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ABSTRACT. We prove that cubic polynomial maps with a fixed Siegel disk and a critical orbit
eventually landing inside that Siegel disk lie in the support of the bifurcation measure pip;s.
This answers a question of Dujardin in positive. Our result implies the existence of holomor-
phic disks in the support of i, and also implies that the set of rigid parameters is not closed
in the moduli space of cubic polynomials.

1. INTRODUCTION

Let Poly, denote the space of monic centered polynomial maps of degree d > 2, and let M,
denote the moduli space of rational maps of degree d > 2 on the Riemann sphere. In general,
we let M = Poly, or M,. By definition, the bifurcation locus Bif C M is the complement
of the set of J-stability, that is, Bif is the set of parameters around which the Julia set does
not locally move holomorphically. The celebrated results of Mafié-Sad-Sullivan [MSS83]] and
Lyubich [Lyu83]] provide several other equivalent characterisations of the bifurcation locus,
in terms of the behaviour of the critical orbits or in terms of periodic cycles changing from
repelling to attracting or vice-versa.

In [DeMO01], DeMarco introduced a bifurcation current Ty, which is a closed positive cur-
rent of bidegree (1, 1) whose support is equal to Bif. Bassanelli and Berteloot [BBO7] studied
the higher degree currents Té“if = Thie A ... ANTit, 1 < k < dim M, which detect higher codi-
mensional bifurcation phenomena. When k = dim M, T}, is called the bifurcation measure
and is denoted by uy;¢. This is a finite positive measure, which is the Monge-Ampere measure
of the plurisubharmonic potential M > f — L(f), where L(f) is the Lyapunov exponent
of the unique measure of maximal entropy. The support of uy;s is also called the maximal
bifurcation locus, in the sense that it detects maximal codimension bifurcation phenomena.

In recent years, the study of the bifurcation measure p,; and its support has attracted con-
siderable attention. For instance, by the works of Bassanelli-Berteloot [BBO7]], Buff-Epstein
[BEO9] and Dujardin-Favre [DF08], it is known that the support of u;s coincides with the
closure of the set of parameters with the maximal number of non-repelling cycles (namely
d in the case of Poly, or 2d — 2 in the case of M), and also with the closure of the set of
parameters for which all critical points are strictly preperiodic to repelling cycles.

For parameters in the support of ju;¢, all critical points must be active. However, this is not
a sufficient condition. For instance, the following example is due to Douady [DF08], Example
6.13]. The polynomial map f(z) := z + 22/2 + 2% € Poly,; has one parabolic fixed point
which attracts both critical points, so they are both active at f in the family Poly;. However,
f is parabolic attracting, which means that any small perturbation of f possesses either a
parabolic or an attracting fixed point. It follows that f ¢ supp upir. A more subtle example is
given in [IM20] by Inou and Mukherjee, where they construct a real-analytic family (f;):cr
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of parabolic repelling cubic polynomials, for which both critical points are attracted to the
parabolic fixed point, but none of the f; is in the support of ;. Loosely speaking, these
examples show that in general a certain independence of the critical orbits is required for a
map f € M to be in the support of pips.

In this paper, we address the following question stated by Dujardin in [Duj09]]: Given a
cubic polynomial map with a Siegel disk and a critical orbit which eventually lands inside
the Siegel disk, does that cubic polynomial belong to the support of ui:? Note that the
second critical orbit must accumulate on the boundary of the Siegel disk, so that both critical
points are active in Poly; but are related through the Siegel disk. Such maps also have a
one-parameter family of quasi-conformal deformations, similar to the examples of Douady
and Inou-Mukherjee. However, in our case the parameter family is complex.

We work with the family of cubic polynomials with a marked fixed point placed at 0,
parametrised as

ey fra(z)=Xz4+a? +23 NacC.

Let A = %™ for an irrational number §. The map f , is linearisable near the origin if
there is a conformal change of coordinate ¢ : V' — (0, r) defined on a neighbourhood V'
of the origin such that ¢ o f) , = A¢. The maximal domain of that linearisation is called the
Siegel disk of f) ,. By the classic work of Siegel [Sie42] and Brjuno [Brj71], if ¢ satisfies the
so-called Brjuno condition ), - q, 'og gni1 < o0, then for every a € C, fx,q is linearisable
near the origin. Here (p,/¢n)nen is the sequence of best rational approximants of 6.

Let us say that a cubic polynomial f) , is a Siegel polynomial of capture type, if f, has a
Siegel disk containing the origin and a critical point whose orbit eventually lands inside that
Siegel disk. Our main theorem is the following:

Theorem 1.1. Any Siegel polynomial of capture type f» , is contained in the support of fips.

For a fixed A\ = 2™ it is not difficult to prove that the bifurcation locus of the slice
{fxa : a € C} is contained in the support of ju,;;. However, if 6 is a Brjuno number and f,2iro ,
is a Siegel polynomial of capture type, then it belongs to the stability locus of this slice. This
implies the following two consequences:

Corollary 1.2. There are holomorphic disks in the support of s in Polys.

Recall that a polynomial P is called conformally rigid if any polynomial which is quasi-
conformally conjugate to P is affinely conjugate to P. Following the pioneering works of
Sullivan [Sul85] and Thurston [DH93]], now there is substantial body of work related to the
quasi-conformal and conformal rigidity conjectures in complex dynamics (MLC conjecture
and higher degree analogues).

Corollary 1.3. The set of conformally rigid cubic polynomials is not closed in Poly;.

Indeed, Siegel polynomials of capture type are not conformally rigid (see Section [2.1)), but
strictly post-critically finite maps are conformally rigid [DH93]], and form a dense subset of
supp upie by [BEQ9].
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2. FROM ELLIPTIC TO PARABOLIC

Within Section [2] we assume that # € R\ Q is a bounded type number. In particular, 6 is a
Brjuno number.
Let us fix A = 2™ and consider the family of maps

fralz) =Xz +az? + 2%, acC.

We shall denote the Siegel disk of fy , with the notation Ay(a).

2.1. Capture components.
Definition 2.1. By a capture component we mean a connected component of the set
{a € C: f)q is a polynomial of capture type }.

By [Zak99, Theorem 7.3], capture components are (open) stability components in the slice
of maps {f\, : a € C}, and are contained in the connectedness locus. In particular, they
are simply connected (by the maximum principle). By [Zak99, Lemma 7.4], each capture
component V' contains a unique centre, that is, a parameter ag € V where a critical point of
fx.a0 is pre-periodic to 0. Moreover, all cubic polynomials in a capture component minus its
center point are quasi-conformally conjugate to each other on the Riemann sphere ([Zak99,
Theorem 7.5 (a)]).

2.2. Asymptotic size and conformal radius. Let p,/q,, for n > 1, be the sequence of the
best rational approximants of 6. Define \,, = e%mn/in,
By [Che20], for all n € N* there is a degree ¢,, polynomial map b,, such that

@ il (2) = 2+ ba(a) 2T + O(z%12).

Let us say that an open set 2 C C is a non-degenerate parabolic locus, if for all sufficiently
large n > 1, b,, is non-zero on ().
Let Cy denote the Zakeri curve [|Zak99]], i.e.

Cp = {a € C: both critical points of f) , belong to dAy(a)}.

Let rp(a) denote the conformal radius of the Siegel disk of f) , at 0.
The following result will be crucial to our argument:

Theorem 2.2 ([[Che20]). For every irrational number of bounded type 6 and every a € C,
1 an —
Jim [by,(a) [/ = 1/rg(a).

Moreover, the convergence is uniform on compact subsets of any non-degenerate parabolic locus
in C.

The first part of the above theorem is readily presented in [[Che20]. The latter part also
follows from that paper. Indeed, if Q C C is a non-degenerate parabolic locus, for large n,
the sequence of maps ¢, ' log|b,(a)| are harmonic on 2, and by [Che20, Proposition 541,
converge to —logrg(a) in L}, (2). Then, the L} . convergence implies uniform convergence
on compact sets for harmonic functions.
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2.3. Parabolic rays converge to Siegel internal rays. Let U C C be an arbitrary capture
component. There exists a critical point ¢, and an integer k£ > 1 such that for all a € U,

f\’fl(ca) € Ap(a). Welet U* :={a € U : f;f‘él(ca) # 0}. Fora € U, let ¢, : Ag(a) — Dy, )
denote the linearising coordinate, normalised by ¢/ (0) = 1. We make use of the follow-
ing lemma of Jellouli [Jel94], which is obtained through direct calculations, a compactness
argument, and the bound |0y — pp/qn| < 1/¢3.

Lemma 2.3 (Jellouli). For every ry > 0, there exists a constant C' > 0 such that for all a € U,
all z € D(0,rgrg(a)), alln > 1, and all 0 < k < qy:
[ba 0 fina©da (2) = Anzl < Cklzl/qj.

An,a

There is a holomorphic motion of the boundary of Ay(a) over U. The map (a, 2) — ¢4(2)
is holomorphic over « € U and z € Ay(a), and the map a — logry(a) is harmonic on U,
see [Sul] or [Zak16]. In particular, there exists a holomorphic function u : U — C such that
Rewu = logrg. We let v := e*, so that v is also holomorphic and |v| = 7.

For a € U and n > 1, consider the map

Gra = a0 1" 0 ¢y,
which is defined on a neighbourhood of 0. We also consider the normalised map
Gna(z) = v(a)_léma(v(a)z).
From ([2), it is not difficult to see that near 0,
(3) Gna(2) = 2 + bp(a)v(a)®® 28+  O(21 ).
For any r; € (0, 1), there exists N € Nsuch thatforalla € U and alln > N, G,,, is defined
and univalent on ID(0, r1). In particular, we may write
Gna(z) = ze9Ina(?)
for some function gy, , : D(0,71) — C. Then, the map
Hyo(w) :=w + gna(e”)
is defined and univalent on the left half-plane Re w < logr1, and satisfies
expoH,, = Gnq0exp.

We do not know if U is a non-degenerate parabolic locus. Let 2 C U* be a simply connected
non-degenerate parabolic locus. In particular, the convergence in Theroem is uniform on
compact subsets of €.

Lemma 2.4. [CheOl, Lem 4.2] Fix an arbitrary r; € (0,1). Forn > 1 and a € U let N(n,a)
denote the number of fixed points of G, o in D(0,71). Then, as n — oo, N(n,a)/q, converges to
0 uniformly on compact subsets of (.

Proof. Let A be a compact set in 2. For each n > 1, N(n,a) is uniformly bounded from
above independent of a € U. Let us choose a, € A so that N(n,a,) = max.ep N(n,a).
By Lemma there exists a sequence 7, — 1~ such that for every n € N, G,, ,,, is defined
and univalent on D(0,7,,), and supy,|<,, |Gn,a,(2) — 2| — 0. We consider the normalised map

Fo(2) = 1, G4, (rn2), so that for every n € N*, F, is defined and univalent on D, and
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sup|.|<1 [Fn(2) — 2| — 0. In particular, we will always assume in what follows that n is large
enough so that
sup |F,(z) — z| < 2.
|21<1
Moreover, we have
Fu(2) = 2 4 Cp2®n ™ 4 O(242)
where C,, := b, (a,)v(a,)?ri. By Theorem and the definition of v, we have

1
C)) lim —log|Cy,|=0.

n—+00 gpn
For each r € (0,1}, let N, (r) denote the number of fixed points of F, in D(0,r) \ {0},
counted with multiplicity. Let ¢, j, for 1 < j < N, (1), denote the fixed points of F}, in D\ {0},
repeated with multiplicity. There exists a holomorphic function o, : D — C with no zeroes
in D such that for all z € D,

Na(l) ¢
Fo(z) = z+ 27y (2) [ —22.
j=1 1-— ijz

Clearly max|;— |0, (2)| < max),—; [F(2) — 2| < 2, thus by the maximum principle, |0,,(0)| <
2. Moreover, C,, = 0,,(0)(—1)N»(1) ijznl(l) Cjm- Letr € (r1,1). Then

Col = 10n(O)] T 1G] ] 1G] <27V 1.

‘Cj,n|<T |<j,n|27'
Therefore,
0< Ny (r) < log2 — log ]Cn\

dn Qn| log T‘

Combining with (4)), we get
im ) g,

n—oo qn

Since N, (r) > N(n,ay) for large enough n, we are done. O

Lemma 2.5. Let r; € (0,1), and A be a compact set in Q). There exists N1 € N such that for all
n > Njand all a € A, G, 4 has no fixed points in D(0, 1) except for z = 0.

Proof By Lemma [2.3] there exists C = C(r1) > 0 such that foralln > 1,all 1 <k < g,, all
a € A and all |z| < ryrg(a), we have

|ba © [k 40 ¢y (2)=Anz| < Ckl2| /g
Let us consider L, 4(2) := v(a) ¢4 0 fr, a0 @5’ (2v(a)). We have Ly = G4, and for all
n>1,alll <k<gqg,andall z € D(0,r),

Lyt (2) = Anz| < Cklz|/qs.

Let s := min(1,1/C) > 0. By Lemma [2.4} there exists N; € N such that for all » > N; and all
a €A,
(5) N(n,a) < sqn/2.

Assume for a contradiction that there exists n > N;, a € A and z € D(0,7;) \ {0} such that
Gna(z) =z Thenforall 1 < k < gy, L%’fa(z) is also a fixed point of G, ,. We will show that
the set {Ly" (2) : 1 < k < gn} contains at least sq, elements, which contradicts (5]
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First, observe that if 1 < k; < ko < g,, then
’/\ﬁl - )‘1]22‘ > 4/Qn
Then, for all 1 < k1 < ko < s¢,:
Lk (2) = L2 (2)] > [Aptz — Ai22| — |3 (2) — Aptz] — | Lof2(2) — X322

n,a n,a n,a
4 2C
> Ay 2o
Qn qn
2|]
> 2=
dn
In particular, L%’f& (2) # L;’fg (z). This completes the proof of the claim. O

In the following lemma we assume that r; € (0,1), A C Q and N; € N satisfy Lemma 2.5

Lemma 2.6. For all vy € (0,1), all n > Ny and all a € A, on the left half-plane Rew < logry,
we may write

Inale”) = elmal®)
where
Uy o(w) = log by (a) + gnu(a) + guw + kp o (€")

for some holomorphic function ky, , : D(0,71) — C satisfying k, ,(0) = 0.

Note that log b, (a) is well-defined on (2 for large enough n, because (2 is simply connected
and b,,(a) becomes non-zero on (2.
Proof. Recall that by definition, we have g, ,(z) = log G"’i“(z), well-defined on ID(0, ) for all
n > Nj and a € A. Moreover, by and the definition of v, we have

Gn,a(Z) =z + bn(a)QQnu(a)ZQn-‘rl + O(Zq"+2)‘
Therefore,
©) gna(2) = log (1 + by (a)et (@) p1n 4 O(zq”+1)) = by (a) e @ 29 Ry, o (2)

for some function h,, , : D(0,71) — C such that h,, ,(0) = 1. Moreover, because by Lemma
G, has no fixed points inside (0, 71) \ {0}, Ay, o does not vanish on D(0, 71). Thus, hy, o(2) =
exp okp, (z) for some function &y, , : D(0,71) — C with &, ,(0) = 0. d

Lemma 2.7. For every ro € (0,1) and every compact set A C €2, we have

R kna k;’LCL <
lim sup sup 67’(2) =0, and lim sup sup J

N0 geA |z|<ro dn N0 gel |z|<rg dn

Proof. Let us fix arbitrary o € (0,1), compact set A C Q and € > 0. We choose r; € (r9,1)
such that —logr, < ¢/2. By Lemma [2.3] if we let

€n :=sup sup |Gpq(2) — 2|,
aeU |z|<r;

then we have ¢, < C(r1)/qn, and hence ¢, — 0.
It follows from (6) that for all (z,a) € D(0,71) x A, we have

]bn(a)eq"“(a)zqnﬂek”v“(z) | < en.
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Let (Yn,an) € D(0,71) x A be such that
‘ekn,an (yn) ‘ — max ’ek‘n,a(z) ’
|z|<rg,a€A

By the maximum principle, we have |y,,| = r1 and a,, € OU. Therefore,
T9(an)qn ‘bn (an) |T1n eRe Fn,an (yn) < 671/7'17
using |e4™(%)| = rg(a)?. Applying qin log to both sides of the above inequality, we obtain

1 Rek 1
logrg(an) + — log |by(an)| + logr + M < —log n
Gn dn dn 1

and hence

kna n 1 n 1
w < —log 6— —logry — — log |by(an)| — logre(ay).
dn Adn Adn

Using €, < C(r1)/qn, we have limsup,, , , ., .- L Jog & > <0, and by Theorem
1
lim — log |b,(ay)| — logre(as) = 0.
n—oo qTL

Therefore, there exists N € N such that for all n > N,

1 1 €
— log |by(ay)| — logrg(ay,) + — log -
— log b ()| — log o) + — log = < .

Then, by our choice of r1, foralln > N,

1
—Rekna, (yn) < —logr; + % < e.

4n

On the other hand, %, ,(0) = 0 for all » € N and ¢ € A. Combining with the above
argument, we conclude that for alln > N,

0 < sup sup Rekna(2) < iRe knan(yn) < €
a€A |z|<rg dn qn
The first inequality implies the second inequality, as a general property. Fix arbitrary 7,
r1 € (ro,1) and e > 0. By the first inequality, there is N € N such that for all n > N all
a € A and all |z| < r1, Rekyo(2)/(eqn) < 1. Thus, ky/(eqn) maps the disk D(0, ;) into
the left half-plane Rew < 1, with £, ,(0)/(e¢,) = 0. Post-composing the map k;, o/ (€gn)
with a Mobius transformation and applying the Schwarz lemma, we conclude that there is
a constant C, depending only on r; but not on n, € and a, such that on the disk D(0, ),
|k7,.0(2)/(€qn)] < C. As e was arbitrary, this implies the second inequality. O

Proposition 2.8. For every ry € (0,1) and every compact set A C €, there exists N € N such
that foralln > N, all a € A, and all k € Z, the regions

= {w € C: Rew < logrg and 2km + 37 /4 < Im ¥, o(w) < 2km + 5m/4}

are forward invariant by H,, ,, and for every w € C¥

n,a’

Re H"} (w) — —00 as m — +o00.
Proof. Fix an arbitrary ry € (0,1). By Lemmas [2.6]and [2.7] there is N € N such that for all
n > N, all a € U, and all w in the left half-plane Re w < logro, ¢, o(w) is defined, and

1—1 1 -1
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Below we assume thatn > N. Letus also fix k € Zand a € U.
We divide the set Cﬁ,a into the sets

Cﬁ,’é ={w e C:Rew < logrg and 2kw + Tn/6 < Im ¥, o(w) < 2kmw + 5w /4},
Cﬁ:g ={w € C: Rew < logrg and 2km + 57/6 < Im ¥, o(w) < 2km + 77 /6},
ij:g = {w e C: Rew < logry and 2krw + 37/4 < Im ¥, o(w) < 2kmw + 57 /6}.
We also consider the curves
pr}z ={w e C: Rew < logrg and Im¥¢,, ,(w) = 2k7 + 37 /4},
w) = 2k + 5m/6},
w) = 2km + T /6},
Pt = {w € C:Rew < logrg and Im 4, o(w) = 2k + 5m/4}.

pfl’fl = {w € C: Rew < logrg and Im ¢,, o(

pﬁ:i = {w e C: Rew < logry and Im ¢, ,(

First we prove some properties of these sets, and the map H,,, on them.
P1. For i = 1,3, we have

ki1 1

inf {|w; — wa| : wy € pﬁzfl,wg €Ppla 5 = .
6qn

Assume in the contrary that there are i € {1,3}, w; € pﬁfl and wy € pﬁjf;“l such that
|lwi —ws| < 1/(6gy). Then, by (7)), we must have
7T/12 = fn@(wg) — Ema(wl)
< |wy — wy| - sup{|€;, ,(w)| : w € C,Rew < logro}

1
< g " lan+sup{lI o(€)e?] s w € C,Rew < logro})

S ().
which is a contradiction.
P2. For i = 1,2, 3,4, and all distinct wq, w9 € pﬁ’f;,
arg(wy —wy) € (—7/6,4+7/6) + TZ.
For this, it is enough to note that for all w € pf{fa we have
|arg £y, ,(w)| = |arg(gn + ky, o(w)e®)| < arcsin(1/4) < 7/6.
Above, we have used |¢”| < 1 and (7). In particular, £, ; (w) # 0.
P3. We have
arg(Hp o(w) —w) € (3n/4,57/6) + 2nZ, forallw e Cﬁ:g

and
arg(Hy q(w) —w) € (Tr/6,57/4) +2nZ for all w € C’if:z.

By Lemma for all w in the left half-plane Rew < log ro,
Hn,a(w) = w + gn7a(€w) = W _|_ een,a(’w)
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Then,
arg(Hy,qo(w) —w) = arg efma(®) — Iy U o(w).
Combining with the definitions of Cﬁjg and Cﬁjﬁ we obtain P3.

P4. For all w € C’ﬁjﬁ,
arg(Hy q(w) —w) € (57 /6,71/6) + 27

We presented P4 separately, for the sake of the clarity of the later arguments. Otherwise,
the proof is already given in P3.

P5. There is N, € N, independent of « € A and k € Z, such that for all n > N> and all
w e CF ,, we have
[ Hpa(w) — w| < 1/(6gn).
To see this, note that by our choice of N for (7)),
| Hya(w) —w]| = |efmet)]

< |bp(a)||e? (@) |¢dn logTo=an(logTo)/2
= |bp(a)|rg(a)™edn10870)/2
By Theorem limy, o0 |bp (a)|"/9"r¢(a) = 1. Thus, for large enough n,
b (a)|rg(a)® < efn(~losro)/4,
Combining with the previous equation, we conclude that for large enough n,
|Hpo(w) — w| < e®10870)/4 <1 /(6g,).

Now we are ready to complete the proof. By P2, every plﬁb’f;, for i = 1,2,3,4, meets the
vertical line Rew = log ry at a single point, and divides the left half-plane Re w < logry into
two connected components. Thus we may talk about the component below or above pﬁ’fl
in that left half-plane. Let us first show that Hnya(CﬁjZ) C Cﬁ,a- Fix an arbitrary w € C,’ijg.
Because Rew < logrg, by P3, Re H,, ,(w) < logry. By P3 and P2, H, ,(w) lies above the
curve pﬁ;é. By P5 and P1, H,, ,(w) lies below the curve pﬁ’fl. Combining these, we conclude
that H, o(w) € C¥ ,. By a symmetric argument, Hpo(CFL) Ck .. On the other hand, by P5
and P1, Hnya(CﬁfL) is contained in C; ,. Therefore, C}; , is invariant under H,, .

By P3 and P4, for every w in the closure of CX ,, Re H,, ,(w) < Rew. This implies that for

n,a’
every w € Cﬁ’a, Re H.} (w) — —o0, as m — +oc. O

Corollary 2.9. For every ki, ks € Z, exp(C}i,) is contained in a connected component P}i, of
the immediate parabolic basin of fx, .. Moreover, if ki — ky & qnZ, then Pr., +# Ph2.

Proof. By Proposition and the definitions of H,, ., G, and f), ., the sets exp(Cfi’a) are
contained in the immediate parabolic basins of 0 for fy, . When ki — ka ¢ ¢,27Z, exp(C},)
and exp(C’,’f?a) land at 0 at well-defined angles, where the angel between them is a non-zero
integer multiple of 27/¢,,. On the other hand, since b, (a) # 0, there are exactly ¢, repelling
petals, landing at O at well-defined angles, with equally spaced at angle 27 /¢,, between con-
secutive ones. This implies that for ky — ky ¢ ¢n27Z, exp(CK',) and exp(C}?,) are disjoint.

]
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3. PrROOF OF THEOREM [1.T]

There are two cases to consider, depending on whether a parameter « in a capture compo-
nent U lies in a non-degenerate parabolic locus, or not. The former case is the most difficult
to deal with, and we only look at the later case near the end of this section. Let us continue
to use the notations introduced in the previous sections. In particular, 2 is a non-degenerate
parabolic locus in U* and A C 2 is an arbitrary compact set. From now on we also further
assume that 2 is compactly contained in U*.

Recall that c) , is a critical point of f) , which is mapped into the Siegel disk Ay(a) in k&
iterates. Consider the functions

K(a) :=log ¢ o [ (cxa);
and K, : Q — C, where
Ky(a) :=1log o, o f/‘\’f’a(c)\ma).
Because (2 is compactly contained in U*, for large enough n, the corresponding critical point
Crn,a Of f,,« Will be mapped into Ay(a) \ {0} in k iterates as well. Also, because (2 is chosen
simply connected, the log function is well-defined. For convenience, let us assume that K,

is defined for all n (otherwise one considers all sufficiently large n). Clearly, K,, uniformly
converges to K on ().

Lemma 3.1. For every ag € (2, the sequence of functions

Xn(a) = ign,a o Kn(a) - iZn,ao o Kn(aO)

dn n

converges uniformly on compact subsets of ) to a non-constant holomorphic function x : Q —
C.

Proof. As a varies in a compact subset of €2, ¢, o f3¥ (¢ ,) forms a compact subset of D(0, 1).
Employing Lemma we conclude that

! ln.a 0 Kp(a) = 1 log by (a) + u(a) + K(a) + o(1),

n Qn

on any compact subset of 2, with the constant in o depending only on that compact set. Thus,

1 1
Re ~=fna 0 Kn(a) = —~log |bn(a)| +logry(a) +log |¢a o falca)l +o(1).

By Theorem on any compact subset of (2, q% log |by(a)| = —logrg(a). In particular, on
any compact subset of €2, as n — oo,

Re xn = Re (K(a) — K(a0)) = log |6 © £ (ca)| = 10g [@ao © f3aq (Can)|-

By definition, x,(ao) = 0. It follows that y,, converges to K (a) — K (ao), uniformly on compact
subsets of ).

By a classical argument of quasi-conformal deformation, K (a) — K (ap) is not constant (see
for instance [Zak99, Theorem 7.3]). O

Proposition 3.2. For every ag € ) and every ¢ > 0 there is N € N satisfying the following
property. For alln > N, there are a,b € B(ay, €) and integers k, and ky with k, — ky ¢ q,Z such
that

Kn(a) € Che,  and  Ky(b) € CI,.
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Proof. Fix arbitrary ay € €2 and € > 0. By making ¢ smaller, we may assume that the closure of
B(ag, €) is contained in 2. Since (2 is compactly contained in U*, K (f2) is compactly contain
the left half-plane Rew < 0. As K,, converges to K uniformly on €, there is ry € (0,1) such
that for sufficiently large n, K,,(2) is contain in the left half-plane Re w < log ry.

It follows from Lemma that there is § > 0 such that for large enough n, x,,(B(ao,€))
contains B(0,0). Then, {¢, (K (a)) : a € B(ao, €)} must contain B(K,(ao),g,d). In particu-
lar, if n is large enough (to also make ¢,0 > 4), {/,, o(Ky(a)) : a € B(ao, €)} contains a ball of
radius 4 around a point in the left half-plane Re w < log ry.

Now we may employ Proposition with 7o and A = B(ag,¢€), to conclude that for
sufficiently large n, there are a,b in B(ag,€) and k, and k, = k, + 1 satisfying the desired
properties in the proposition. O

Proposition 3.3. For every ag € §2 and every neighbourhood V' C C of aq, there exists N € N
such that for all n > N, the family {f\, 4 }acv is not J-stable.

Proof. Let us choose € > 0 so that B(ag,e) C V N 2. Then, we apply Proposition [3.2]to obtain
the N € N. For each n > N, we obtain a,b € V, and k,, k; € Z satisfying the properties in
that proposition.

Assume for a contradiction that the family { f\, 4}acv is J-stable, for some n > N. Com-
bining the above paragraph with Corollary [2.9] we obtain

fgf,a(c)\ma) € ,P'r];:?a'
Then by J-stability, we must have

fOk (C/\n,s) € ,be,as

n,S

for all s € V. But this is not the case since
k k
ff\n,b(c)\nyb) € n?b D

Remark 3.4. By the seminal work of Yoccoz [Yoc95ll, the Brjuno condition is sharp (necessary
and sufficient) for the linearisability of a quadratic polynomial with an irrationally indifferent
fixed point. That optimality remains open for cubic polynomials in general. However, it follows
from a general result Perez-Marco that if f,2ix0., is a Siegel polynomial of capture type, for some
0 € R\ Qand ag € C, then 6 must be a Brjuno number. That is because if f,2ix0.a is Of capture
type, there is an open set U C C containing ag such that for all a € U, f,2ix0.. has a Siegel disk.
But by [PMO01], if 0 € R\ Q is non-Brjuno, then

{a € C: f,2ir0,. has a Siegel disk }

must be a polar set, which is impossible here.

The same result of Perez-Marco [PMO1] implies that if 6 is not Brjuno but f2ixe ,, has a
Siegel disk containing 0, then ay is in the bifurcation locus of the slice { f,2ix0.a,a € C}. Then by
[MSS83]] or [Lyu83]l, arbitrarily close to ay, there must be some a; € C such that f,2ix0,., has a
neutral cycle which is non-persistent in the family { f.zix0..,a € C}. In particular, feaixo 5 has 2
neutral cycles, therefore by [BEQ9] it is in the support of uy;e. This proves that if there exists cubic
polynomial maps with Siegel disks with non-Brjuno rotation numbers (which are conjectured not
to exist), then they must also be in .

We have now completed the ingredients we need to prove Theorem for rotation num-
bers of bounded type. In order to generalise it to all Brjuno numbers, we shall use the
following result due to Avila, Buff and Chéritat.
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Theorem 3.5 ([ABC04], Theorem 3, p. 11). Let 6 be a Brjuno number, and let ® denote the
Brjuno-Yoccoz function. Let 6,, — 6, where 6,, are Brjuno numbers and

limsup ®(6,,) — ®(6) + C

n—-+00

for some constant C' > 0. Let f,(z) = e2™%n2 + O(22), for n € N, be a sequence of holomorphic
maps on D such that f,, — Ry (the rigid rotation of angle 6) locally uniformly on . Then

imi > e C,
%gligg logr(Ay,) > e

In the above statement, r(Ay, ) denotes the conformal radius of the Siegel disk Ay, of f,
centred at 0.

We now present the proof of the main result.

Proof of Theorem Let ag be an arbitrary parameter in U, which is not the centre of U. We
consider two cases, based on whether ag lies in a non-degenerate parabolic locus or not.

Case i) The parameter ag does not belong to a non-degenerate parabolic locus.

Let us first show that if b,(c) = 0 for some n € N and ¢ € C, then (\,,¢) € supp pp;t-
Indeed, by definition of b,,, the map f), . has a parabolic fixed point of parabolic multiplicity 2
at the origin. The immediate parabolic basin is therefore comprised of 2¢,, Fatou components.
On the other hand, when b,(a) # 0, the parabolic multiplicity is 1 and there are only ¢,
Fatou components in the immediate parabolic basin of 0. Therefore, the map f), . cannot
be J-stable in the slice family {f\, , : @« € C}. The classical results of [MSS83]] and [Lyu83]]
imply the existence of a;, arbitrarily close to ¢ such that f), .~ has a neutral cycle which is
non-persistent in the slice {f\, . : a € C}. Therefore f,, . has exactly 2 neutral cycles,
including the parabolic fixed point at the origin. By [BEQ9I, (\,,al,) € supp pp;t, and since
we may choose a/, arbitrarily close to ¢, so is (A, ¢).

By definition, if ay does not belong to any non-degenerate parabolic locus, there is a se-
quence of parameters (ay)r>1 in U such that ax — ap, by, (ax) = 0 for some n;, € N, and
limy_,o nx = oco. By the above paragraph, each (\,,,ar) € supp ubir, and hence (A, a) €
Supp Kbif -

Case ii) The parameter ag belongs to a non-degenerate parabolic locus, say 2.

Let us first assume that 6 is bounded type. Fix an arbitrary ¢ > 0. We will find some a,, € C
such that |[(An, an) — (A ao)|| < eand (A, an) € supp -

Applying Proposition with V' := D(ag, ¢/2), we conclude that there exists n such that
|IAn—A| < €/2and a,, € D(ao, €/2) such that fy, ,, has a neutral cycle besides the fixed point 0.
By [BE09, Main Theoreml], (A, an) € supp i, and by construction ||(A,, an) — (A, ag)|| < e.
Therefore ag € supp pipit-

Now let 6 € R \ Q be Brjuno number and a € C be such that f,2i , is of capture type (we
do not assume anymore that § has bounded type). Let [ag : a; : ...] denote the entries of its
continued fraction expansion. For all n € N, let 6,, be the unique irrational number whose
continued fraction expansion has entries

[ag:...ap:1:1...].

We have
lim ®(6,) = ®(0)

n—oo
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where @ is the Brjuno-Yoccoz function. Let ¢ : Ay(a) — D denote the linearising coordinate
of the Siegel disk of f.2ix0 ,, normalised to map Ag(a) to the unit disk D. Let h,(z) =

(b o feQi“"",a o ¢—1(Z)‘

The sequence h,, satisfies the assumptions of Theorem with C' = 0. It follows that for
every compact K C Ag(a), there exists ng € N such that for all n > ng, K C Ay, (a). By
assumption, there exists £ € N* such that f;’z’iﬁ%(ca) € Agy(a), where ¢, is a critical point of

fezino 43 Dy taking K := D(cq, 6) for § > 0 small enough that K C Ag(a), we deduce that for
all n large enough, f;’ﬁﬁgn .(ca) € Ag, (a). In other words, for all n large enough, f.2ixe, ,

is a Siegel polynomial of capture type, with bounded type rotation number. By the above,
(e?mn q) € supp pupit, and since 2™ — 20 (270 ) must be in supp puir as well. O
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