an)| − log rθ(an).

Using ϵn ≤ C(r1)/qn, we have lim supn→+∞
1
qn

log ϵn
r1

≤ 0, and by Theorem 2.1,

lim
n→∞

1

qn
log |bn(an)|+ log rθ(an) = 0.

Therefore, there exists N ∈ N such that for all n ≥ N ,
1

qn
log |bn(an)|+ log rθ(an) +

1

qn
log

ϵn
r1

≤ ϵ

2
.

Then, by our choice of r1, for all n ≥ N ,
1

qn
Re kn,an(yn) ≤ − log r1 +

ϵ

2
≤ ϵ.

On the other hand, kn,a(0) = 0 for all n ∈ N and a ∈ Λ. Combining with the above
argument, we conclude that for all n ≥ N ,

0 ≤ sup
a∈Λ

sup
|z|≤r0

Re kn,a(z)

qn
≤ 1

qn
Re kn,an(yn) ≤ ϵ

The first inequality implies the second inequality, as a general property. Fix arbitrary r0,
r1 ∈ (r0, 1) and ϵ > 0. By the first inequality, there is N ∈ N such that for all n ≥ N all
a ∈ Λ and all |z| < r1, Re kn,a(z)/(ϵqn) < 1. Thus, kn,a/(ϵqn) maps the disk D(0, r1) into
the left half-plane Rew < 1, with kn,a(0)/(ϵqn) = 0. Post-composing the map kn,a/(ϵqn)
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with a Möbius transformation and applying the Schwarz lemma, we conclude that there is
a constant C, depending only on r1 but not on n, ϵ and a, such that on the disk D(0, r0),
|k′n,a(z)/(ϵqn)| ≤ C. As ϵ was arbitrary, this implies the second inequality. □

Proposition 2.7. For every r0 ∈ (0, 1) and every compact set Λ ⊂ Ω, there exists N ∈ N such
that for all n ≥ N , all a ∈ Λ, and all k ∈ Z, the regions

Ck
n,a = {w ∈ C : Rew < log r0 and 2kπ + 3π/4 < Im ℓn,a(w) < 2kπ + 5π/4}

are forward invariant by Hn,a, and for every w ∈ Ck
n,a, ReH◦m

n,k(w) → −∞ as m → +∞.

3.0 2.5 2.0 1.5 1.0 0.5
Re(w)

4

2

0

2

4

Im
(w

)

The sets Ca
n, k

FIGURE 1. In grey, the regions Ck
n,a (sketch), which are Hn,a-invariant.

Before we prove Proposition 2.7, let us comment on its geometrical meaning. Going back
to the original coordinates, the regions ϕ−1

a ◦exp(Ck
n,a) are bounded, forward invariant regions

for f◦qn
λn,a

on which the dynamics converges to 0, i.e. parabolic petals. Lemma 2.6 essentially
implies that as n → +∞, the regions Ck

n,a resemble more and more horizontal bands of height
of order 1

qn
, and so tend to horizontal half-lines. In the original coordinates, these horizontal

half-lines correspond to Siegel internal rays, which justifies the title of Section 2.3.

Proof. Fix an arbitrary r0 ∈ (0, 1). By Lemmas 2.5 and 2.6, there is N ∈ N such that for all
n ≥ N , all a ∈ U , and all w in the left half-plane Rew < log r0, ℓn,a(w) is defined, and

(8) Re kn,a(e
w) < qnmin

{
1

4
,
− log r0

2

}
and |k′n,a(ew)| < qnmin

{
1

4
,
− log r0

2

}
.

Below we assume that n ≥ N . Let us also fix k ∈ Z and a ∈ U .
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We divide the set Ck
n,a into the sets

Ck,t
n,a = {w ∈ C : Rew < log r0 and 2kπ + 7π/6 < Im ℓn,a(w) < 2kπ + 5π/4},

Ck,c
n,a = {w ∈ C : Rew < log r0 and 2kπ + 5π/6 ≤ Im ℓn,a(w) ≤ 2kπ + 7π/6},

Ck,b
n,a = {w ∈ C : Rew < log r0 and 2kπ + 3π/4 < Im ℓn,a(w) < 2kπ + 5π/6}.

We also consider the curves

ρk,1n,a = {w ∈ C : Rew < log r0 and Im ℓn,a(w) = 2kπ + 3π/4},

ρk,2n,a = {w ∈ C : Rew < log r0 and Im ℓn,a(w) = 2kπ + 5π/6},

ρk,3n,a = {w ∈ C : Rew < log r0 and Im ℓn,a(w) = 2kπ + 7π/6},

ρk,4n,a = {w ∈ C : Rew < log r0 and Im ℓn,a(w) = 2kπ + 5π/4}.
First we prove some properties of these sets, and the map Hn,a on them.

P1. For i = 1, 3, we have

inf
{
|w1 − w2| : w1 ∈ ρk,in,a, w2 ∈ ρk,i+1

n,a

}
≥ 1

6qn
.

Assume in the contrary that there are i ∈ {1, 3}, w1 ∈ ρk,in,a and w2 ∈ ρk,i+1
n,a such that

|w1 − w2| < 1/(6qn). Then, by (8), we must have

π/12 = ℓn,a(w2)− ℓn,a(w1)

≤ |w2 − w1| · sup{|ℓ′n,a(w)| : w ∈ C,Rew < log r0}

<
1

6qn
·
(
qn + sup{|k′n,a(ew)ew| : w ∈ C,Rew < log r0}

)
≤ 1

6qn
·
(
qn +

qn
4

)
,

which is a contradiction.

P2. For i = 1, 2, 3, 4, and all distinct w1, w2 ∈ ρk,in,a,

arg(w2 − w1) ∈ (−π/6,+π/6) + πZ.

For all w ∈ ρk,in,a, we have |ew| < 1, and hence by Lemma 2.6 and (8), we must have
ℓ′n,k(w) ̸= 0. We also note that for every w ∈ ρk,in,a, we have

| arg ℓ′n,a(w)| = | arg(qn + k′n,a(w)e
w)| ≤ arcsin(1/4) < π/6.

Now, if there are w1 ̸= w2 on a ρk,in,a violating the desired relation, by the intermediate value
theorem, there must be a point w on ρk,in,a between w1 and w2 violating the above inequality.

P3. We have

arg(Hn,a(w)− w) ∈ (3π/4, 5π/6) + 2πZ, for all w ∈ Ck,b
n,a

and
arg(Hn,a(w)− w) ∈ (7π/6, 5π/4) + 2πZ for all w ∈ Ck,t

n,a.

By Lemma 2.5, for all w in the left half-plane Rew < log r0,

Hn,a(w) = w + gn,a(e
w) = w + eℓn,a(w)
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Then,

arg(Hn,a(w)− w) = arg eℓn,a(w) = Im ℓn,a(w).

Combining with the definitions of Ck,b
n,a and Ck,t

n,a we obtain P3.

P4. For all w ∈ Ck,c
n,a,

arg(Hn,a(w)− w) ∈ (5π/6, 7π/6) + 2πZ.

We presented P4 separately, for the sake of the clarity of the later arguments. Otherwise,
the proof is already given in P3.

P5. There is N2 ∈ N, independent of a ∈ Λ and k ∈ Z, such that for all n ≥ N2 and all
w ∈ Ck

n,a, we have
|Hn,a(w)− w| ≤ 1/(6qn).

To see this, note that by our choice of N for (8),

|Hn,a(w)− w| = |eℓn,a(w)|

≤ |bn(a)||eqnu(a)|eqn log r0−qn(log r0)/2

= |bn(a)|rθ(a)qneqn(log r0)/2

By Theorem 2.1, limn→∞ |bn(a)|1/qnrθ(a) = 1. Thus, for large enough n,

|bn(a)|rθ(a)qn ≤ eqn(− log r0)/4.

Combining with the previous equation, we conclude that for large enough n,

|Hn,a(w)− w| ≤ eqn(log r0)/4 < 1/(6qn).

Now we are ready to complete the proof. By P2, every ρk,in,a, for i = 1, 2, 3, 4, meets the
vertical line Rew = log r0 at a single point, and divides the left half-plane Rew < log r0 into
two connected components. Thus we may talk about the component below or above ρk,in,a

in that left half-plane. Let us first show that Hn,a(C
k,b
n,a) ⊂ Ck

n,a. Fix an arbitrary w ∈ Ck,b
n,a.

Because Rew < log r0, by P3, ReHn,a(w) < log r0. By P3 and P2, Hn,a(w) lies above the
curve ρk,1n,a. By P5 and P1, Hn,a(w) lies below the curve ρk,4n,a. Combining these, we conclude
that Hn,a(w) ∈ Ck

n,a. By a symmetric argument, Hn,a(C
k,t
n,a) ⊂ Ck

n,a. On the other hand, by P5
and P1, Hn,a(C

k,c
n,a) is contained in Ck

n,a. Therefore, Ck
n,a is invariant under Hn,a.

By P3 and P4, for every w in the closure of Ck
n,a, ReHn,a(w) < Rew. Moreover, the sets

ϕ−1
a ◦ exp(Ck

n,a) are bounded, forward invariant sets for f qn
λn,a

, hence contained in the Fatou
set of fλn,a; and since they contain the parabolic fixed point 0 in their closure, they are
contained in the parabolic basin. This implies that for every w ∈ Ck

n,a, ReH◦m
n,a(w) → −∞, as

m → +∞. □

Corollary 2.8. For every k1, k2 ∈ Z, exp(Cki
n,a) is contained in a connected component Pki

n,a of
the immediate parabolic basin of fλn,a. Moreover, if k1 − k2 /∈ qnZ, then Pk1

n,a ̸= Pk2
n,a.

Proof. By Proposition 2.7, and the definitions of Hn,a, Gn,a and fλn,a, the sets ϕ−1
a ◦ exp(Ck

n,a)
are contained in the immediate parabolic basins of 0 for fλn,a. When k1 − k2 /∈ qn2πZ,
exp(Ck1

n,a) and exp(Ck2
n,a) land at 0 at well-defined angles, where the angle between them is

a non-zero integer multiple of 2π/qn. On the other hand, since bn(a) ̸= 0, there are exactly
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qn repelling petals, landing at 0 at well-defined angles, with equally spaced at angle 2π/qn
between consecutive ones. This implies that for k1−k2 /∈ qn2πZ, exp(Ck1

n,a) and exp(Ck2
n,a) are

disjoint. □

3. PROOF OF THEOREM 1.1

There are two cases to consider, depending on whether a parameter a in a capture compo-
nent U lies in a non-degenerate parabolic locus, or not. The former case is the most difficult
to deal with, and we only look at the latter case near the end of this section. Let us continue
to use the notations introduced in the previous sections. In particular, Ω is a simply connected
non-degenerate parabolic locus in U∗ and Λ ⊂ Ω is an arbitrary compact set. From now on
we also further assume that Ω is compactly contained in U∗.

Recall that cλ,a is a critical point of fλ,a which is mapped into the Siegel disk ∆θ(a) in k
iterates. Consider the functions

K(a) := log ϕa ◦ f◦k
λ,a(cλ,a),

and Kn : Ω → C, where
Kn(a) := log ϕa ◦ f◦k

λn,a(cλn,a).

Because Ω is compactly contained in U∗, for large enough n, the corresponding critical point
cλn,a of fλn,a will be mapped into ∆θ(a) \ {0} in k iterates as well. Also, because Ω is chosen
simply connected, the log function is well-defined. For convenience, let us assume that Kn

is defined for all n (otherwise we consider n to be sufficiently large). Clearly, Kn uniformly
converges to K on Ω.

Lemma 3.1. For every a0 ∈ Ω, the sequence of functions

χn(a) =
1

qn
ℓn,a ◦Kn(a)−

1

qn
ℓn,a0 ◦Kn(a0)

converges uniformly on compact subsets of Ω to a non-constant holomorphic function χ : Ω → C.

Proof. As a varies in a compact subset of Ω, ϕa ◦ f◦k
λ,a(cλ,a) forms a compact subset of D(0, 1).

Employing Lemma 2.6, we conclude that

1

qn
ℓn,a ◦Kn(a) =

1

qn
log bn(a) + u(a) +K(a) + o(1),

on any compact subset of Ω, with the constant in o depending only on that compact set. Thus,

Re
1

qn
ℓn,a ◦Kn(a) =

1

qn
log |bn(a)|+ log rθ(a) + log |ϕa ◦ f◦k

λ,a(ca)|+ o(1).

By Theorem 2.1, on any compact subset of Ω, 1
qn

log |bn(a)| converges to − log rθ(a). In par-
ticular, on any compact subset of Ω, as n → ∞, Reχn converges to

Re (K(a)−K(a0)) = log |ϕa ◦ f◦k
λ,a(ca)| − log |ϕa0 ◦ f◦k

λ,a0(ca0)|.

By definition, χn(a0) = 0. It follows that χn converges to K(a)−K(a0), uniformly on compact
subsets of Ω.

By a classical argument of quasi-conformal deformation, K(a)−K(a0) is not constant (see
for instance [Zak99, Theorem 7.3]). □
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Proposition 3.2. For every a0 ∈ Ω and every ϵ > 0 there is N ∈ N satisfying the following
property. For all n ≥ N , there are a, b ∈ B(a0, ϵ) and integers ka and kb with ka−kb /∈ qnZ such
that

Kn(a) ∈ Cka
n,a and Kn(b) ∈ Ckb

n,b.

Proof. Fix arbitrary a0 ∈ Ω and ϵ > 0. By making ϵ smaller, we may assume that the closure of
B(a0, ϵ) is contained in Ω. Since Ω is compactly contained in U∗, K(Ω) is compactly contain
the left half-plane Rew < 0. As Kn converges to K uniformly on Ω, there is r0 ∈ (0, 1) such
that for sufficiently large n, Kn(Ω) is contain in the left half-plane Rew < log r0.

It follows from Lemma 3.1 that there is δ > 0 such that for large enough n, χn(B(a0, ϵ))
contains B(0, δ). Then, {ℓn,a(Kn(a)) : a ∈ B(a0, ϵ)} must contain B(Kn(a0), qnδ). In particu-
lar, if n is large enough (to also make qnδ ≥ 4), {ℓn,a(Kn(a)) : a ∈ B(a0, ϵ)} contains a ball of
radius 4 around a point in the left half-plane Rew < log r0.

Now we may employ Proposition 2.7, with r0 and Λ = B(a0, ϵ), to conclude that for
sufficiently large n, there are a, b in B(a0, ϵ) and ka and kb = ka + 1 satisfying the desired
properties in the proposition. □

Proposition 3.3. For every a0 ∈ Ω and every neighbourhood V ⊂ C of a0, there exists N ∈ N
such that for all n ≥ N , the family {fλn,a}a∈V is not J -stable.

Proof. Let us choose ϵ > 0 so that B(a0, ϵ) ⊂ V ∩Ω. Then, we apply Proposition 3.2 to obtain
the N ∈ N. For each n ≥ N , we obtain a, b ∈ V , and ka, kb ∈ Z satisfying the properties in
that proposition.

Assume for a contradiction that the family {fλn,a}a∈V is J -stable, for some n ≥ N . Com-
bining the above paragraph with Corollary 2.8, we obtain

f◦k
λn,a(cλn,a) ∈ Pka

n,a.

Then by J -stability, we must have

f◦k
λn,s(cλn,s) ∈ Pka

n,s

for all s ∈ V . But this is not the case since

f◦k
λn,b(cλn,b) ∈ Pkb

n,b. □

Remark 3.4. By the seminal work of Yoccoz [Yoc95], the Brjuno condition is sharp (necessary
and sufficient) for the linearisability of a quadratic polynomial with an irrationally indifferent
fixed point. That optimality remains open for cubic polynomials in general. However, it follows
from a general result of Perez-Marco that if fe2iπθ,a0 is a Siegel polynomial of capture type, for
some θ ∈ R \ Q and a0 ∈ C, then θ must be a Brjuno number. That is because if fe2iπθ,a is of
capture type, there is an open set U ⊂ C containing a0 such that for all a ∈ U , fe2iπθ,a has a
Siegel disk. But by [PM01], if θ ∈ R \Q is non-Brjuno, then

{a ∈ C : fe2iπθ,a has a Siegel disk }

must be a polar set, which is impossible here.
The same result of Perez-Marco [PM01] implies that if θ is not Brjuno but fe2iπθ,a0 has a

Siegel disk containing 0, then a0 is in the bifurcation locus of the slice {fe2iπθ,a , a ∈ C}. Then by
[MSS83] or [Lyu83], arbitrarily close to a0, there must be some a1 ∈ C such that fe2iπθ,a1 has a
neutral cycle which is non-persistent in the family {fe2iπθ,a , a ∈ C}. In particular, fe2iπθ,a1 has 2
neutral cycles, therefore by [BE09] it is in the support of µbif . This proves that if there exists cubic
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polynomial maps with Siegel disks with non-Brjuno rotation numbers (which are conjectured not
to exist), then they must also be in µbif .

We have now completed the ingredients we need to prove Theorem 1.1 for rotation num-
bers of bounded type. In order to generalise it to all Brjuno numbers, we shall use the
following result due to Avila, Buff and Chéritat.

Theorem 3.5 ([ABC04], Theorem 3, p. 11). Let θ be a Brjuno number, and let Φ denote the
Brjuno-Yoccoz function. Let θn → θ, where θn are Brjuno numbers and

lim sup
n→+∞

Φ(θn) → Φ(θ) + C

for some constant C ≥ 0. Let fn(z) = e2πiθnz +O(z2), for n ∈ N, be a sequence of holomorphic
maps on D(0, 1) such that fn → Rθ (the rigid rotation of angle θ) locally uniformly on D(0, 1).
Then

lim inf
n→+∞

log r(∆fn) ≥ e−C .

In the above statement, r(∆fn) denotes the conformal radius of the Siegel disk ∆fn of fn
centred at 0.

We now present the proof of the main result.

Proof of Theorem 1.1. Let a0 be an arbitrary parameter in U , which is not the centre of U . We
consider two cases, based on whether a0 lies in a non-degenerate parabolic locus or not.

Case i) The parameter a0 does not belong to a non-degenerate parabolic locus.
Let us first show that if bn(c) = 0 for some n ∈ N and c ∈ C, then (λn, c) ∈ suppµbif .

Indeed, by definition of bn, the map fλn,c has a parabolic fixed point of parabolic multiplicity 2
at the origin. The immediate parabolic basin is therefore comprised of 2qn Fatou components.
On the other hand, when bn(a) ̸= 0, the parabolic multiplicity is 1 and there are only qn
Fatou components in the immediate parabolic basin of 0. Therefore, the map fλn,c cannot
be J -stable in the slice family {fλn,a : a ∈ C}. The classical results of [MSS83] and [Lyu83]
imply the existence of a′n arbitrarily close to c such that fλn,a′n has a neutral cycle which is
non-persistent in the slice {fλn,a : a ∈ C}. Therefore fλn,a′n has exactly 2 neutral cycles,
including the parabolic fixed point at the origin. By [BE09], (λn, a

′
n) ∈ suppµbif , and since

we may choose a′n arbitrarily close to c, so is (λn, c).
By definition, if a0 does not belong to any non-degenerate parabolic locus, there is a se-

quence of parameters (ak)k≥1 in U such that ak → a0, bnk
(ak) = 0 for some nk ∈ N, and

limk→∞ nk = ∞. By the above paragraph, each (λnk
, ak) ∈ suppµbif , and hence (λ, a) ∈

suppµbif .

Case ii) The parameter a0 belongs to a non-degenerate parabolic locus, say Ω.
Recall that by Remark 3.4, our assumptions imply that θ is a Brjuno number. Let us first

assume that θ is bounded type. Fix an arbitrary ϵ > 0. We will find some an ∈ C such that
∥(λn, an)− (λ, a0)∥ ≤ ϵ and (λn, an) ∈ suppµbif .

Applying Proposition 3.3 with V := D(a0, ϵ/2), we conclude that there exists n such that
|λn−λ| < ϵ/2 and an ∈ D(a0, ϵ/2) such that fλn,an has a neutral cycle besides the fixed point 0.
By [BE09, Main Theorem], (λn, an) ∈ suppµbif , and by construction ∥(λn, an)− (λ, a0)∥ ≤ ϵ.
Therefore a0 ∈ suppµbif .

Now let θ ∈ R \Q be Brjuno number and a ∈ C be such that fe2iπθ,a is of capture type (we
do not assume anymore that θ has bounded type). Let [a0 : a1 : . . .] denote the entries of its
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continued fraction expansion. For all n ∈ N, let θn be the unique irrational number whose
continued fraction expansion has entries

[a0 : . . . an : 1 : 1 . . .].

We have
lim
n→∞

Φ(θn) = Φ(θ)

where Φ is the Brjuno-Yoccoz function. Let ϕ : ∆θ(a) → D(0, 1) denote the linearising co-
ordinate of the Siegel disk of fe2iπθ,a, normalised to map ∆θ(a) to the unit disk D(0, 1). Let
hn(z) := ϕ ◦ fe2iπθn ,a ◦ ϕ−1(z).

The sequence hn satisfies the assumptions of Theorem 3.5 with C = 0. It follows that for
every compact K ⊂ ∆θ(a), there exists n0 ∈ N such that for all n ≥ n0, K ⊂ ∆θn(a). By
assumption, there exists k ∈ N∗ such that f◦k

e2iπθ,a
(ca) ∈ ∆θ(a), where ca is a critical point of

fe2iπθ,a; by taking K := D(ca, δ) for δ > 0 small enough that K ⊂ ∆θ(a), we deduce that for
all n large enough, f◦k

e2iπθn ,a
(ca) ∈ ∆θn(a). In other words, for all n large enough, fe2iπθn ,a

is a Siegel polynomial of capture type, with bounded type rotation number. By the above,
(e2iπθn , a) ∈ suppµbif , and since e2iπθn → e2iπθ, (e2iπθ, a) must be in suppµbif as well. □
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