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Abstract. — We investigate the quantitative and analytic aspects of the near-parabolic renormal-
ization scheme introduced by Inou and Shishikura in 2006. These provide techniques to study the
dynamics of some holomorphic maps of the form f(z) = e2πiαz +O(z2), including the quadratic
polynomials e2πiαz+z2, for some irrational values of α. The main results of the paper concern fine-
scale features of the measure-theoretic attractors of these maps, and their dependence on the data.
As a bi-product, we establish an optimal upper bound on the size of the maximal linearization
domain in terms of the Siegel-Brjuno-Yoccoz series of α.

Résumé (Orbites typiques des polynômes quadratiques avec un point fixe neutre:
type non-Brjuno)

On étudie les aspects quantitatifs et analytiques du procédé de renormalisation presque parabolique
introduit par Inou et Shishikura en 2006. Ceci fournit des techniques pour étudier la dynamique de
certaines applications holomorphes de la forme f(z) = e2πiαz+O(z2), dont les polynômes quadra-
tiques e2πiαz+z2, pour certaines valeurs irrationnelles de α. Les principaux résultats de cet article
concernent les propriétés à petite échelle des attracteurs au sens de la théorie de la mesure pour
ces applications ainsi que de leur dépendance en fonction des données du problème. On obtient
également une borne supérieure optimale sur la taille du domaine maximal de linéarisation en
termes de la série de Brjuno-Siegel-Yoccoz de α.

1. Introduction

1.1. Neutral fixed points. — Let f be a holomorphic map of the form

f(z) = e2πiαz + a2z
2 + a3z

3 + . . . ,

defined on a neighborhood of 0 ∈ C, and α ∈ R \ Q. Asymptotically near 0, the orbits are

governed by the rotation of angle α and are highly recurrent. Away from zero, the influence

of non-linearity increases, eventually reaching the scale where the behavior is governed by the

global topological structure of the map. For systems with unstable behavior near zero, the

transition from local to global and back may occur infinitely often. This creates a delicate
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interplay among the arithmetic nature of α, the non-linearities of the large iterates of f , and

the global covering structure of the iterates of f . In this paper we study this problem.

The ideal scenario is when the map f is conformally conjugate to the linear map w 7→ e2πiα ·w
on a neighborhood of 0. To discuss this further, let us denote the best rational approximatants

of α with pn/qn, n ≥ 1. By a landmark result of Siegel and Brjuno [Sie42, Brj71], if the series

B(α) = ∑∞
n=1 q

−1
n log qn+1

is finite, then near 0 the map f is confomally conjugate to a linear map. When f is linearizable

near 0, the maximal domain on which the conjugacy exists is called the Siegel disk of f . The

geometry of the Siegel disks as well as the dynamics of f near their boundaries have been

the subject of extensive studies over the last few decades. These involve a wide range of

methods, with consequences often depending on the arithmetic nature of α. See for instance,

[Her85, McM98, GJ02, GŚ03, PZ04, ABC04, BC07, Yam08, Zak10, Zha11, Ché11].

We note that for almost every α ∈ R \ Q, B(α) < ∞, while for generic choice of α ∈ R \ Q,

B(α) = ∞.

On the other hand, by a celebrated result of Yoccoz [Yoc95], if B(α) = ∞, the polynomial

Pα(z) := e2πiαz + z2

is not linearizable at zero. Although this optimality result has been further extended by similar

ideas to special families of maps [PM93, Gey01, Oku04], it remains widely open in families

of polynomials and rational maps. Also, due to a non dynamical step in those arguments,

very little has been understood about the local dynamics of non-linearizable maps. In [PM97],

Perez-Marco constructs non-trivial local invariant compact sets containing 0 for non-linearizable

maps. But the necessary control on the geometry of these objects and the dynamics of the map

on them has remained out of reach.

In 2006, Inou and Shishikura introduced a renormalization scheme that provides a powerful

tool to study the dynamics of near parabolic maps, [IS06]. This involves an infinite-dimensional

class of maps F , and a nonlinear operator R : F → F , called near-parabolic renormalization.

Every map in F is defined on a Jordan neighborhood of 0, has a neutral fixed point at 0, and

a unique critical point of local degree two in its domain of definition. Given f ∈ F , R(f) is

defined as a sophisticated notion of the return map of f about 0 to a region in the domain of

f , viewed in a certain canonically defined coordinate on that region. Precise definitions appear

in Section 2.

In this paper we carry out a quantitative analysis of the near-parabolic renormalization

scheme. This involves proving a number of foundational results on the combinatorial and

analytic aspects of the scheme. In particular, we have slightly modified the definition of renor-

malization to make it suitable for applications.

Successive iterates of R at some f ∈ F produces a renormalization tower; a sequence of

maps R◦j(f) which are related by the changes of coordinates. The general theme in theories

of renormalization is that large iterates of f often break down into compositions of a small

number of the changes of coordinates and the maps R◦j(f). However, due to the “semi-local”
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nature of near-parabolic renormalization, there are a number of issues which require careful

consideration.

The maps in F have a partial covering structure, involving a branched covering of local degree

two. The change of coordinate in the definition of renormalization also has a partial covering

structure with a branch point. We prove some detailed orbit relations on the renormalization

tower, relating the combinatorial aspects of the orbits of f to the ones of R◦j(f), for j ≥ 1.

The change of coordinates in the definition of renormalization involves transcendental map-

pings with highly distorting nature. Substantial part of the paper (Section 6) is devoted to

proving uniform (distortion) estimates on these maps and their dependence on α. To this end

we have introduced a new approach to compare the changes of coordinates to some model maps

using quasi-conformal mappings.

The interplay between the arithmetic of α and the non-linearities of the iterates of f is

manifested in geometric aspects of the renormalization tower. We present a systematic approach

to employing the above combinatorial and analytic tools to study the dynamics of the maps in

F .

1.2. Statements of the results. — Define the set of irrational numbers

HTN := {[0; a1, a2, . . . ] ∈ R | ∀i ≥ 1, ai ≥ N},
where N ∈ N and [0; a1, a2, . . . ] = 1/(a1 + 1/(a2 + 1/(. . . ))) denotes the continued fraction

expansion. For technical reasons, in this paper we require α to be in HTN , for some fixed

constant N ∈ N. (1)

The class of maps F fibers over HTN as

F = ∪α∈HTN
Fα, Fα = {Pα} ∪ ISα,

where ISα is the Inou-Shishikura class of maps defined precisely in Section 2.2. For f ∈ ISα,
f ′(0) = e2πiα. We note that for each α ∈ HTN there are polynomials and rational maps of

arbitrarily large degree whose restriction to some neighborhood of 0 belong to ISα. Also,

Pα /∈ ISα, but R(Pα) is defined and belongs to IS1/α ⊂ F .

By classical results, the post-critical set of a holomorphic map provides key information

about the dynamics of that map, in particular, its measurable dynamics. A map f ∈ F has a

unique critical point in its (restricted) domain of definition, say cpf . The post-critical set of f

associated to cpf is defined as

PC(f) = ∪∞
i=1f

◦i(cpf).

The main aim of this paper is to describe the geometry of the post-critical set and the iterates

of the map near it. To this end, we build a decreasing nest of simply connected sets containing

PC(f), denoted by Ωn0 , n ≥ 0. Each Ωn0 is formed of about qn+1 + qn (topological) sectors

landing at 0, which are ordered by the arithmetic of α, and are mapped to one another by the

1. This is also required in the near-parabolic renormalization scheme. However, it is conjectured that there

exists a scheme with similar qualitative features for which N = 1. So, we hope that the arguments presented

here will be eventually applied to all irrational rotation numbers.



4 DAVOUD CHERAGHI

map. Roughly speaking, the rotation element leads to a tangential action on each Ωn0 , while

the nonlinearity of the map results in a radial action on each Ωn0 . The arithmetic of α and the

non-linearities of the large iterates of f characterizes the relative geometry of each Ωn+1
0 in Ωn0 ,

and the shapes of the sectors in each Ωn0 . See Figure 5.

A large an in the expansion of α (or some pn+1/qn+1 very close to α) results in qn “relatively

thick fjords” in Ωn0 \Ωn+1
0 . By a delicate analysis of the geometry of the renormalization tower

we show that the Siegel-Brjuno-Yoccoz arithmetic condition corresponds to the tip of the fjords

reaching 0 in the limit.

Theorem A. — For all α ∈ HTN with B(α) = ∞ and every f ∈ Fα, PC(f) \ {0} is non-

uniformly porous (2). In particular, PC(f) has zero area.

We establish a uniform contraction principle with respect to certain hyperbolic metrics on the

renormalization tower. The map f permutes the sectors in each Ωn0 according to the rotation

of angle α. These are used to prove that the dynamics of f on PC(f) is highly recurrent, with

the combinatorics of the returns given by the rotation of angle α.

Theorem B. — There are constants M and µ < 1 such that for every α in HTN and every

f ∈ Fα, on the set PC(f) we have

|f ◦qn(z)− z| ≤Mµn.

By a general result, the orbit of almost every point in the Julia set accumulates on a subset

of the post-critical set [Sul83, Lyu83b]. Thus, Theorem A allows us to obtain the following.

Corollary C. — For all α ∈ HTN with B(α) = ∞, the orbit of Lebesgue almost every point in

the Julia set of Pα is non-recurrent. In particular, there is no absolutely continuous invariant

probability on the Julia set of Pα.

Let ∆(f) denote the Siegel disk of f when f is linearizable at 0, and otherwise, let ∆(f) = {0}.
Using the uniform contraction principle along the renormalization tower we show the relation

∩nΩn0 = PC(f) ∪ ∆(f), see Proposition 5.10. This allows us to establish some topological

properties of PC(f).

Theorem D. — For all α ∈ HTN and all f ∈ Fα, PC(f) is a connected set.

For small perturbations of α, the sets Ωn0 , up to some finite level n, move continuously as a

function of α. Using ∩nΩn0 = PC(f) ∪∆(f) we conclude a semi-continuity property of PC(f).

Theorem E. — Let fα, α ∈ [0, 1], be a continuous family of maps such that for α ∈ HTN we

have fα ∈ Fα. Then, for every α0 ∈ HTN and every ǫ > 0 there is δ > 0 such that for every

α ∈ HTN with |α0−α| < δ, PC(fα)∪∆(fα) is contained in ǫ-neighborhood of PC(fα0)∪∆(fα0).

2. A set E ⊆ C is called non-uniformly porous, if there is λ > 0 satisfying the following property. For every

z ∈ E there is a sequence of real numbers rn → 0 such that each ball of radius rn about z contains a ball of

radius λrn disjoint from E.
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When B(α0) < ∞, PC(fα) may not depend continuously on α at α0, due to nearby non-

linearizable maps. The above theorem states that the post-critical set of the perturbed map

can only explode into the Siegel disk of the limiting map. On the other hand, when B(α0) = ∞,

∆(fα0) = {0} ⊂ PC(fα0), and the above theorem boils down to the continuity of PC(fα) at α0.

Theorem E plays a key role in constructions of examples based on successive small perturba-

tions. A special case of the above theorem for Pα and when α0 is of bounded type was proved

earlier by Buff and Chéritat in [BC12]. That is a key step in their remarkable construction

of quadratics Pα with positive area Julia sets. The flexibility of the arguments presented here

allows one to perturb the parameter α away from the real line, and gain control on the post-

critical sets of nearby maps. This forms an essential part of a recent construction of Feigenbaum

quadratic polynomials with positive area Julia sets by Avila and Lyubich reported in [AL15].

Each sector in Ωn0 , for n ≥ 1, forms a “fundamental domain” for the dynamics of f . That

is, the orbit of every point in PC(f) visits each such sector. When f = Pα, the orbit of

almost every point in the Julia set of f must visit all those sectors; see Proposition 3.6. We

show that in each Ωn0 there is a sector whose diameter is bounded by a uniform constant times

exp(−∑
i≤n q

−1
i log qi+1).

Theorem F. — Let α ∈ HTN with B(α) = ∞ and f ∈ Fα. Then, the orbit of every point in

PC(f) visits every neighborhood of 0. In particular, there is no periodic point in PC(f) except
0.

When f = Pα, for Lebesgue almost every z ∈ C, the orbit of z under Pα either tends to

infinity, or visits every neighborhood of 0 infinitely often.

As the critical orbit may never enter the linearization domain, the size of the smallest sector

in each Ωn0 provides an upper bound on the size of the Siegel disk.

Theorem G. — There exists C > 0 such that for every α ∈ HTN and every f ∈ Fα we have

d(∂∆(f), 0) ≤ C · e−B(α),

where d(∂∆(f), 0) denotes the distance from 0 to the boundary of ∆(f).

On the other hand, Yoccoz in [Yoc95] proves that there is a constant C ′ > 0 such that

for normalized maps f that are defined and one-to-one on B(0, 1), ∆(f) contains the ball of

radius C ′ · e−B(α) about 0. By an alternative (and beautiful) approach specific to the quadratic

polynomials, Buff and Chéritat [BC04] had already established the bound in Theorem G for

the quadratic polynomials Pα for all α ∈ R \Q.

The above theorem gives a direct proof of the optimality of the Siegel-Brjuno-Yoccoz arith-

metic condition in F . However, for α ∈ HTN , there is a holomorphic motion of the orbit of

the critical point over ISα. Thus, the optimality of the arithmetic condition for Pα by Yoccoz,

and the classical λ-lemma [Lyu83a, MSS83], may be used to derive the optimality of the

arithmetic condition in F .

There are points in PC(f) with dense orbits. When f is not linearizable at 0 (and even for

some linearizable f) there is an abundance of non-trivial invariant sets in PC(f) in the form
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of hedgehogs introduced by Perez-Marco. Do those sets have a non-trivial basin of attraction

in the Julia set. This has been answered in [Che13] for all rotations in HTN . That is, for

Lebesgue almost every z in the Julia set of Pα, the set of accumulation points of the orbit of z

under Pα is equal to PC(Pα). This provides a complete description of the topological behavior

of the typical orbits of Pα, modulo the topology of PC(Pα). The topological description of

PC(f) will appear in a forthcoming paper.

The analogue of Theorem A when B(α) < ∞ is proved in [Che13]. The reason for the

distinction is that the study of the linearizable maps requires finer (distortion) estimates on

the changes of coordinates that were not available at the time of writing this paper.

There has been recent advances on the dynamics of quadratic polynomials using the near-

parabolic renormalization technique and the methods developed in this paper. The statistical

behavior of the orbits of the maps f ∈ F is described in [AC12]. The 1/2-hölder continuity of

a relation between the conformal radius of the Siegel disks and the Brjuno series is confirmed

in [CC15]. It is also employed in [CS15] to prove the local connectivity of the Mandelbrot set

on a Cantor set of parameters where the fine scale dynamics degenerates.

This paper is a step towards developing a theory based on near-parabolic renormalization

in order to provide a comprehensive description of the dynamics of holomorphic maps with

a neutral fixed point. One hopes to eventually build a unified language to treat problems of

different nature associated with such maps.
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1.3. Frequently used notations. —

– := is used when a notation appears for the first time.

– Z, Q, R, and C denote the integer, rational, real, and complex numbers, respectively.

Ĉ := C ∪ {∞} denotes the Riemann sphere.

– i denotes the imaginary unit complex number, and i is used as an integer index.

– Re z, Im z, and |z| denote the real part, the imaginary part, and the absolute value of a

complex number z, respectively.

– B(y, δ) ⊂ C denotes the ball of radius δ around y in the Euclidean metric, and Bδ(X) :=

∪x∈XB(x, δ), for a given X ⊆ C.

– diam (S) and int (S) denote the Euclidean diameter and the interior of a set S ⊂ C.

– Given a map f , f ◦n denotes the n times composition of f with itself.

– Dom f , J(f), and PC(f) denote the domain of definition, the Julia set, and the post-

critical set of a map f , respectively.

– Univalent map refers to a one-to-one holomorphic map.

– Given g : Dom g → C, with only one critical point in its domain of definition, cpg and cvg
denote the critical point and the critical value of g, respectively.

– For x ∈ R, ⌊x⌋ denotes the largest integer less than or equal to x.

– Unless otherwise stated, arg denotes the principal branch of argument with values in

(−π, π].

2. Inou-Shishikura class and near-parabolic renormalization

2.1. Preliminary definitions. — Let f : U ⊆ Ĉ → Ĉ be a holomorphic map. Given z ∈ U ,

if f(z) ∈ U we can define f ◦2(z) := f ◦ f(z). Similarly, if f ◦2(z) also belongs to U , f ◦3(z) is

defined, and so on. The orbit of z, denoted by O(z), is the sequence, z, f(z), f ◦2(z), . . . , as

long as it is defined. So it may be a finite or an infinite sequence. Given an infinite orbit O(z),

we say that O(z) eventually stays in a given set E ⊂ Ĉ, if there exists an integer k such that

O(f ◦k(z)) is contained in E.
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The Fatou set of a rational map f : Ĉ → Ĉ is defined as the largest open set F (f) ⊆ Ĉ

on which the sequence of iterates 〈f ◦n〉n=0,1,... forms a pre-compact family in the compact-open

topology. Its complement, J(f), is the Julia set of f .

The distortion of f on U is defined as the supremum of log(|f ′(z)/f ′(w)|), for all z and w in

U , in the spherical metric, (which may be finite or infinite). We frequently use the following

distortion bounds due to Koebe and Grunsky, see [Pom75] or [Dur83, Theorem 3.6].

Theorem 2.1 (Distortion Theorem). — Suppose that f : B(0, 1) → C is a univalent map

with f(0) = 0, and f ′(0) = 1. At every z ∈ B(0, 1) we have

1) |z|
(1+|z|)2

≤ |f(z)| ≤ |z|
(1−|z|)2

,

2) 1−|z|
(1+|z|)3

≤ |f ′(z)| ≤ 1+|z|
(1−|z|)3

,

3) 1−|z|
1+|z|

≤ |zf ′(z)/f(z)| ≤ 1+|z|
1−|z|

,

4) | arg(zf ′(z)/f(z))| ≤ log 1+|z|
1−|z|

.

This implies the 1/4-theorem: the image f(B(0, 1)) contains B(0, 1/4).

Here we summarize the results of [IS06] in Theorems 2.2, 2.3 and 2.6, that we use in this

paper. They follow from Theorem 2.1 and Main Theorems 1–3 in [IS06].

2.2. Inou-Shishikura class of maps. — Consider a map h : Dom h→ C, where Dom h ⊆ C

denotes the domain of definition (always assumed to be open) of h. Given a compact set

K ⊂ Dom h and an ε > 0, a neighborhood of h is defined as

N (h;K, ε) := {g : Dom g → C | K ⊂ Dom g, and sup
z∈K

|g(z)− h(z)| < ε}.

By “the sequence hn : Dom hn → C converges to h” we mean that given an arbitrary neigh-

borhood of h defined as above, hn is contained in that neighborhood for large enough n. Note

that the maps hn are not necessarily defined on the same set.

Consider the cubic polynomial

P (z) := z(1 + z)2.

It has a parabolic fixed point at 0, that is, P ′(0) = 1. Also, it has a critical point at cpP := −1/3

which is mapped to the critical value at cvP := −4/27, and another critical point at −1 which

is mapped to 0. See Figure 1.

Consider the ellipse

E :=
{
x+ iy ∈ C | (x+ 0.18

1.24
)2 + (

y

1.04
)2 ≤ 1

}
,

and let

(1) U := g(Ĉ \ E), where g(z) := −4z

(1 + z)2
.

The domain U contains 0 and cpP , but not the other critical point of P at −1.
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−1 −1/3 −4/27 0

Figure 1. The dynamic plane of the polynomial P (z) = z(1 + z)2, and the special

points −1, −1/3, −4/27, and 0. The shades of blue are mapped by the Fatou coordinate

to strips of width one in the upper half plane, while the shades of yellow are mapped

by the Fatou coordinate to strips of width one in the the lower half pane.

Following [IS06], we define the class of maps

IS0 :=
{
f := P ◦ ϕ−1: Uf → C

∣∣∣ ϕ : U → Uf is univalent, ϕ(0) = 0, ϕ′(0) = 1
}
.

Every map in this class has a parabolic fixed point at 0 and a unique critical point at cpf :=

ϕ(−1/3) ∈ Uf .

The class IS0 corresponds to the class F1 (and also FP
1 ) in the notations of [IS06]. An

extra condition on quasi-conformal extendibility of ϕ−1 : Uf → C onto C is assumed in that

paper. However, they have imposed this extra condition only to derive the hyperbolicity of

the renormalization operator, which we shall introduce a moment. As we do not use the

hyperbolicity of the renormalization operator in this paper, we have dropped the extra condition

on the extendibility.

Theorem 2.2 (Inou–Shishikura). — For all h ∈ IS0 there exist a domain Ph ⊂ Uh and a

univalent map Φh : Ph → C satisfying the following:

(1) Ph is bounded by piece-wise analytic curves and is compactly contained in Uh. It contains

cph and 0 on its boundary.

(2) Φh(Ph) = {ζ ∈ C; 0 < Re ζ} and when z ∈ Ph → 0, |Φh(z)| → +∞,

(3) Φh(h(z)) = Φh(z) + 1, for all z ∈ Ph,
(4) the map Φh is unique once normalized by Φh(cph) = 0. Moreover, the normalized map Φh

depends continuously on h.
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The map Φh : Ph → C in the above theorem is called the Fatou coordinate of h. The

existence of such coordinate for the quadratic map z 7→ z + z2 was already known to Fatou,

see for example [Shi00].

Given α ∈ R, let

ISα := {z 7→ f(e2πiαz) : e−2παi · Uf → C | f ∈ IS0}.
All maps in ISα have a critical value at −4/27. For the sake of simplicity of notations, we

define and work with the quadratic family

Qα(z) := e2πiαz +
27

16
e4παiz2,

that enjoys the same normalization cvQα = −4/27. Let us combine the two classes under the

notation

QISα := ISα ∪ {Qα}.
The class ∪α∈RISα naturally embeds into the space of univalent maps on the unit disk with

a neutral fixed point at 0. Hence, by the distortion theorem, it is a pre-compact class in the

compact-open topology. Furthermore, it is an application of the area Theorem and the choice

of P and U (see Main Theorem 1-a in [IS06] for details) that

(2) {|h′′(0)|; h ∈ IS0} ⊂ [2, 7].

Any map h = f0(e
2πiα·) ∈ ISα has a fixed point at 0 with h′(0) = e2πiα. Moreover, if α is

small, h has another fixed point σh 6= 0 near 0 in Uh. The σh fixed point depends continuously

on h and has asymptotic expansion σh = −4παi/f ′′
0 (0) + o(α), when h converges to f0 in a

fixed neighborhood of 0. Clearly σh → 0 as α→ 0.

Theorem 2.3 (Inou–Shishikura). — There exists a constant r1 > 0 such that for every

map h : Uh → C in QISα with α ∈ (0, r1], there exist a domain Ph ⊂ Uh and a univalent map

Φh : Ph → C satisfying the following properties:

(1) Ph is a simply connected region bounded by piece-wise analytic curves and is compactly

contained in Uh. Also, it contains cph, 0, and σh on its boundary.

(2) we have

Φh(Ph) ⊇ {ζ ∈ C; 0 < Re ζ ≤ 1},
with ImΦh(z) → +∞ as z ∈ Ph → 0, and ImΦh(z) → −∞ as z ∈ Ph → σh.

(3) Φh satisfies the Abel functional equation, that is,

Φh(h(z)) = Φh(z) + 1, whenever z and h(z) belong to Ph.
(4) Φh is unique once normalized by Φh(cph) = 0. Moreover, the normalized map Φh depends

continuously on h.

In Section 6 we shall analyze the coordinates Φh introduced in the above theorem. In par-

ticular, we prove the following proposition in Section 6.7. It is frequently used in this paper.

There is an alternative proof of this given in [BC12, Proposition 12].
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Proposition 2.4. — There exist a positive constant r2, as well as integers k and k̂ such that

for all α ∈ (0, r2] and all h ∈ QISα, one may choose Ph such that the domain Ph and the map

Φh : Ph → C satisfy the following additional properties:

(1) there exists a continuous branch of argument defined on Ph such that

max
z,z′∈Ph

| arg(z)− arg(z′)| ≤ 2πk̂;

(2) Φh(Ph) = {w ∈ C | 0 < Re(w) < ⌊1/α⌋ − k}.

0 1 2 3 4

· · ·

Φh

0

σh

bcph 1
α
− k

Ph

Uh

Figure 2. A perturbed Fatou coordinate Φh and its domain of definition Ph. Similar

colors are mapped on one another under Φh. The gray curve (amoeba) approximates

the first few iterates of cph under h.

The map Φh : Ph → C obtained in Theorem 2.3 is called the perturbed Fatou coordinate of

h. In this paper, by the perturbed Fatou coordinate of h, or sometimes Fatou coordinate of h

for short, we mean the coordinate that satisfies Proposition 2.4 or Theorem 2.2. See Figure 2.

2.3. Near-parabolic renormalization. — Let h : Uh → C be in QISα, with α ∈ (0, r2],

where r2 is the constant obtained in Proposition 2.4. Let Φh : Ph → C denote the normalized

Fatou coordinate of h. Define

(3)
Ch := {z ∈ Ph : 1/2 ≤ Re(Φh(z)) ≤ 3/2 , −2 < ImΦh(z) ≤ 2},

C♯h := {z ∈ Ph : 1/2 ≤ Re(Φh(z)) ≤ 3/2 , 2 ≤ ImΦh(z)}.
By definition, the critical value of h, cvh, belongs to int (Ch), and 0 ∈ ∂(C♯h).

Assume for a moment that there exists a positive integer kh, depending on h, with the

following properties:

– For every integer k ∈ {1, 2, . . . , kh}, there exists a unique connected component of h−k(C♯h)
which is compactly contained in Dom h and contains 0 on its boundary. We denote this

component by (C♯h)−k.
– For every integer k ∈ {1, 2, . . . , kh}, there exists a unique connected component of h−k(Ch)
which has non-empty intersection with (C♯h)−k, and is compactly contained in Dom h. This

component is denoted by C−k
h .
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– The sets C−kh
h and (C♯h)−kh are contained in

{z ∈ Ph | 0 < ReΦh(z) < ⌊1/α⌋ − k − 1/2}.
– The maps h : C−k

h → C−k+1
h , for 2 ≤ k ≤ kh, and h : (C♯h)−k → (C♯h)−k+1, for 1 ≤ k ≤ kh

are one-to-one onto. The map h : C−1
h → Ch is a two-to-one branched covering.

Let kh denote the smallest positive integer for which the above conditions hold, and define

Sh := C−kh
h ∪ (C♯h)−kh.

Sh

C−1
h

(C♯h)−1

b
bcph cvh

b b bb b
1 1

α
− k

−2

Φ

induced map

−4
27
e2πiw

b

R′(h)
0

h

b

b

Figure 3. The sets Ch, C♯h,..., C
−kh
h , and (C♯h)−kh . The “induced map” projects via

e2πiw to a well defined map R(h) on a neighborhood of 0.

Consider the map

(4) Φh ◦ h◦kh ◦ Φ−1
h : Φh(Sh) → C.

By the Abel functional equation, this map commutes with the translation by one, and hence

projects via z = −4
27
e2πiw to a mapR′(h) defined on a set punctured at zero. However, it extends

across zero and has the form z 7→ e2π
−1
α

iz +O(z2) near there. See Figure 3.

The conjugate map s◦R′(h)◦s−1, where s(z) := z̄ denotes the complex conjugation map, has

the form z 7→ e2π
1
α
iz+O(z2) near 0. The map R(h) := s ◦R′(h) ◦ s−1, restricted to the interior

of s(−4
27
e2πi(Φh(Sh))), is called the near-parabolic renormalization of h by Inou and Shishikura.

We simply refer to it as the renormalization of h. One can see (Lemma 3.2) that one time

iterating R(h) corresponds to several times iterating h, through the changes of coordinates.

For some applications of closely related renormalizations (Douady-Ghys renormalization) one

may refer to [Dou87, Dou94, Yoc95, Shi98] and the references therein.
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It is a non-trivial task to control the shapes and the locations of the sets C−k
h and (C♯h)−k for

a given map in ISα. This is the key content of [IS06], which is carried out using a remarkable

series of estimates on univalent mappings. In this paper we do not use the many statements

proved on the geometry and locations of these sets in that paper, but need the following.

Proposition 2.5. — There are positive constants r′2 > 0 and C < 2π such that for every

α ∈ (0, r′2] and every h ∈ QISα,
sup{arg z1 − arg z2 | z1, z2 ∈ C−1

h } ≤ C,

for every continuous branch of argument defined on C−1
h .

Proof. — According to [IS06], for every h ∈ QIS0 the sets C−k
h and C♯h

−k
are defined for all

k ≥ 0. That is, for large enough k these are contained in the repelling Fatou coordinate of

the map h and then further pre-images are defined by the general properties of the Fatou

coordinates. Comparing to their notations, C−1
h is contained in the union

ψ0(D0) ∪ ψ0(D
′
0) ∪ ψ0(D−1) ∪ ψ0(D

′′
−1),

where ψ0(z) = −4/z. See Section 5.A–Outline of the proof. They prove in Proposition 5.7-(e)

that the closure of the set D0 ∪ D′
0 ∪ D−1 ∪D′′

−1 does not intersect the negative real axis. In

particular, it follows that sup arg z1/z2 < 2π, for z1, z2 ∈ C−1
h , for each h ∈ QIS0. By the pre-

compactness of the class of maps QIS0, there is a constant C ′ < 2π such that the supremum

is bounded from above by C ′ over all maps h ∈ QIS0. Then, by the continuous dependence of

the Fatou coordinate on the map, there are r′2 > 0 and C < 2π satisfying the conclusion of the

proposition.

The following theorem [IS06, Main theorem 3] states that the above definition of renor-

malization R can be carried out for certain perturbations of maps in IS0. In particular, this

implies the existence of kh satisfying the four properties listed in the definition of renormaliza-

tion. There is also a detailed argument on this given in [BC12, Proposition 13] (3).

Define

(5) V := P−1(B(0,
4

27
e4π)) \ ((−∞,−1] ∪B)

where B is the component of P−1(B(0, 4
27
e−4π)) containing −1 (see Figure 4). By an explicit

calculation (see [IS06, Proposition 5.2]) one can see that U ⊂ V .

Theorem 2.6 (Inou-Shishikura). — There exist a constant r3 > 0 such that if h ∈ ISα
with α ∈ (0, r3], then R(h) is well-defined and belongs to the class IS1/α, that is, R(h)(z) :=

3. The sets C−k
h and (C♯

h)
−k defined here are (strictly) contained in the closure of the sets denoted by V −k

and W−k in [BC12]. The set Φh(C−k
h ∪ (C♯

h)
−k) is contained in the closure of the union

D♯
−k ∪D−k ∪D′′

−k ∪D′

−k+1 ∪D−k+1 ∪D♯
−k+1

in the notation used in [IS06, Section 5.A].
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×cvP
0×

cpP

0

−1

P

V

Figure 4. A schematic presentation of the polynomial P ; its domain, and its range.

Similar colors and line styles are mapped on one another.

P ◦ ψ−1(e
2π
α
i · z) for a univalent map ψ : U → C. Moreover, ψ extends to a univalent map on

V .

The same conclusion holds for the map Qα(z) = e2πiαz + 27
16
e4παiz2. That is, R(Qα) is

well-defined and belongs to IS1/α provided α ∈ (0, r3].

A uniform bound on kh is established in Section 6.5 .

Proposition 2.7. — There is k′′ ∈ N such that for all h ∈ ISα with α ∈ (0, r3], kh ≤ k
′′.

Let [0; a1, a2, . . . ] denote the continued fraction expansion of α as in the introduction. Define

α0 := α, and inductively for i ≥ 1 define the sequence of real numbers αi ∈ (0, 1) as

αi := 1/αi−1 (mod 1).

Then each αi has expansion [0; ai+1, ai+2, . . . ]. If we fix a constant N ≥ 1/r3, then α ∈ HTN

implies that αj ∈ (0, r3], for j = 0, 1, 2, . . . . We use this constant N throughout the rest of this

article.

Let α ∈ HTN and f0 ∈ QISα. Then, using Theorem 2.6, we may inductively define the

sequence of maps

fn+1 := R(fn) : Ufn+1 → C.

Let Un := Ufn denote the domain of definition of fn, for n ≥ 0. Hence, for every n,

fn : Un → C, fn(0) = 0, f ′
n(0) = e2παni, and cvfn = −4/27.

3. Dynamically defined neighborhoods of the post-critical set

Recall the constants k, k̂ introduced in Proposition 2.4 and the constant N introduced at

the end of the previous section.

Remark 3.1. — To slightly simplify the technical details of proofs, we assume that

(6) N ≥ k + k̂ + 2.

The reason to impose this is to make Φfn(Pfn) wide enough to contain a set defined later.

However, one can avoid this condition by extending Φfn and Φ−1
fn

to larger domains, using the

dynamics of fn. We postpone this argument to Section 5.3.
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3.1. Changes of coordinates, renormalization tower. — For n ≥ 0, let Φn := Φfn
denote the Fatou coordinate of fn : Un → C defined on the set Pn := Pfn . For our convenience
we use the notation

Exp(ζ) := ζ 7−→ −4

27
s(e2πiζ) : C → C∗, where s(z) = z̄.

By Proposition 2.4, Inequality (6), and that Pn is simply connected, there is an (anti-holomorphic)

inverse branch

ηn : Pn → Φn−1(Pn−1)

of Exp. There may be several choices for this map but we choose one of them (for each n) such

that

(7) Re(ηn(Pn)) ⊂ [0, k̂ + 1]

holds, and fix this choice for the rest of this article. Now define

(8) ψn := Φ−1
n−1 ◦ ηn : Pn → Pn−1.

Each ψn extends continuously to 0 ∈ ∂Pn by mapping it to 0.

For n ≥ 2 we can form the compositions

Ψn := ψ1 ◦ ψ2 ◦ · · · ◦ ψn : Pn → P0 ⊂ U0.

For every n ≥ 0, let Cn and C♯n denote the corresponding sets for fn defined in (3) (i.e., replace

h by fn). Denote by kn the smallest positive integer with

S0
n := C−kn

n ∪ (C♯n)−kn ⊂ {z ∈ Pn | 0 < ReΦn(z) < ⌊1/αn⌋ − k − 1/2}.
By definition, the critical value of fn is contained in f ◦kn

n (S0
n).

For every n ≥ 0 and i ≥ 2, define the sectors

S1
n := ψn+1(S

0
n+1) ⊂ Pn, Sin := ψn+1 ◦ · · · ◦ ψn+i(S0

n+i) ⊂ Pn.
All these sectors contain 0 on their boundaries.

3.2. Orbit relations on the renormalization tower. —

Lemma 3.2. — Let z ∈ Pn be a point with w:= Exp ◦Φn(z) ∈ Un+1. There exists an integer

ℓz with 1 ≤ ℓz ≤ ⌊1/αn⌋ − k − 1 + kn, such that

– the finite orbit z, fn(z), f
◦2
n (z), . . . , f ◦ℓz

n (z) is defined, f ◦ℓz
n (z) ∈ Cn ∪ C♯n;

– Exp ◦Φn(f ◦ℓz
n (z)) = fn+1(w);

– if in addition w ∈ fn+1(Un+1), then

z, fn(z), f
◦2
n (z), . . . , f ◦ℓz

n (z) ∈
kn+⌊1/αn⌋−k−2⋃

i=0

f ◦i
n (S0

n).

Proof. — As w ∈ Dom fn+1, by the definition of renormalization R(fn) = fn+1, there are

ζ ∈ Φn(S
0
n) and ζ

′ ∈ Φn(Cn ∪ C♯n), such that

Exp(ζ) = w, Exp(ζ ′) = fn+1(w), and ζ ′ = Φn ◦ f ◦kn
n ◦ Φ−1

n (ζ).
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Since Exp(Φn(z)) = w, there exists an integer ℓ with

Φn(z) + ℓ = ζ and − kn + 1 ≤ ℓ ≤ ⌊1/αn⌋ − k − 1.

By the Abel functional equation for Φn, we have

ζ ′ = Φn ◦ f ◦kn
n ◦ Φ−1

n (ζ) = Φn ◦ f ◦kn
n ◦ Φ−1

n (Φn(z) + ℓ) = Φn ◦ f ◦kn+ℓ
n (z).

Letting ℓz := kn + ℓ, we have

1 ≤ ℓz ≤ kn + ⌊1/αn⌋ − k − 1, f ◦ℓz
n (z) = Φ−1

n (ζ ′) ∈ Cn ∪ C♯n,
Exp ◦Φn(f ◦ℓz

n (z)) = Exp ◦Φn(Φ−1
n (ζ ′)) = Exp(ζ ′) = fn+1(w).

This proves the first two parts.

For the last part, first note that by the assumption on w, ImΦn(z) > −2. Now, if ℓ > 0,

then

z, fn(z), . . . , f
◦(ℓ−1)
n (z) ∈

kn+⌊1/αn⌋−k−2⋃

i=kn−1

f ◦i
n (S0

n), f
◦ℓ
n (z), . . . , f ◦ℓz

n (z) ∈
kn⋃

i=0

f ◦i
n (S0

n).

If ℓ ≤ 0, then

z, fn(z), . . . , f
◦ℓz
n (z) ∈

kn⋃

i=−ℓ

f ◦i
n (S0

n).

Define

P ′
n := {w ∈ Pn | 0 < ReΦn(w) < ⌊1/αn⌋ − k − 1}.

Lemma 3.3. — For every n ≥ 1 we have

(1) for every w ∈ P ′
n, f

◦⌊1/αn−1⌋
n−1 ◦ ψn(w) = ψn ◦ fn(w),

(2) for every w ∈ S0
n, f

◦(kn⌊1/αn−1⌋+1)
n−1 ◦ ψn(w) = ψn ◦ f ◦kn

n (w).

This is summarized in the following two diagrams

Pn−1

f
◦⌊1/αn−1⌋

n−1
// Pn−1

P ′
n

ψn

OO

fn
// Pn

ψn

OO

Pn−1

f
◦kn⌊1/αn−1⌋+1

n−1
// Pn−1

S0
n

ψn

OO

f◦knn
// Cn ∪ C♯n

ψn

OO

Proof. — Part (1): The proof is given in three steps.

Step 1: For every w ∈ P ′
n there exists a positive integer mw with

f ◦mw
n−1 ◦ ψn(w) = ψn ◦ fn(w).
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By the definition of renormalizationRfn−1 = fn, there are ζ ∈ Φn−1(S
0
n−1) and ζ

′ ∈ Φn−1(Cn−1∪
C♯n−1) as well as integers t1 and t2 with

ζ ′ = Φn−1 ◦ f ◦kn−1

n−1 ◦ Φ−1
n−1(ζ), ζ = ηn(w) + t1, ζ

′ = ηn(fn(w)) + t2

|ti| ≤ ⌊1/αn−1⌋ − k, for i = 1, 2.

This implies that

ηn(fn(w)) = Φn−1 ◦ f ◦(kn−1+t1−t2)
n−1 ◦ Φ−1

n−1(ηn(w)).

Hence, f ◦mw
n−1 ◦ ψn(w) = ψn ◦ fn(w), for mw = kn−1 + t1 − t2.

Step 2: mw is a constant independent of w ∈ P ′
n. We use the connectivity of P ′

n. For

j ∈ A := {1, 2, . . . , kn−1 + 2(⌊1/αn−1⌋ − k)} set

Xj := {w ∈ P ′
n | f ◦j

n−1(ψn(w)) is defined and f ◦j
n−1 ◦ ψn(w)− ψn ◦ fn(w) = 0}.

It follows from Step 1 that P ′
n = ∪j∈AXj. Let m be the smallest element of A such that

int (Xm) is non-empty. We claim that S := ∪j∈A,j≥mXj is connected. Otherwise, P ′
n \ S is an

uncountable set contained in ∪m−1
j=1 Xj. This implies that at least one of X1, X2, . . . , Xm−1, say

Xi, is uncountable, and hence has an accumulation point in itself. As the set of points where

f ◦i
n−1(ψn(w)) is defined is open, and f ◦i

n−1 ◦ ψn − ψn ◦ fn is anti-holomorphic, int (Xi) must be

non-empty. Therefore, S must be connected.

The anti-holomorphic map f ◦m
n−1 ◦ψn−ψn ◦ fn is defined on the connected set S and is equal

to 0 on an open subset of S. Hence, it must be 0 on all of S. Finally, since P ′
n \ S is discrete,

the equality holds on all of P ′
n.

Step 3: mw = ⌊1/αn−1⌋.
By virtue of Step 2, it is enough to find the asymptotic value of mw as w ∈ P ′

n tends to 0. To

prove this, we claim that for all continuous branches of arguments defined on Pn and Pn−1,

arg(ψn(w2)/ψn(w1)) + αn−1 arg(w2/w1) → 0 (mod 2π),

as w1 and w2 tend to 0 within Pn. Let us assume this for a moment. First note that since

f ′
n(0) = e2παni, when w → 0 within P ′

n, we must have arg(fn(w)/w) → 2παn (mod 2π).

Then, by the above statement, we must have arg(ψn(fn(w))/ψn(w)) → −2παnαn−1 (mod 2π).

However, since αn−1 is an irrational number, ⌊1/αn−1⌋ is the unique positive integer j for which
arg(f ◦j

n−1(w
′)/w′) → −2παnαn−1 (mod 2π), as w′ → 0.

The proof of the above claim requires some features of the Fatou coordinate Φn−1, which are

proved in Section 6. (The proofs in that section are independent of the rest of the paper, and

in particular, do not depend on this proposition.) Below, we refer the reader to the statements

needed to prove the above claim.

Th map Φ−1
n−1 is decomposed as Φ−1

n−1 = τn−1◦L−1
n−1, where L

−1
n−1 is a univalent map defined on

Φn−1(Pn−1), and τn−1 is an explicit formula defined on L−1
n−1(Φn−1(Pn−1)). See Equations (33)

and (38). It is proved that L−1
n−1 converges to a translation by a constant near +i∞, see

Equation (53). The covering formula, τn−1 maps every straight vertical line going to +i∞ to a

smooth curve landing at 0 at a well-defined angle. To show that these imply the above claim,

let w1 ∈ Pn, w2 ∈ Pn, and consider the line segments l1 = w1 · (0, 1) and l2 = w2 · (0, 1) which
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connect these two points to 0. The rays l1 and l2 are lifted through the covering map Exp to

two vertical lines whose real parts differ from each other by | arg(w2/w1)|/(2π). Then, L−1
n−1

maps these two vertical lines to two smooth curves which tend to +i∞, and the difference

between their real parts tends to | arg(w2/w1)|/(2π). Then, the covering map τn−1 maps these

two curves to the two smooth curves ψn(l1) and ψn(l2) which land at 0 at well-defined angles.

Moreover, the asymptotic angle between ψn(l1) and ψn(l2) at 0 is equal to αn−1| arg(w2/w1)|,
as evidences from the explicit formula for τn−1. Note that there is a change of signs due to

the map Exp being anti-holomorphic. One may refer to Section 6.4 for more details on the

behavior of Ln−1.

Part (2): The above steps work to prove this part as well. In step 1, one needs to use

Lemma 3.2 kn times. In step 2, one only replaces P ′
n by S0

n, and uses connectivity of S0
n. For

the last step, one has arg(w/f ◦kn
n (w)) → 2π(1 − knαn) (mod 2π), as w → 0 in S0

n. As in

the previous case, arg(ψn(w)/ψn(f
◦kn
n (w))) → −2π(1 − knαn)αn−1 (mod 2π). This uniquely

determines the number of iterates of fn−1 required to map ψn(w) to ψn(f
◦kn
n (w)).

Lemma 3.4. — For every n ≥ 1 we have

(1) for every w ∈ P ′
n, f

◦qn
0 ◦Ψn(w) = Ψn ◦ fn(w),

(2) for every w ∈ S0
n, f

◦(knqn+qn−1)
0 ◦Ψn(w) = Ψn ◦ f ◦kn

n (w),

(3) similarly, for every m < n, fn : P ′
n → Pn and f ◦kn

n : S0
n → (Cn ∪C♯n) are conjugate to some

iterates of fm on the set ψm+1 ◦ · · · ◦ ψn(Pn).
Parts (1) and (2) of the lemma are illustrated in the following diagrams

P0

f◦qn0
// P0

P ′
n

Ψn

OO

fn
// Pn

Ψn

OO

P0

f
◦(knqn+qn−1)

0
// P0

S0
n

Ψn

OO

f◦knn
// Cn ∪ C♯n

Ψn

OO

Proof. — We give a proof for the first part in three steps. The other parts can be proved by

the same arguments.

Step 1: For every w ∈ P ′
n there exists a positive integer mw with

f ◦mw
0 ◦Ψn(w) = Ψn ◦ fn(w).

By Lemma 3.3, ψn(w) is mapped to ψn(fn(w)) under the iterate f
◦⌊1/αn−1⌋
n−1 . The orbit

ψn(w), fn−1(ψn(w)), . . . , f
◦⌊1/αn−1⌋
n−1 (ψn(w)) = ψn(fn(w))

has a subset of the form

ψn(w), fn−1(ψn(w)), . . . , f
◦j
n−1(ψn(w))

, f
◦(j+kn−1)
n−1 (ψn(w)), f

◦(j+kn−1+1)
n−1 (ψn(w)), . . . , f

◦⌊1/αn−1⌋
n−1 (ψn(w))

contained in Pn−1, where f
◦j
n−1(ψn(w)) ∈ S0

n−1. Using Lemma 3.3 (with n − 1) for each con-

secutive pair in the above list, one concludes that ψn−1(ψn(w)) is mapped to ψn−1(ψn(fn(w)))
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under some iterate of fn−2. By an inverse inductive argument (at levels n−2, n−3, . . . , 1), one

concludes the claim.

Step 2: mw is a constant independent of w ∈ P ′
n.

The proof in Step 2 of the previous lemma works here as well. Indeed, as f ◦j
0 ◦Ψn(w) is defined

for all positive integers j and w ∈ P ′
n, the proof is slightly easier here.

Step 3: mw = qn.

Similar to the proof in the previous lemma, we use the property that for every j and w1, w2 ∈ Pj ,
arg(ψj(w2)/ψj(w1)) + αj−1 arg(w2/w1) → 0 (mod 2π) as w1, w2 → 0. This will be proved in

Section 6 (see Equation (53)). Now, as w ∈ P ′
n tends to 0, arg(fn(w)/w) tends to 2παn

(mod 2π). Hence,

arg(Ψn(fn(w))/Ψn(w)) → (−1)n2πα0 · · ·αn (mod 2π).

On the other hand, qn is the unique positive integer for which arg(f ◦qn
0 (w′)/w′) → (−1)n2πα0 · · ·αn

(mod 2π), as w′ → 0.

3.3. A nest of neighborhoods of the post-critical set. — For n ≥ 0, define the positive

integers

bn := kn + ⌊1/αn⌋ − k − 2,

and consider the union

(9) Ω0
n := ∪bni=0f

◦i
n (S0

n) ∪ {0}.
Using Lemma 3.4, we transfer the iterates in the above union to the dynamic plane of f0 to

obtain

Ωn0 := ∪qnbn+qn−1

i=0 f ◦i
0 (Sn0 ) ∪

{
0
}
.

The upper bound in the above union is obtained as follows. The first kn iterates in (9) cor-

responds to knqn + qn−1 iterates on level 0 by Lemma 3.4-2. The remaining ⌊1/αn⌋ − k − 2

iterates in (9) amounts to qn(⌊1/αn⌋−k−2) iterates by Lemma 3.4-1. The neighborhoods Ωin,

for i ≥ 1, may be defined accordingly. Using Lemma 3.4, first choose the unique integer ln,i
such that f

◦kn+i+⌊1/αn+i⌋−k−2
n+i on S0

n+i corresponds to f
◦ln,i
n on Sin. Then, define

Ωin := ∪ln,i

j=0f
◦j
n (Sin) ∪ {0}.

See Figure 5.

Proposition 3.5. — For every f0 ∈ QISα, with α ∈ HTN , and every n ≥ 0,

(1) Ωn+1
0 is compactly contained in the interior of Ωn0 ;

(2) f0 : Ω
n+1
0 → Ωn0 ;

(3) PC(f0) is contained in the interior of Ωn0 .
(4)

4. For further properties of this nest see Proposition 5.10.
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Pα

×

fn

Figure 5. In the figure, Ω0 is the union of the sectors with gray boundaries. The

domain Ωn is bounded by the black curve (amoeba) and some of the sectors in Ωn are

shown. The map fn corresponds to the n-th renormalization of Pα. The critical point

of Pα is denoted by “×” here.

Proof. — Part (1): First we prove that Ωn+1
0 ⊂ Ωn0 . To do this, it is enough to show that for

every z ∈ Sn+1
0 , there are a positive integer m, points zi ∈ Sn0 , for 1 ≤ i ≤ m, and non-negative

integers ti, for 0 ≤ i ≤ m, satisfying the following properties:

(a) f ◦t0
0 (z1) = z,

(b) f
◦tj
0 (zj) = zj+1, for all j = 1, 2, . . . , m− 1,

(c) f ◦tm
0 (zm) = f

◦qn+1bn+1+qn
0 (z),

(d) tj ≤ qnbn + qn−1, for all j = 0, 1, . . . , m.

To prove the above statement, fix an arbitrary z ∈ Sn+1
0 . We define m := bn+1. Let

ζ := Ψ−1
n+1(z) ∈ S0

n+1. Note that f ◦m
n+1(ζ) is define. Also, Ψ−1

n (z) is defined and belongs to Pn.
First we show that there are points σi ∈ S0

n, for 1 ≤ i ≤ m, as well as positive integers ℓi, for

0 ≤ i ≤ m, such that

(a’) f ◦ℓ0
n (σ1) = Ψ−1

n (z),

(b’) f
◦ℓj
n (σj) = σj+1, for all j = 1, 2, . . . , m− 1,

(c’) f ◦ℓm
n (σm) = ψn+1(f

◦m
n+1(ζ)),

(d’) kn ≤ ℓj ≤ bn, for all j = 0, 1, . . . , m.

By the definition of S0
n+1, the iterates

ζ, fn+1(ζ), f
◦2
n+1(ζ), . . . , f

◦m
n+1(ζ)

are defined and belong to Un+1 ∩ fn+1(Un+1). We use Lemma 3.2 for each consecutive pair in

the above orbit (in place of w and fn(w) in that lemma) to inductively introduce the sequence

σ1, σ2, . . . , σm and ℓ0, ℓ1, . . . , ℓm as follows.

Lemma 3.2 applied to ξ1 := ψn+1(ζ) produces ξ2 ∈ Pn and a positive ℓ ∈ Z with

Exp ◦Φn(ξ2) = fn+1(ζ), and f
◦ℓ
n (ξ1) = ξ2.

Now, there are σ1 ∈ S0
n and ℓ0 ∈ Z with kn ≤ ℓ0 ≤ bn such that f ◦ℓ0

n (σ1) = ξ1 = Ψ−1
n (z).
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As Exp ◦Φn(ξ1) ∈ Dom fn+1, we can choose a σ2 ∈ S0
n with Φn(ξ1) − Φn(σ2) ∈ Z. Let ℓ1

denote the positive integer with f ◦ℓ1
n (σ1) = σ2. The integer ℓ1 satisfies (d’). That is because

to go from σ1 to σ2, one needs at least kn iterates to go from S0
n to Cn ∪ C♯n and then at most

⌊1/αn⌋ − k − 2 iterates to reach σ2.

Repeating the above paragraph with σ2 which satisfies Exp ◦Φn(σ2) = fn+1(ζ), one obtains

σ3 ∈ S0
n and an integer ℓ2 with kn ≤ ℓ2 ≤ bn + 1, such that f ◦ℓ2

n (σ2) = σ3 and Exp ◦Φn(σ3) =
f ◦2
n+1(ζ).

Repeating the above argument inductively, one obtains the sequence of pairs (σ4, ℓ3), (σ5, ℓ4),

. . . , (σm+1, ℓm) such that

Exp ◦Φn(σj+1) = f ◦j
n+1(ζ), f

◦ℓj
n (σj) = σj+1, for j = 3, 4, . . . , m.

Finally, change ℓm to the positive integer ℓ with f ◦ℓ
n (σm) = ψn+1(f

◦m
n+1(ζ)). This introduces the

points σj and integers ℓj satisfying (a’)–(d’).

Now define zj := Ψn(σj) ∈ Sn0 , for j = 1, 2, . . . , m. One can see that (a’)–(d’) implies (a)–(d),

using Lemma 3.4. For example, we prove (a), (c), and the inequality for t0 in (d).

z = Ψn(Ψ
−1
n (z))

= Ψn(f
◦ℓ0
n (σ1)) (by (a’))

= Ψn(f
◦(ℓ0−kn)
n ◦ f ◦kn

n (σ1))

= f
◦(ℓ0−kn)qn
0 ◦Ψn(f

◦kn
n (σ1)) (by Lemma 3.4-1)

= f
◦(ℓ0−kn)qn
0 ◦ f ◦(knqn+qn−1)

0 (Ψn(σ1)) (by Lemma 3.4-2)

= f
◦(ℓ0qn+qn−1)
0 (z1),

Let t0 := ℓ0qn + qn−1, and note that as ℓ0 ≤ bn, t0 satisfies the inequality in (d).

Similarly, (c) follows from the following equalities.

Ψn(ψn+1(f
◦m
n+1(ζ)))

= Ψn+1(f
◦m
n+1(ζ))

= Ψn+1(f
◦(m−kn+1)
n+1 ◦ f ◦kn+1

n+1 (ζ))

= f
◦(m−kn+1)qn+1

0 ◦Ψn+1(f
◦kn+1

n+1 (ζ)) (by Lemma 3.4-1)

= f
◦(m−kn+1)qn+1

0 ◦ f ◦kn+1qn+1+qn
0 (Ψn+1(ζ)) (by Lemma 3.4-2)

= f
◦qn+1bn+1+qn
0 (z),
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and

Ψn(f
◦ℓm
n (σm)) = Ψn(f

◦ℓm−kn
n ◦ f ◦kn

n (σm))

= f
◦(ℓm−kn)qn
0 ◦Ψn(f

◦kn
n (σm)) (by Lemma 3.4-1)

= f
◦(ℓm−kn)qn
0 ◦ f ◦knqn+qn−1

0 (zm) (by Lemma 3.4-2)

= f ◦tm
0 (zm). (with tm := ℓmqn + qn−1)

It remains to show that ∂Ωn+1
0 ⊂ int (Ωn0 ). First we claim that for all n ≥ 1, 0 ∈ int Ωn0 .

By the definition of the sectors, for every n ≥ 0 there is εn > 0 such that for every xn ∈
B(0, εn), there is x′n ∈ S0

n, and a non-negative integer sn ≤ bn − 1 with f ◦sn
n (x′n) = xn. In

particular, B(0, εn) ⊂ Ω0
n, ∀n ≥ 0. Fix n ≥ 1. For x0 sufficiently close to zero we may

obtain a sequence of points xj ∈ B(0, εj), x
′
j ∈ S0

j , non-negative integers sj ≤ bj − 1 such

that f
◦sj
j (x′j) = xj , Exp ◦Φj(x′j) = xj+1, for all j = 0, 1, . . . , n − 1. Now, by the definition of

renormalization, Ψn(x
′
n) ∈ Sn0 is mapped to x0 under some iterate of f0. To bound the number

of iterates needed, let N(s0, s1, . . . , sn) denote the resulting number of iterates of f0 for given

s0, s1, . . . , sn. By the upper bound on each sj, we have

N(s0, s1, . . . , sn) ≤ N(0, s1 + 1, s2, s3, . . . , sn) ≤ N(0, 0, s2 + 1, s3, s4, . . . , sn)

≤ · · · ≤ N(0, 0, . . . , 0, sn + 1) = qnbn + qn−1

This implies that x0 ∈ Ωn0 and hence, finishes the proof of the claim.

Let z′ 6= 0 belong to ∂Ωn+1
0 . To show that z′ ∈ int Ωn0 we continue to use the notations of the

earlier arguments. There exists z 6= 0 in ∂Sn+1
0 with f ◦t

0 (z) = z′, for some non-negative t ∈ Z.

Hence, ζ = Ψ−1
n+1(z) belongs to ∂S0

n+1. On the other hand, the closure of S0
n+1 is contained

in Un+1 ∩ fn+1(Un+1). But, for the point ξ1 = ψn+1(ζ), σ1 may belong to the boundary of S0
n

(i.e. ξ1 /∈ int S0
n). To rectify the problem, we slightly “thicken” the set S0

n on the left side.

That is, there is an open set Ŝ0
n such that, the closure of Ŝ0

n intersects S0
n, fn(Ŝ

0
n) ⊂ int S0

n,

Exp ◦Φn(Ŝ0
n) ⊂ fn+1(Un+1), and σj ∈ int (Ŝ0

n ∪S0
n), for j = 1, 2, . . . , m. Now, one uses the open

mapping property of holomorphic and anti-holomorphic maps to see that zi ∈ int (Sn0 ∪Ψn(Ŝ
0
n)),

for all i. Note that since Ŝ0
n ⊂ Ω0

n and fn(Ŝ
0
n) ⊂ int S0

n, f
◦j
0 (Ψn(Ŝ

0
n)) is defined and contained

in int (Ωn0 ) for all j with 0 ≤ j ≤ qnbn+ qn−1. By the open mapping property of f0, this implies

that those forward iterates of zi are contained in int (Ωn0 ).

Part (2): Clearly, f0(0) = 0 ∈ Ωn0 . Let z be an arbitrary point in Ωn+1
0 \{0}. By the previous

part, z ∈ Ωn0 . If z ∈ Ωn0 is not in the last sector f
◦qnbn+qn−1

0 (Sn0 ), then f0(z) is defined and

belongs to Ωn0 , by definition.

Assume that z 6= 0 belongs to the last sector of the union Ωn0 . By Lemma 3.4, the last

sector of the union Ωn0 is the image of the last sector in the union Ω0
n under the map Ψn.

That is, Ψ−1
n (z) is defined and belongs to f ◦bn

n (S0
n) ⊂ Pn. On the other hand, we claim that

z ∈ Ωn+1
0 ∩Ψn(Pn) implies Exp ◦Φn ◦ Ψ−1

n (z) ∈ Ω0
n+1 ⊆ Dom (fn+1). Assuming the claim for a

moment, combining the two statements, we have Ψ−1
n (z) ∈ ∪kn−1

l=0 f ◦l
n (S

0
n). By Lemma 3.4, this
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implies that z ∈ ∪kn−1
l=0 f

◦(lqn)
0 (Sn0 ). Then, f0(z) is defined and belongs to Ωn0 , by the definition

of Ωn0 .

Now we prove the claim. Recall the domain Ω1
n. By Lemma 3.4, the iterates in the union

Ωn+1
0 are obtained from the iterates of S1

n on level n to form Ω1
n. In particular, the iterates

within Ωn+1
0 ∩ Ψn(Pn) are obtained from the iterates of S1

n that lie in Pn. Recall that by our

choice of the branch of ψn+1 in Section 3.1, S1
n is to the left of the last sector in Ω0

n. Therefore,

if z ∈ Ωn+1
0 ∩Ψn(Pn) and also z belongs to the last sector in Ωn0 , then

Ψ−1
n (z) ∈

bn+1⋃

l=0

⌊1/αn⌋−k−2⋃

j=0

f ◦⌊1/αn⌋l+j
n (S1

n) ∩ Pn.

The set S1
n, and all its consecutive iterates by fn which lie on Pn, project under Exp ◦Φn to the

set S0
n+1. By the definition of renormalization, see also Lemma 3.2, the iterate of S1

n that has

returned to Pn after leaving Pn, projects under Exp ◦Φn to the set fn+1(S
0
n+1). Repeating this

argument, one concludes that the above union projects under Exp ◦Φn to the set Ω0
n+1.

Part (3): Recall that for every n ≥ 1, fn : S
0
n → f ◦kn

n (S0
n) has a critical point. Thus, by

Lemma 3.4-2, f
◦(knqn+qn−1)
0 : Sn0 → Ψn(f

◦kn
n (S0

n)) must also have a critical point. Therefore, the

critical point of f0 belongs to Ωn0 , for n ≥ 1. On the other hand, by Part 2, f0 can be iterated

infinitely many times on ∩n≥1Ω
n
0 , with values in this intersection. Now, the result follows from

Part 1.

By a lemma of Lyubich [Lyu83b], for a rational map f : Ĉ → Ĉ, with J(f) 6= Ĉ, and any

open set V containing the closure of the orbits of the critical values of f , the orbit of Lebesgue

almost every z ∈ J(f) eventually stays in V . Combined with Proposition 3.5, the orbit of

almost every point in the Julia set of Qα, α ∈ HTN , eventually stays in every Ωn0 .

Proposition 3.6. — For every α ∈ HTN and every f0 ∈ QISα we have the following.

(1) When f0 = Qα, for every n ≥ 0, every integer ℓ with 0 ≤ ℓ ≤ qnbn + qn−1, and almost

every z ∈ J(Qα), O(z) ∩Q◦ℓ
α (S

n
0 ) 6= ∅.

(2) For every n ≥ 0, every integer ℓ with 0 ≤ ℓ ≤ qnbn + qn−1, and every z ∈ PC(f0),
O(z) ∩ f ◦ℓ

0 (Sn0 ) 6= ∅.

Proof. — Evidently, it is enough to prove both statements for ℓ = 0.

First we show that for every n ≥ 0,
{
z ∈ C | O(z) ∩ Ωn+2

0 6= ∅
}
⊆ {z ∈ C | O(z) ∩ (Sn0∪{0}) 6= ∅} .

To see this, first note that if z is mapped to 0 by some iterate of f0, we haveO(z)∩(Sn0 ∪{0}) 6=
∅ and we are done. Below, we assume that the orbit of z does not land at 0.

Fix an arbitrary z ∈ C and an integer t1 ≥ 0 with f ◦t1
0 (z) ∈ Ωn+2

0 . Choose t2 ≥ t1 with

f ◦t2
0 (z) in the last sector f ◦j

0 (Sn+2
0 ), with j = qn+2bn+2 + qn+1. The last sector of Ω0

n+2 is

contained in Pn+2, and is mapped to the sector f ◦j
0 (Sn+2

0 ). Thus, the point ζ := Ψ−1
n+2(f

◦t2
0 (z)) is

defined and belongs to Pn+2. This implies that fn+2(ζ) is defined. By Lemma 3.2, this implies

that ζ ′ := ψn+2(ζ) can be iterated at least two times under fn+1. That is, ζ ′ and fn+1(ζ
′)
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belong to Un+1. Now, Lemma 3.2 applied to ζ ′′ := ψn+1(ζ
′) implies that there is an orbit

ζ ′′, fn(ζ
′′), . . . , f ◦ℓ

n (ζ ′′), with Exp ◦Φn(f ◦ℓ
n (ζ ′′)) = fn+1(ζ

′) ∈ Un+1. This implies that there exists

a positive integer ℓ′ with f ◦ℓ′

n (ζ ′′) ∈ S0
n. Now, using Lemma 3.4, f ◦ℓ′′

0 (Ψn(ζ
′′)) = f ◦ℓ′′

0 (z) ∈ Sn0 ,

for some positive integer ℓ′′. This finishes the proof of the above inclusion.

By Proposition 3.5, and the paragraph preceding Proposition 3.6, the orbit of almost ev-

ery point in J(f0) visits Ωn+2
0 . Then, from the above equation we conclude part (1) of the

proposition for ℓ = 0.

By Proposition 3.5, PC(f0) is contained in Ωn+2
0 , for every n ≥ 0. Thus, from the above

equation we also conclude part (2) of the proposition. (Indeed, the proof of Part 2 of the

proposition is already present in the proof of Proposition 3.5.)

4. Upper bound on the sizes of linearization domains

4.1. Approaches of the critical orbit to the fixed point. — In this section, we estimate

the size of a sector (roughly the smallest one) in each union Ωn0 in terms of a partial sum of

the Brjuno series introduced in the Introduction. The main technical tool is stated in the next

two propositions. They will be proved in Section 6.7, once we establish some estimates on the

Fatou coordinates.

Let f be a map inQISα, with α ∈ (0, r3]. Recall the domain Pf defined in Proposition 2.3, the

constant k in Proposition 2.4, as well as the sector Sf and the constant kf defined in Section 2.3.

Moreover, if the rotation of R(f) at 0 belongs to (0, r3], then PR(f), ΦR(f), and ψR(f) are also

defined, where ψR(f) : PR(f) → Pf is the change of coordinate defined in Section 3.1.

Proposition 4.1. — There is M1 ≥ 1 such that for all α ∈ (0, r3] and all f ∈ QISα, there
exists η(f) in the set {kf , kf + 1, . . . , ⌊1/(2α)⌋+ kf} such that

diam (f ◦η(f)(Sf)) ≤M1α, and f
◦η(f)(Sf) ⊆ Pf .

Recall the constant N defined at the end of Section 2.2. That is, α ∈ HTN guarantees that

every h ∈ QISα is infinitely near-parabolic renormalizable.

Proposition 4.2. — There is M2 ≥ 1 such that for all α ∈ HTN and all f ∈ QISα, there
exists κ(f) in the set {0, 1, . . . , ⌊1/(2α)⌋} such that

(1) f ◦κ(f) ◦ ψR(f)(PR(f)) ⊆ Pf ,
(2) ∀w ∈ PR(f), |f ◦κ(f) ◦ ψR(f)(w)| ≤M2α|w|α.

Assume α ∈ HTN and f0 ∈ QISα. By Theorem 2.6, the sequence of renormalizations

fn = R◦n(f0) and rotations αn are defined for n ≥ 0. In particular, we have the petals Pn, the
Fatou coordinates Φn, the lift maps ψn : Pn → Pn−1, and the sectors Sin for each fn. The latter

are defined in Section 3.2. Applying the above Propositions to the maps fn, we obtain the

integers η(n) = η(fn) and κ(n) = κ(fn), for n ≥ 0. Recall the integers bn defined in Section 3.3.
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Proposition 4.3. — There is M3 ∈ R such that for all α ∈ HTN , all f0 ∈ QISα, and all

m ≥ 1, there exist a non-negative integer ν(m) ≤ qmbm + qm−1 with

diam(f
◦ν(m)
0 (Sm0 )) ≤M3 · α0 · αα0

1 · αα0α1
2 · αα0α1α2

3 . . . αα0...αm−1
m .

Proof. — Let M be the maximum of the constants M1 and M2 obtain in the above two Propo-

sitions. Given m ≥ 1, by Proposition 4.1,

diam (f ◦η(m)
m (S0

m)) ≤M · αm, f ◦η(m)
m (S0

m) ⊂ Pm.
Using Proposition 4.2 with n = m− 1 and w ∈ f

◦η(m)
m (S0

m), we obtain

diam (f
◦κ(m−1)
m−1 ◦ ψm(f ◦η(m)

m (S0
m))) ≤M · αm−1(diam (f ◦η(m)

m (S0
m)))

αm−1

≤M · αm−1 · (M · αm)αm−1 .

By Lemma 3.3, the above relation boils down to

diam (f
◦κ(m−1)
m−1 ◦ f ◦(η(m)⌊1/αm⌋+1)

m−1 (ψm(S
0
m)) ≤ M · αm−1 · (M · αm)αm−1 ,

which is equivalent to

diam (f
◦(κ(m−1)+η(m)⌊1/αm ⌋+1)
m−1 (S1

m−1) ≤M · αm−1 · (M · αm)αm−1 .

Again applying Proposition 4.2 with n = m− 2, the last inequality implies that

diam (f
◦κ(m−2)
m−2 ◦ ψm−1(f

◦(κ(m−1)+η(m)⌊1/αm⌋+1)
m−1 (S1

m−1))

≤ M · αm−2 ·
(
M · αm−1 · (M · αm)αm−1

)αm−2 ,

which, by Lemma 3.4, gives us

diam (f
◦(κ(m−2)+(κ(m−1)+η(m)⌊1/αm ⌋+1)⌊1/αm−1⌋+1)
m−2 (ψm−1(S

1
m−1)))

≤M · αm−2 · (M · αm−1 · (M · αm)αm−1)αm−2 .

Inductively, repeating Proposition 4.2 with m− 3, m− 4, . . . , 0, one obtains

diam (f
◦ν(m)
0 (Sm0 ))

≤M · α0 · [M · α1[M · α2[. . . [M · αm]αm−1 ]αm−2 . . . ]α1 ]α0

≤M1+α0+α0α1+···+α0α1···αm−1 · α0 · αα0
1 · αα0α1

2 · αα0α1α2
3 . . . αα0...αm−1

m

≤M4 · α0 · αα0
1 · αα0α1

2 · αα0α1α2
3 . . . αα0...αm−1

m

for some integer ν(m). Here we have used that αiαi+1 ≤ 1/2, for i ≥ 0. This finishes the proof

of the estimate.

The bound on ν(m) follows from the upper bounds on η(j) and κ(j) (see the discussion on

N(s0, s1, . . . , sn) in the proof of Proposition 3.5-1).

Let β−1 := 1, and βn := Πn
j=0αj , for n ≥ 0. Using elementary properties of continued

fractions one can show that (see [Yoc95, Section 1.5] for further details)

(10)
∣∣∣

∞∑

j=0

βj−1 logα
−1
j −

∞∑

n=0

log qn+1

qn

∣∣∣ ≤ C
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for some constant C independent of α0 ∈ (0, 1).

Proof of Theorem F. — The proof is immediate using Proposition 3.6, Proposition 4.3, and the

uniform bound in Equation (10).

Theorem 4.4. — There exists a constant M such that for every α ∈ HTN and every f ∈
QISα, the conformal radius of the Siegel disk centered at 0 is bounded from above byM exp(−∑∞

n=0 q
−1
n log qn

Proof. — Recall that each Un = Dom fn contains a non-zero fixed point σfn . By Lemma 3.2,

this fixed point lifts to a periodic point of fn−1, whose orbit crosses the set S0
n−1. Then by the

conjugacy relations in Lemma 3.4 this periodic point is sent by Ψn−1 to a periodic point of f0
whose orbit must cross Sn−1

0 = Ψn−1(S
0
n−1). Hence, every sector in the union Ωn−1

0 contains at

least a point of that cycle. Now the theorem follows from the 1/4-Theorem, Proposition 4.3,

and Equation (10).

Remark 4.5. — In [AC12] we prove a stronger version of Proposition 4.3, which is based on

an infinitesimal estimate on the Fatou coordinates established in [Che13]. It is proved that

given any neighborhood of the Siegel disk (or zero), as n → ∞, the density of the number of

sectors in Ωn0 which are contained in that neighborhood tends to one. Although not all sectors

are necessarily contained in such neighborhoods, surprisingly, it is also proved in [AC12] that

every neighborhood of the Siegel disk contains the orbit of infinitely many periodic points.

There is a large class of analytic maps of C or Ĉ that have a restriction which belong to the

Inou-Shishikura class. Thus the above results apply to these maps as well. Here is a simple

example. Recall the domain U in (1). Let h be a rational map of the Riemann sphere that

h(0) = 0, h′(0) = 1, and h is univalent on the connected component of h−1(U) containing 0.

Then the map h · (1 + h)2 belongs to IS0. Note that such maps may have arbitrarily large

degrees. Pre-composing these maps with rotations of angle α ∈ HTN , one has the bound on

the conformal radius of their Siegel disk in the theorem, and in particular, the optimality of

the Brjuno condition for their linearizability.

5. Measure and topology of the attractor

Let α ∈ HTN and f0 ∈ QISα. By Theorem 2.6 in Section 2.3 the sequence of renormalizations

fn = R◦n(f0), n ≥ 0, are defined. One forms the domains Ωn0 and Ω0
n for the map f0, defined

in Section 3. In this section we prove Theorem A. The plan is to show that ∩∞
n=0Ω

n
0 , which

contains the post-critical set by Proposition 3.5, does not contain any Lebesgue density point.

As the proof spans over several pages, we briefly outline the argument in the next paragraph.

In Subsection 5.2 we show that any point z0 in ∩nΩn0 can be mapped to arbitrarily deep

levels of the renormalization planes using the changes of coordinates. Let zn, for n ≥ 1,

denote the point obtained on level n in this process. In Proposition 5.3 we show that there

are infinitely many levels n with |zn| ≥ αn. In Proposition 5.1, we state that if at some level

we have |zn| ≥ αn, then there exists a ball of size comparable to its distance to zn in the

complement of PC(fn). In Subsection 5.3 we define holomorphic maps gi from an appropriate
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subset Vi of the i-th renormalization level to a domain Vi−1 on level i − 1. The maps gi, for

i = n, n−1, . . . , 1 belong to a compact class of maps and zi ∈ Vi is mapped to zi−1 ∈ Vi−1 under

gi. In Lemma 5.5 we show that each gi is uniformly contracting in the respective hyperbolic

metrics, and in Lemma 5.6 we show that each gi is univalent on a ball of definite hyperbolic

size (independent of i and n) about zi. The composition of these maps (from level n to level

0) sends the complimentary ball obtained in Proposition 5.1 to the dynamic plane of f0. By

uniform contraction of the maps gi, after first few iterates the image of the ball shrinks and falls

in the neighborhood of some zj where gj is univalent, and stays in the balls where the further

maps gi, for i = j − 1, j − 2, . . . , 1, are univalent. Then, we use compactness of the class of

maps containing gi and the distortion theorem to show that this composition provides us with

a ball in the complement of PC(f0) at a small scale near z0.

Figure 6. The three curves in different colors approximate the orbit of the critical

points for different values of α. The light gray one is for α = [0; 3, 1, 1, 1, . . . ], the gray

one for [0; 3, 50, 1, 1, 1, . . . ], and the dark gray one for [0; 3, 50, 105 , 1, 1, 1, . . . ].

5.1. Balls in the complement at deep levels. — GivenX ⊆ C, letBδ(X) := ∪x∈XB(x, δ).

Proposition 5.1. — For all E ∈ R there are positive constants δ1, δ2, and r
∗ satisfying the

following. For every α ∈ (0, r2], every f ∈ QISα, and every ζ ∈ C with Im ζ ≤ 1
2π

logα−1 + E

and Exp(ζ) ∈ Ω0
0(f), there exists a curve γ : [0, 1] → C, with γ(0) = ζ, such that

(1) Exp
(
Bδ1

(
B(γ(1), r∗) ∪ γ[0, 1]

))
⊆ Dom f \ {0},

(2) Exp
(
B(γ(1), r∗)

)
∩ Ω0

0(f) = ∅, f
(
Exp(B(γ(1), r∗))

)
∩ Ω0

0(f) = ∅,

(3) diam Re
(
Bδ1

(
B(γ(1), r∗) ∪ γ[0, 1]

))
≤ 1− δ1,

(4) mod Bδ1

(
B(γ(1), r∗) ∪ γ[0, 1]

)
\
(
B(γ(1), r∗) ∪ γ[0, 1]

)
≥ δ2.

(1)

The proof of the above proposition appears in Section 6.7. See Figure 9.

Recall the sets Ch (and Cn for fn) introduced for the definition of renormalization.

1. mod denotes the conformal modulus of an annulus.
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Lemma 5.2. — There exists a real constant δ3 < min{δ1, 1/8} such that

– ∀j ∈ Z, ∀n ∈ N, Exp(B(j, δ3)) ⊂ int (Cn) ⊂ Ω0
n,

– ∀n ∈ N, ∀ξ ∈ C with Exp(ξ) ∈ Ω0
n, we have Exp(B(ξ, δ3)) ⊂ Dom fn.

Proof. — As each set C−i∪(C♯)−i, for i = 0, 1, 2, . . . , kn, is compactly contained in Dom fn, Ω
0
n is

compactly contained in Dom fn. Therefore, it follows from continuous dependence of the Fatou

coordinate on the map, the pre-compactness of IS0, and the uniform bound in Proposition 2.7

that there exists a real constant δ > 0 such that

∀n ≥ 1, B(−4/27, δ) ⊂ Cn and Bδ(Ω
0
n) ⊂ Dom fn.(11)

The first inclusion implies the first part of the lemma and the second one implies the second

part of the lemma.

5.2. Going down the renormalization tower. — For every n ≥ 1, let Fil(Ω0
n) denote the

set obtained from adding the bounded components of C \ Ω0
n to Ω0

n, if there is any. For n ≥ 1

and j = 0, 1, . . . , ⌊α−1
n ⌋ − k − 1, let In,j denote the closure of the connected component of

int
(
Fil(Ω0

n)
)
∩ Φ−1

n {j + 1
2
+ ti : t ∈ R}

landing at 0. Each In,j is a smooth curve in Fil(Ω0
n) that connects the boundary of Ω0

n to 0.

For every such n and j, every closed loop (i.e. homeomorphic image of a circle) contained in

Ω0
n \ In,j is contractible in C \ {0}. This implies that there is a continuous inverse branch of

Exp defined on every Ω0
n \ In,j.

By Proposition 2.4, Proposition 2.7, and the pre-compactness of ∪α∈(0,r3]ISα, there exists a

positive integer k′ such that

(12) ∀n ≥ 1 and ∀j with 0 ≤ j < 1
αn

− k − 1, sup
z,z′∈Ω0

n\In,j

| arg(z)− arg(z′)| ≤ 2πk′,

for every continuous branch of argument defined on Ω0
n \ In,j. To simplify the technical details

of the proof in this section, we assume the following condition on the rotations

(13) N ≥ 2k′ + k + k
′′ + 1.

Fix an arbitrary point z0 ∈ ∩∞
n=0Ω

n
0 \ {0}. We associate a sequence of quadruples

〈(zi, wi, ζi, σ(i))〉∞i=0(14)

to z0, where zi, wi ∈ Dom fi, ζi ∈ Φi(Pi), and σ(i) is a non-negative integer. This sequence shall
be the trace of z0 while going down the renormalization tower, and will be used to transport

the complementary balls on level n, introduced in Proposition 5.1, back to the dynamic plane

of f0. It is inductively defined as follows.

Define the sets

An :=
{
z ∈ Pn | ReΦn(z) ∈ [k′ + 1/2, ⌊1/αn⌋ − k], or Φn(z) ∈ ∪k

′

j=1B(j, δ3)
}

Bn := Ω0
n \ An.

For z0 ∈ A0, let w0 := z0, σ(0) := 0. For z0 ∈ B0, let w0 ∈ S0
0

⋂∩n≥1Ω
n
0 and positive integer

σ(0) < k0 + k
′ be such that f

◦σ(0)
0 (w0) = z0. In both cases, let ζ0 := Φ0(w0).
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b

z0

bw0 φ0

ζ0
b

Exp(w)
1
α0

− k

Figure 7. The two different colors correspond to the two different ways of going down

the renormalization tower. The gray part corresponds to A and the rest to B.

Define z1 := Exp(ζ0). Since z0 ∈ Ω1
0, one can see that z1 ∈ Ω0

1. Thus, we can repeat the

above process to define the quadruple (z1, w1, ζ1, σ(1)), and so on.

In general, for every l ≥ 0, we have

(15) zl = Exp(ζl−1), zl ∈ Ω0
l , f

◦σ(l)
l (wl) = zl, Φl(wl) := ζl, 0 ≤ σ(l) < kl + k

′.

Note that by the definition of this sequence and condition (13), for all l ≥ 0, we have

(16) k
′ + 1/2 ≤ Re ζl ≤ ⌊1/αl⌋ − k, or ζl ∈ ∪k

′

j=1B(j, δ3).

Proposition 5.3. — Assume that z0 ∈ ∩∞
n=0Ω

n
0 \ {0} and α is a non-Brjuno number in HTN .

If 〈ζj〉∞j=0 is the sequence associated to z0, there are arbitrarily large m with

(17) Im ζm ≤ 1

2π
log

1

αm+1
.

To prove Proposition 5.3, we need the estimate in the following Proposition, which will be

prove in Section 6.8.

Proposition 5.4. — There exist positive constants D1 and D2 such that for all n ≥ 1,

(18) if Im ζn+1 ≥
D1

αn+1
, then Im ζn+1 ≤

1

αn+1
Im ζn −

1

2παn+1
log

1

αn+1
+

D2

αn+1
.

Proof of Proposition 5.3. — Assume in the contrary that there is ℓ ≥ 1, such that for all m ≥ l,

we have

(19) Im ζm >
1

2π
log

1

αm+1

.

Let βj := Πj
l=0αl, for j ≥ 0. Note that since αiαi+1 ≤ 1/2, for all i ≥ 0, we have

∞∑

i=0

βi ≤ (β0 + β2 + β4 + . . . ) + (β1 + β3 + β5 + . . . ) ≤ 2(1 + 1/2 + 1/4 + . . . ) = 4.

Evidently, one of the following two occurs.
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(∗) There exists an integer n0 ≥ ℓ such that for every j ≥ n0, we have Im ζj ≥ D1

αj
.

(∗∗) There are infinitely many integers j greater than or equal to ℓ with Im ζj <
D1

αj
.

If (∗) holds, we can use Proposition 5.4 at every level j ≥ n0. Recursively using Equation (18),

we obtain the following inequality for every n > n0,

Im ζn ≤ 1

αnαn−1 · · ·αn0

Im ζn0−1 −
1

2παnαn−1 · · ·αn0

log
1

αn0

− 1

2παnαn−1 · · ·αn0+1
log

1

αn0+1
− · · · − 1

2παn
log

1

αn

+D2

(
1

αnαn−1 · · ·αn0

+
1

αnαn−1 · · ·αn0−1

+ · · ·+ 1

αn

)
.

By the contradiction hypothesis (19), in the above inequality we may replace Im ζn by
1
2π

log 1
αn+1

,

and then multiply both sides of it by 2πβn to obtain

n∑

j=n0−1

βj log
1

αj+1
≤ 2πβn0−1 Im ζn0−1 + 2πD2 (βn0−1 + βn0 + · · ·+ βn−1)

As n was an arbitrary integer, the above inequality implies that

+∞∑

j=n0−1

βj log
1

αj+1
≤ 2πβn0−1 Im ζn0−1 + 2πD2

+∞∑

j=n0−1

βj < +∞.

By Equation (10), this contradicts α being non-Brjuno.

Now assume (∗∗) holds (5). Let n1 < m2 ≤ n2 < m3 ≤ n3 < · · · be an increasing sequence of

positive integers with the following properties (the case that some ni = ∞ is easier and follows

from the following argument)

– for every integer j with mi ≤ j ≤ ni, we have Im ζj <
D1

αj

– for every integer j with ni < j < mi+1, we have Im ζj ≥ D1

αj
.

As in case (∗), we may recursively use (18) for integers n with ni ≤ n ≤ mi+1 − 2, and the

contradiction hypothesis (19), to obtain the following inequality for every i ≥ 2.

mi+1−1∑

j=ni

βj log
1

αj+1
≤ 2πβni

Im ζni
+ 2πD2

(
βni

+ βni+1 + · · ·+ βmi+1−2

)
.

5. In the proof of Proposition 5.11 we present an alternative argument for this case, where we prove a slightly

weaker conclusion which is still enough for our purpose. More precisely, we show that if (∗∗) holds for some z,

then there exists a constant E and infinitely many m with Im ζm ≤ 1

2π
log 1

αm+1
+ E.
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Then, using Im ζni
< D1/αni

,

∞∑

i=2

mi+1−1∑

j=ni

βj log
1

αj+1
≤

∞∑

i=2

(
2πβni

Im ζni
+ 2πD2

mi+1−2∑

j=ni

βj

)

≤
∞∑

i=2

(
2πD1βni−1 + 2πD2

mi+1−2∑

j=ni

βj

)

≤ (2πD1 + 2πD2)
∞∑

i=0

βi < +∞.

On the other hand, for all integers j with mi ≤ j ≤ ni, we have
1
2π

log 1
αj+1

< Im ζj <
D1

αj
, which

implies that

∞∑

i=2

ni−1∑

j=mi

βj log
1

αj+1
≤

∞∑

i=2

ni−1∑

j=mi

2πD1βj−1 ≤ 2πD1

∞∑

i=0

βi < +∞.

Combining the above two inequalities, we obtain the contradiction

∞∑

j=m2

βj log
1

αj+1
=

∞∑

i=2

( ni−1∑

j=mi

βj log
1

αj+1
+

mi+1−1∑

j=ni

βj log
1

αj+1

)
< +∞.

5.3. Going up the renormalization tower. — Assume Im ζn ≤ 1
2π

log 1
αn+1

holds for some

positive integer n.

The argument presented in Section 5.3 is valid if Im ζn ≤ 1
2π

log 1
αn+1

+E, for some constant E

independent of n. But, to avoid unnecessary details we assume that E = 0. See Proposition 5.8

and its proof for more details.

We may use Proposition 5.1 with E = 0 and the map fn+1, to obtain a curve γn and a ball

B(γn(1), r
∗) that projects under Exp into C \ Ω0

0(fn+1). Let us define the set

Vn+1 := Bδ1

(
B(γn(1), r

∗) ∪ γn[0, 1]
)
.

We shall define domains Vn, Vn−1, . . . , V1, a holomorphic map gn+1, and anti-holomorphic maps

gn, gn−1, . . . , g1 as in diagram

(20) Vn+1

gn+1
//Vn

gn
//Vn−1

gn−1
//· · · g2

//V1
g1

//V0 := B1(Ω
0
0),

satisfying

– for all i = 1, 2, . . . , n, Vi = Ω0
i \ Ii,j(i) for some j(i) ∈ {0, 1, . . . , ⌊1/αi⌋ − k − 1};

– for all i = 1, 2, . . . , n+ 1, gi : Vi → Vi−1; for all i = 0, 1, . . . , n, zi ∈ Vi;

– gn+1(ζn) = zn; and for all i = 1, 2, . . . , n, gi(zi) = zi−1.

We use an inverse inductive process to define the pairs (gi+1, Vi), starting with i = n and

ending with i = 0.
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Base step i = n: Recall that ζn ∈ Vn+1 satisfies (16). As diam (ReVn+1) ≤ 1 − δ1, and

δ3 < δ1, there exists an integer j ∈ {0, 1} such that

Re(Vn+1 − j) ⊂ (0, α−1
n − k).

With this choice of j, we define gn+1 : Vn+1 → C as

gn+1(ζ) := f ◦(j+σ(n))
n (Φ−1

n (ζ − j)).

By Proposition 5.1-1, Exp(Vn+1− j) is contained in Dom fn+1. So, Lemma 3.2, combined with

Equations (13) and (15), imply that f
◦(j+σ(n))
n is defined on Φ−1

n (Vn+1 − j). Indeed, we have

gn+1(Vn+1) ⊂ Ω0
n.

Since gn+1(Vn+1) intersects at most σ(n) + 1 ≤ k
′ + kn of the curves In,j, there exists j(n) ∈

{0, 1, . . . , ⌊1/αn⌋ − k − 1} with gn+1(Vn+1) ∩ In,j(n) = ∅. We define Vn := Ω0
n \ In,j(n).

Finally, by the equivariance property of Φn,

gn+1(ζn) = f ◦(j+σ(n))
n (Φ−1

n (ζn − j)) = f ◦σ(n)
n (wn) = zn.

Induction step: Assume that (gi+1, Vi) is defined and we want to define (gi, Vi−1). As every

closed loop in Vi is contractible in C \ {0}, there exists an inverse branch ηi of Exp defined on

Vi with ηi(zi) = ζi−1. Now we consider two separate cases.

R : Re(ηi(Vi)) ⊂ [1/2,∞),

L : Re(ηi(Vi)) ∩ (−∞, 1/2) 6= ∅.
If R occurs: Since ζi−1 ∈ ηi(Vi) satisfies (16), and diam (ReBδ3(ηi(Vi))) ≤ k

′ + 1/4 by

Equation (12) and δ3 < 1/8, there exists an integer j ∈ {0, 1, . . . ,k′ + 1} with

(21) Bδ3(ηi(Vi))− j ⊂ {ξ ∈ C : 3/8 ≤ Re ξ ≤ ⌊1/αi−1⌋ − k}.
By Lemma 5.2, Exp(Bδ3(ηi(Vi))) ⊂ Dom fi. Thus, Lemma 3.2 and Inequality (13) imply that

f
◦(j+σ(i−1))
i−1 is defined on Φ−1

i−1(Bδ3(ηi(Vi))− j). Define g̃i on Bδ3(ηi(Vi)) as

g̃i(ζ) := f
◦(j+σ(i−1))
i−1 (Φ−1

i−1(ζ − j)),(22)

and let

gi := g̃i ◦ ηi.
One can see that g̃i(Bδ3(ηi(Vi))) intersects at most k

′ + ki−1 + 1 of the curves Ii−1,j, for

j = 0, 1, . . . , ⌊1/αi−1⌋ − k − 1. Hence, by Equation (13), there is j(i − 1) in that set with

g̃i(Bδ3(ηi(Vi)) ∩ Ii−1,j(i−1) = ∅. Now, we define Vi−1 := Ω0
i−1 \ Ii−1,j(i−1) so that

(23) g̃i(Bδ3(ηi(Vi))) ⊂ Vi−1.

Finally, by the equivariance property of Φi−1, we have

gi(zi) = f
◦(j+σ(i−1))
i−1 (Φ−1

i−1(ηi(zi)− j)) = f
◦σ(i−1)
i−1 (wi−1) = zi−1.

If L occurs: Here, because diam (Re ηi(Vi)) ≤ k
′ and ζi−1 ∈ ηi(Vi) satisfies (16), we must

have ζi−1 ∈ B(j, δ3) for some j in {1, 2, . . . ,k′}. Therefore, by Lemma 5.2 (and Ci ⊂ Vi,

δ3 < 1/8), ηi(Vi) ⊇ B(j, δ3). This implies that

ηi(Vi) ∩Bδ3({0,−1,−2, . . . ,−k
′}) = ∅,
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or equivalently

(24) Bδ3(ηi(Vi)) ∩ {0,−1,−2, . . . ,−k
′} = ∅.

Now, we extend Φi−1 : Pi−1 → C over a larger domain, using the dynamics of fi−1, so that a

unique branch of Φ−1
i−1 is defined on Bδ3(ηi(Vi)).

Recall the sectors C−j
i−1∪(C♯i−1)

−j, for 1 ≤ j ≤ ki−1, and S
0
i−1 = C−ki−1

i−1 ∪(C♯i−1)
−ki−1 introduced

for the definition of renormalization (of fi−1). If ki−1 < k
′ + 1, using (13), one can consider

further pre-images for j = ki−1 + 1, . . . ,k′ + 1 as

C−j
i−1 := Φ−1

i−1(Φi−1(C−ki−1

i−1 )− (j − ki−1)),

(C♯i−1)
−j := Φ−1

i−1(Φi−1((C♯i−1)
−ki−1)− (j − ki−1)).

Let Di−1 := C−k
′−1

i−1 ∪ (C♯i−1)
−k

′−1, and observe that f
◦(k′+1)
i−1 : Di−1 → Ci−1 ∪ C♯i−1. For i ≥ 1,

define the set

P♮
i−1 :=

k
′⋃

j=0

f ◦j
i−1(Di−1).

Define Φ♮i−1 : P♮
i−1 → C as follows. For z ∈ P♮

i−1, there is an integer j with 0 ≤ j ≤ k
′ + 1 and

f ◦j
i−1(z) ∈ Pi−1. Let

Φ♮i−1(z) := Φi−1(f
◦j
i−1(z))− j.

As Φi−1 satisfies the Abel functional equation on Pi−1, one can see that Φ♮i−1 is independent of

the choice of j and hence, defines a holomorphic map on P♮
i−1. The map Φ♮i−1 is not univalent.

However, it still satisfies the Abel Functional equation on P♮
i−1. Indeed, it has critical points

at the critical point of fi−1 and its k′ pre-images within P♮
i−1. The k

′+1 critical points of Φ♮i−1

are mapped to 0,−1,−2, . . . ,−k
′.

The map Φ♮i−1 is a natural extension of Φi−1 to a multi-valued holomorphic map on P♮
i−1∪Pi−1.

However, the two maps

Φ♮i−1 :
k
′⋃

j=0

f ◦j
i−1(Di−1) → C, Φi−1 :

⌊1/αi−1⌋+k
′−k−1⋃

j=k
′+1

f ◦j
i−1(Di−1) → C

provide a well defined holomorphic map on every k
′ + 1 consecutive sectors of the form

f ji−1(Di−1). More precisely, for every l with 0 ≤ l < ⌊1/αi−1⌋ − k,

Φ♮i−1 ∐l Φi−1 :

k
′⋃

j=0

f
◦(l+j)
i−1 (Di−1) → C

is defined as

Φ♮i−1 ∐l Φi−1(z) :=

{
Φ♮i−1(z), if z ∈ f ◦j

i−1(Di−1) with j < k
′ + 1;

Φi−1(z), if z ∈ f ◦j
i−1(Di−1) with j ≥ k

′ + 1.

The set Bδ3(ηi(Vi)) has diameter strictly less than k
′ +1. Therefore, it can intersect at most

k
′+1 vertical strips of width one. In other words, Bδ3(ηi(Vi)) is contained in k

′+1 consecutive
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sets in the list

Φ♮i−1(Di−1),Φ
♮
i−1(fi−1(Di−1)), . . . ,Φ

♮
i−1(f

◦k′

i−1(Di−1)),

Φi−1(f
◦(k′+1)
i−1 (Di−1)), . . . ,Φi−1(f

◦(2k′+1)
i−1 (Di−1)).

Thus, by the above argument about Φ♮i−1 ∐l Φi−1, and that every closed loop in Bδ3(ηi(Vi)) is

contractible in the complement of the critical values of Φ♮i−1 by (24), there exists an inverse

branch of this map defined on Bδ3(ηi(Vi)). We denote this map by g̃i and let

gi := g̃i ◦ ηi : Vi → Ω0
i−1.

One can similarly verify that g̃i(Bδ3(ηi(Vi))) does not intersect some curve Ii−1,j(i−1). We

define Vi−1 := Ω0
i−1 \ Ii−1,j(i−1) and have gi : Vi → Vi−1. Indeed, we have shown

(25) g̃i(Bδ3(ηi(Vi))) ⊂ Vi−1.

Here, σ(i − 1) = 0, Φi−1(wi−1) = ζi−1, and wi−1 = zi−1. Hence gi(zi) = zi−1. This finishes the

definition of the domains and maps when L occurs. (6) (7)

5.4. Safe lifts. — Each domain Vj, for j = n+ 1, n, . . . , 0, is a hyperbolic Riemann surface.

Let ρi(z)|dz| be the complete metric of constant curvature −1 on Vi. The next two lemmas are

natural consequences of the definition of the chain (20).

Lemma 5.5. — For every i ∈ {1, 2, . . . n}, the map gi : (Vi, ρi) → (Vi−1, ρi−1) is uniformly

contracting. More precisely, for every z ∈ Vi, we have

ρi−1(gi(z)) · |g′i(z)| ≤ δ4 · ρi(z),
with δ4 := (2k′ + 1)/(2k′ + 1 + δ3).

Proof. — Let ρ̂i(z)|dz| and ρ̃i(z)|dz| denote the Poincaré metric on the domains ηi(Vi) and

Bδ3(ηi(Vi)), respectively. By the definition of gi and properties (23) and (25) we can decompose

the map gi : (Vi, ρi) → (Vi−1, ρi−1) as follows:

(Vi, ρi)
ηi

// (ηi(Vi), ρ̂i)
�

� inc.
// (Bδ3(ηi(Vi)), ρ̃i)

g̃i
// (Vi−1, ρi−1).

By Schwartz-Pick Lemma, the first map and the last map in the above chain are non-

expanding.

To show that the inclusion map is uniformly contracting in the respective metrics, fix an

arbitrary point ξ0 in ηi(Vi), and define

H(ξ) := ξ + (ξ − ξ0)
δ3

(ξ − ξ0 + 2k′ + 1)
: ηi(Vi) → C.

6. The chain of the domains and maps (20) defined here depends on the value of n. It is likely that the last

parts of the chains defined for two different values of n are not identical.
7. For an alternative approach to going down and up the tower see [Che13, Section 3].
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Since diam Re(ηi(Vi)) ≤ k
′, we have |Re(ξ − ξ0)| ≤ k

′ for every ξ ∈ ηi(Vi). This implies that

|ξ − ξ0| < |ξ − ξ0 + 2k′ + 1|, and hence

|H(ξ)− ξ| = δ3|
ξ − ξ0

ξ − ξ0 + 2k′ + 1
| < δ3.

So, H(ξ) is a holomorphic map from ηi(Vi) into Bδ3(ηi(Vi)). By Schwartz-Pick Lemma, H is

non-expanding. In particular, at H(ξ0) = ξ0 we obtain

ρ̃i(ξ0)|H ′(ξ0)| = ρ̃i(ξ0)(1 +
δ3

2k′ + 1
) ≤ ρ̂i(ξ0).

That is, ρ̃i(ξ0) ≤ δ4 · ρ̂i(ξ0) with δ4 = (2k′ + 1)/(2k′ + 1 + δ3).

Lemma 5.6. — There exists a constant δ5 > 0 independent of n such that

(1) each gi : Vi → Vi−1, for i = 1, 2, . . . , n + 1, is either one-to-one or has only one simple

critical point;

(2) each gi : Vi → Vi−1, for i = 1, 2, . . . , n, is one-to-one on the hyperbolic ball

Bρi(zi, δ5) := {z ∈ Vi | dρi(z, zi) < δ5}.
Proof. — Part (1): Each map gi is a composition of at most four maps; ηi (this does not

appear for gn+1), a translation by an integer j, Φ−1
i−1, and f

◦(j+σ(i−1))
i−1 . The first three maps are

one-to-one. The map f
◦(j+σ(i−1))
i−1 on Φ−1

i−1(ηi(Vi) − j) is either one-to-one or has at most one

simple critical point. To see this, first note that the relevant critical points of f
◦(j+σ(i−1))
i−1 within

Ω0
i−1 are contained in ∪j+σ(i−1)

l=0 {f−l
i−1(cpfi−1

)}, which are all non-degenerate. If Φ−1
i−1(ηi(Vi)− j)

contains more than one element in the above list, by the equivariance property of Φi−1, there

must be a pair of points ξ, ξ+m (for some integer m 6= 0) in ηi(Vi)− j. As this set is contained
in the lift of a simply connected domain under Exp, that is not possible.

Part (2): The proof is broken into four small steps.

Step 1. If gi has a critical value, then it belongs to ∪j+σ(i−1)−1
l=0 {f ◦l

i−1(−4/27)}, where j is the
integer defined in case R of the inductive construction (8).

Looking back at the inductive process, the map gi introduced in L is univalent, hence, we

only need to look at maps considered in R. By the definition (22), if gi has a critical value, it

must belong to the above set.

Let cvgi denote the critical value of gi, if it exists.

Step 2. If cvgi = f ◦l
i−1(−4/27) = Φ−1

i−1(l + 1), for some l with 0 ≤ l ≤ σ(i− 1) + j − 1, then

zi−1 /∈ Φ−1
i−1(B(l + 1, δ3)).

To see this, we refer to the definition of quadruples (14). If zi−1 ∈ Ai−1, recall that σ(i −
1) = 0 and zi−1 = Φ−1

i−1(ζi−1). By the above step, and since j ≤ k
′ + 1, we have cvgi ∈

∪k
′

l=0{f ◦l
i−1(−4/27)}. Now, if Re ζi−1 ≥ k

′ + 1/2, then zi−1 can not belong to ∪k
′

l=1Φ
−1
i−1(B(l, δ3)).

And if ζi−1 ∈ ∪k
′

l=1B(l, δ3), we have j = 0. By Step 1, gi has no critical value.

When zi−1 ∈ Bi−1, by definition, zi−1 /∈ ∪k
′

l=0Φ
−1
i−1(B(l, δ3)).

8. When σ(i − 1) + j = 0, we define the set to be empty.
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Step 3. There exists a real constant δ > 0 such that Bρi−1
(zi−1, δ) is simply connected and

does not contain cvgi.

By steps 1 and 2, it is enough to show that there exists a δ > 0 such that for every l ∈
{1, 2, . . . , 2k′ + 1} and every i ≤ n, Bρi−1

(Φ−1
i−1(l), δ) is simply connected and is contained in

Φ−1
i−1(B(l, δ3)). Recall that Φ−1

i−1 is univalent on {ξ ∈ C; Re ξ ∈ (0, α−1
i−1 − k)}. As the balls

B(l, δ3) and the segments {s · l + (1 − s)(1/8 − 2i), s ∈ (0, 1)}, for l = 1, 2, . . . ,k′, are well

contained in this strip, it follows from the distortion theorem that there are constants M1 and

M2 such that

Φ−1
i−1(B(l, δ3)) ⊃ B(Φ−1

i−1(l),M1 · (Φ−1
i−1)

′(l)),

∀z ∈ Φ−1
i−1(B(l, δ3)), d(z, ∂Vi−1) ≤M2 · (Φ−1

i−1)
′(l).

For the second line of the above equations we have used the Koebe distortion theorem on the

segment {s · l+(1−s)(1/8−2i), s ∈ (0, 1)}. As ρi−1(·) is comparable to 1/d(·, ∂Vi−1), one infers

that Φ−1
i−1(B(l, δ3)) contains a round hyperbolic ball of radius uniformly bounded from below.

Step 4. part (2) of the lemma holds for δ5 := δ.

By the contraction of gi (Lemma 5.5), gi(Bρi(zi, δ5)) is contained in the ball Bρi−1
(zi−1, δ).

As Bρi−1
(zi−1, δ) is simply connected and does not contain any critical value of gi, one can find

a univalent inverse branch of gi defined on this ball. Therefore, gi is one-to-one on the ball

Bρi(zi, δ5).

Let Gn denote the map

Gn := g1 ◦ g2 ◦ · · · ◦ gn+1 : Vn+1 → Ω0
0.

Recall the curve γn obtained in Proposition 5.1 for the map fn+1. We have γn(0) = ζn. By the

properties of the chain (20), Gn(γn(0)) = z0.

Lemma 5.7. — For all E ∈ R, there exists a constant D3 > 0 such that for every n ≥ 1

satisfying Im ζn ≤ (2π)−1 log(1/αn+1) + E, there exists rn ∈ (0,+∞) such that

(1) Gn(B(γn(1), r
∗)) ∩ Ωn+1

0 = ∅;
(2) B(Gn(γn(1)), rn) ⊂ Gn(B(γn(1), r

∗)), and |Gn(γn(1))− z0| ≤ D3 · rn;
(3) rn ≤ D3 · (δ4)n.

Proof. — Part (1): By Proposition 5.1-2, for every ζ ∈ B(γn(1), r
∗) we have

Exp(ζ) /∈ Ω0
n+1, and fn+1(Exp(ζ)) /∈ Ω0

n+1.

We claim that this implies

gn+1(ζ) /∈ Ω1
n, and fn(gn+1(ζ)) /∈ Ω1

n.

It follows from the definition of the renormalization (see proof of Lemma 3.2) that since

Exp(ζ) /∈ Ω0
n+1, then Φ−1

n (ζ) /∈ Ω1
n. Also from fn+1(Exp(ζ)) /∈ Ω0

n+1, it follows that f
◦j
n (Φ−1

n (ζ)) /∈
Ω1
n, for j = 0, 1, 2, . . . , bn+1. In particular, by (13), (15), and j ≤ k

′+1, gn+1(ζ) and fn(gn+1(ζ))

are not in Ω1
n.
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The same argument implies the following statement for every i = n, n− 1, . . . , 1.

For all w ∈ Vi, if w /∈ Ωn−i+1
i and fi(w) /∈ Ωn−i+1

i ,

then gi(w) /∈ Ωn−i+2
i−1 and fi−1(gi(w)) /∈ Ωn−i+2

i−1

By an inductive argument, one infers from these that Gn(ζ) /∈ Ωn+1
0 .

Part (2): It follows from Proposition 5.1-4 that there exists a constant C such thatB (γn(1), r
∗)∪

γn[0, 1] has hyperbolic diameter (with respect to ρn+1 in Vn+1) less than C. Let m denote the

smallest non-negative integer with

C · (δ4)m ≤ δ5/2.

Note that m is uniformly bounded from above independent of n. We decompose the map Gn
into two maps as follows

Gln := gn−m+1 ◦ gn−m+2 ◦ · · · ◦ gn+1 and Gun := g1 ◦ g2 ◦ · · · ◦ gn−m.

By Lemma 5.5 and our choice of m, we have

Gln(B(γn(1), r
∗) ∪ γn[0, 1]) ⊆ Bρn−m(zn−m, δ5/2).

Since by Lemmas 5.5 and 5.6 each gi, for i = n−m,n−m−1, . . . , 1, is univalent and uniformly

contracting on Bρi(zi, δ5), we conclude that Gun is univalent on Bρn−m(zn−m, δ5). Thus, by the

distortion theorem, Gun has bounded distortion on Gln(B(γn(1), r
∗) ∪ γn[0, 1]).

We claim that Gln belongs to a pre-compact class of maps. That is because it is a composition

ofm maps gi, for i = n+1, . . . , n−m+1, where each of these maps is a composition of two maps

as gi = g̃i ◦ ηi. The map ηi is univalent on Vi and, by the distortion theorem, has uniformly

bounded distortion on sets of bounded hyperbolic diameter. The map g̃i extends over the

larger set Bδ3(ηi(Vi)), by (23) and (25). So, it belongs to a compact class. (Indeed, f
◦(σ(i)+j)
i is

a uniformly bounded number (by Proposition 2.7, (15), and j ≤ k
′ + 1) of iterates of a map in

the pre-compact class ∪(0,r3]ISα).
Putting all these together, one infers that there exists a constant C ′ such that

|Gn(γn(1))− z0| = |Gn(γn(1))− Gn(γn(0))|
≤ C ′ · diam (Gn(B(γn(1), r

∗)).

Also, Gn(B(γn(1), r
∗)) contains a round ball of Euclidean radius comparable to the diameter of

Gn(B(γn(1), r
∗)).

Part (3): The domain Gn(B(γn(1), r
∗)) is contained in Ω0

0 which is compactly contained in

V0. Thus, the Euclidean and the hyperbolic (with respect to ρ0) metrics are comparable on Ω0
0.

Now, the uniform contraction with respect to the hyperbolic metric in Lemma 5.5 implies the

claim.
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5.5. Semi-continuity of the post-critical set. —

Proposition 5.8. — Let α ∈ HTN and f0 ∈ QISα. Assume that for some non-zero z in

∩∞
n=0Ω

n
0 (f0) there exist a constant E and infinitely many distinct positive integers m for which

(26) Im ζn ≤ 1

2π
log

1

αn+1

+ E.

Then ∩∞
n=0Ω

n
0 (f0) is non-uniformly porous at z.

Proof. — By the assumption on α, f0 is infinitely near-parabolic renormalizable and hence we

may define fn = R◦nf0, n ≥ 0. Let ni, i ≥ 0, be an increasing sequence of positive integers for

which Inequality (26) holds. Applying Proposition 5.1 to the maps fni+1 there are curves γni
and

balls B(γni
(1), r∗) enjoying the properties in that proposition. The maps Gni

, by Lemma 5.7,

provide us with a sequence of balls B(Gni
(γni

(1)), rni
) satisfying

B(Gni
(γni

(1)), rni
) ∩ Ωni+1

0 = ∅, |Gni
(γni

(1))− z0| ≤ D3 · rni
, rni

→ 0.

This finishes the proof of the proposition.

Proof of Theorem A. — Let z0 ∈ PC(f0) \ {0}. By Proposition 3.5, z0 ∈ ∩∞
n=0Ω

n
0 \ {0}. Thus,

we can define the sequence of quadruples (14). Since α is a non-Brjuno number, Proposition 5.3

provides us with an strictly increasing sequence of integers ni for which we have inequality (17)

with m = ni. By Proposition 5.8, PC(f0) is non-uniformly porous at z0. This implies that

z0 is not a Lebesgue density point of PC(f0), and hence, by the Lebesgue density theorem,

PC(f0) must have zero area. Indeed, continuing the notations in the proof of Proposition 5.8,

for si := rni
+D3 · rni

, we have

area (B(z0, si)) ∩ PC(f0))
area (B(z0, si))

≤ π(si)
2 − π(rni

)2

π(si)2
≤ (D3)

2 + 2D3

(D3)2 + 2D3 + 1
< 1. (9)

Proof of Corollary C. — By the argument before Proposition 3.6, the orbit of almost every

point in the Julia set eventually stays in Ωn0 , for n ≥ 0. This implies that almost every point

in the complement of Ωn0 , for n ≥ 0, is non-recurrent. As area Ωn0 shrinks to zero, almost every

point in the Julia set must be non-recurrent. The second part follows from the first part and

Poincaré recurrence Theorem.

Proposition 5.9. — There exist M > 0 and µ < 1 such that for all α ∈ HTN , all f ∈ QISα,
all n ≥ 1, and all z ∈ Ωn+1

0 we have

|f ◦qn(z)− z| ≤M · µn.

9. The proof does not imply that PC(f0) \ {0} is porous (shallow), i.e. at every scale around a point in

PC(f0) \ {0} there is a disk of comparable radius in the complement of PC(f0). Indeed, it seems that in

Proposition 5.3, given any increasing sequence of positive integers 〈ni〉 one can find a non-Brjuno α and z ∈
PC(Pα) such that Inequality (17) holds only at levels ni. Hence, the scales obtained in the above proof may

shrink to zero arbitrarily fast.
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In particular this holds on the post-critical set.

Proof. — The result basically follows from the uniform contraction in Lemma 5.5, but, since

we are not concerned with the distortions of the maps here, one may go down the tower in a

simpler fashion. We briefly outline the procedure here and leave further details to the reader.

Let f0 := f , and fi := R◦i(f), for i ≥ 1. Given z0 ∈ Ωn+1
0 \ {0}, inductively define the

sequence of points wi, ζi, zi+1 and non-negative integers σi, for i = 0, 1, . . . , n, according to

the following rules. When zi ∈ A ′
i := ∪bi

j=ki+k
′f

◦j
i (S0

i ), then wi := zi, and σi := 0. When

zi ∈ (Ω0
i \ A ′

i ), one may choose wi ∈ (S0
i ∩ Ωn+1−i

i ) and σi ∈ {1, 2, . . . , ki + k
′ − 1} so that

f ◦σi
i (wi) = zi. The existence of such wi follows from the choice of the inverse branch ψi+1 in

(7) (that is, supReΦi ◦ ψi+1(Pi+1) ≤ inf ReΦi(S
0
i )). However, wi is not necessarily unique. In

both cases, ζi := Φi(wi), zi+1 := Exp(ζi).

The last point zn+1 ∈ Ω0
n+1. By Lemma 5.2, we may choose a curve γn : [0, 1] → C with

γn(0) = ζn, γn(1) = ζn + 1, and Exp(Bδ3(γn)) ⊂ Dom fn+1. By the distortion theorem,

γn may be chosen to have uniformly bounded Euclidean length, independent of n. Define

Vn+1 := Bδ3(γn ∪ (γn− 1)), and note that the hyperbolic distance between ζn and ζn+1 within

Vn+1 is uniformly bounded from above, independent of n.

We have (Vn+1−1) ⊂ Φn(Dom Φn), and by Lemma 3.2 and Equation (13), fn may be iterated

kn + k
′ times on Φ−1

n (Vn+1 − 1). Define gn+1(ζ) := f ◦σn+1
n ◦ Φ−1

n (ζ − 1) on Vn+1, and as in the

previous argument, choose j(n) in {0, 1, . . . , ⌊1/αn⌋−k−1} such that gn+1(Vn+1) ⊂ Ω0
n \In,j(n).

Let Vn := Ω0
n \ In,j(n).

We have Re ζi ∈ [k′+1/2, ⌊1/αi⌋−k−1/2], for i = 0, 1, . . . , n. Repeating only case R of the

construction in Section 5.3, one inductively defines the pairs (gi+1, Vi), for i = n−1, n−2, . . . , 1,

such that gi+1 := f ◦σi+j
i ◦ Φ−1

i ◦ (ηi+1 − j), for some j ∈ {0, 1, . . . ,k′} with Re(ηi(Vi+1) − j) ⊂
(0, ⌊1/αi⌋ − k). Moreover, j ∈ {0, 1, . . . , ⌊1/αi⌋ − k − 1} is chosen so that Vi = Ω0

i \ Ii,j(i)
contains f ◦σi+j

i ◦ Φ−1
i (Bδ3(ηi(Vi+1))− j).

The composition of these maps, denoted by Gn, satisfies Gn(ζn) = z0. We claim that Gn(ζn+
1) = f ◦qn

0 (z0). To see this, first note that Φ−1
n (B(ζn − 1, δ3)) ⊂ P ′

n and hence by Lemma 3.4,

Ψn ◦ fn ◦ Φ−1
n = f ◦qn

0 ◦ Ψn ◦ Φ−1
n on B(ζn − 1, δ3). On the other hand, by the definition of

renormalization, one can see that Gn = f ◦s
0 ◦ Ψn ◦ Φ−1

n on Vn+1, for some non-negative integer

s. The integer s is non-negative because of the choices of the branches of ψi in (7) (that is,

ReΦi(ψi+1(P ′
i+1)) ≤ k

′ + 1). Then, at every point ξ ∈ B(ζn − 1, δ3) we have

f ◦qn
0 (Gn(ξ)) = f ◦qn

0 ◦ f ◦s
0 ◦Ψn ◦ Φ−1

n (ξ) = f ◦s
0 ◦ f ◦qn

0 ◦Ψn ◦ Φ−1
n (ξ)

= f ◦s
0 ◦Ψn ◦ fn ◦ Φ−1

n (ξ) = f ◦s
0 ◦Ψn ◦ Φ−1

n (ξ + 1) = Gn(ξ + 1).

Since Vn+1 is connected and the above equation holds on B(ζn− 1, δ3) ⊂ Vn+1, it must hold on

Vn+1. In particular, Gn(ζn + 1) = f ◦qn
0 (Gn(ζn)). Now, by the uniform contraction of the maps

gi, one concludes the result.

Recall that ∆(f) denotes the Siegel disk of f ∈ QISα centered at 0, provided it exists.

Theorem D is a special case of the following proposition.
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Proposition 5.10. — For all α ∈ HTN and all f ∈ QISα, the following properties hold.

(1) If α is a non-Brjuno number, then PC(f) = ∩∞
n=0Ω

n
0 .

(2) If α is a Brjuno number, then

a) int (∩∞
n=0Ω

n
0 ) = ∆(f),

b) PC(f) = ∩∞
n=0Ω

n
0 \∆(f), in particular, ∂∆(f) ⊆ PC(f).

(3) PC(f) is a connected set.

The connectivity of PC(Pα) for irrational values of α follows from the main result of [Chi08],

although it is not directly stated in that paper. Indeed, it is proved that PC(Pα) is equal to

the closure of a class of hedgehogs of Pα. By definition, each hedgehog of Pα is a connected

set. See also [BBCO10] . However, proving the connectivity of the post-critical set in the

greater generality of the class IS is particularly important when studying the applications of

near-parabolic renormalization scheme. See for instance Lemma 4.5 in [CC15].

To prove the above proposition we need the next two Propositions, which shall be proved in

Section 6.8.

Proposition 5.11. — There exists E ∈ R such that for all Brjuno α ∈ HTN , all f in

QISα, and all z in ∩∞
n=0Ω

n
0 \∆(f), there are infinitely many positive integers m with Im ζm ≤

1
2π

logα−1
m+1 + E.

The set ∩∞
n=0Ω

n
0 \∆(f) may be empty for some values of α, in which case the statement of

the above lemma is void.

Proposition 5.12. — For all E ∈ R there is δ6 > 0, such that for all n ≥ 1, and all ζ ∈
Exp−1(Ω0

n+1) with Im ζ ≤ 1
2π

logα−1
n+1 + E, there is ζ ′ ∈ Exp−1 ◦Φ−1

n+1({1, 2, . . . , ⌊1/(2αn+1)⌋})
with

|Re(ζ ′ − ζ)| ≤ 1/2, d(ζ ′, ζ) ≤ δ6.

Combining Proposition 5.8 and Proposition 5.11, we obtain the following corollary.

Corollary 5.13. — Let α be a Brjuno number in HTN and f ∈ QISα. Then, the set ∩∞
n=0Ω

n
0 \

∆(f) is non-uniformly porous. In particular, ∩∞
n=0Ω

n
0 \∆(f) has empty interior.

Proof of Proposition 5.10. — Let f0 := f and fn := Rn(f0), for n ≥ 1. Also, αn denotes the

asymptotic rotation of fn at 0, for n ≥ 0.

Part (1): Fix a point z0 ∈ ∩∞
n=0Ω

n
0\{0}, and recall the sequence of quadruples 〈(zi, wi, ζi, σi)〉∞i=0

introduced in the proof of Proposition 5.9. Proposition 5.3 applies to the sequence ζi as well

and provides an increasing sequence of positive integers ni satisfying Im ζni
≤ 1

2π
logα−1

ni+1. One

uses Proposition 5.12 (with E = 0) to find

ζ ′ni
∈ Exp−1(Φ−1

ni+1({1, 2, . . . , ⌊1/(2αni+1)⌋}))
enjoying the properties in the proposition. The two points ζni

and ζ ′ni
are mapped to the

dynamic plane of f under the map Gni
built in the proof of Proposition 5.9. Moreover, by
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the uniform contraction of the changes of coordinates, see Lemma 5.5, Gni
(ζ ′ni

) converges to

z0 = Gni
(ζni

), as ni tends to infinity.

Elements of Φ−1
ni+1({1, 2, . . . , ⌊1/(2αni+1)⌋}) belong to the orbit of the critical value of fni+1,

by the normalization of the coordinates Φni
. Then, Ψni

maps these elements into the orbit of

the critical value of f0, by the definition of renormalization. Moreover, Gni
= f

◦sni
0 ◦ Ψni

, for

some non-negative integer sni
(see the proof of Proposition 5.9). In particular, Gni

(ζ ′ni
) belongs

to the orbit of the critical value of f0. Thus, z0 ∈ PC(f).
Part (2)-a: Recall that by Proposition 3.5, the intersection ∩∞

n=0Ω
n
0 is forward invariant under

f0, is compact, and is connected. Moreover, it contains 0 and the point cpf0 outside of ∆(f0).

It follows that ∆(f0) ⊆ ∩∞
n=0Ω

n
0 , and ∆(f0) ⊆ int (∩∞

n=0Ω
n
0 ).

On the other hand, by Corollary 5.13 a point in ∩∞
n=0Ω

n
0 \∆(f) may not be in the interior

of the set ∩∞
n=0Ω

n
0 . In other words, a point z ∈ int (∩∞

n=0Ω
n
0 ) either belongs to ∆(f0) or belongs

to ∂∆(f0). We claim that the latter may not occur, and hence int (∩∞
n=0Ω

n
0 ) ⊆ ∆(f0). Let

U0 be the connected component of int (∩∞
n=0Ω

n
0 ) containing 0. By the previous paragraph, U0

contains ∆(f0). If some z in int (∩∞
n=0Ω

n
0 ) belongs to ∂∆(f0), U0 is strictly larger than ∆(f0).

Let Û0 denote the filled-in set of U0, and note that f0 : Û0 → Û0. Let ψ : Û0 → D denote the

uniformization of Û0 by the unit disk mapping 0 to 0. By the Schwarz lemma, ψ ◦ f0 ◦ψ−1 is a

rotation of D. That is, f0 is conjugate to a rotation on an strictly larger set than ∆(f0), which

contradicts the maximality of ∆(f0).

Part (2)-b: As the orbit of cpf0 is recurrent by Proposition 5.9, PC(f0)∩∆(f0) is empty. By

Proposition 3.5, we only need to show that (∩∞
n=0Ω

n
0 \∆(f)) ⊆ PC(f0). Let z ∈ ∩∞

n=0Ω
n
0 \∆(f).

By the previous part, z ∈ ∩∞
n=0Ω

n
0 \ int (∩∞

n=0Ω
n
0 ), and hence, there exists a sequence zi ∈ ∂Ωi0,

for i = 0, 1, . . . , converging to z. We shall show that there exists a sequence wi, for i = 0, 1, . . . ,

in the orbit of the critical point of f0 with d(zi, wi) → 0, as i tends to infinity. This proves that

z ∈ PC(f0).
Recall the sets Cn := Cfn , C−1

n , . . . , C−kn
n , and C♯n := C♯fn , (C♯n)−1, . . . , (C♯n)−kn introduced in

Section 3.1. To prove the above claim it is enough to show that for all n ≥ 1 we have,

(a’) ∂Ωn0 ⊂ ⋃qnbn+qn−1

j=0 f ◦j
0 (Ψn(C−kn

n ));

(b’) ∀j = 0, 1, . . . , qnbn + qn−1, O(cvf0) ∩ f ◦j
0 (Ψn(C−kn

n )) 6= ∅;
(c’)

lim
n→∞

sup
{
diam f ◦j

0 (Ψn(C−kn
n ))

∣∣ 0 ≤ j ≤ qnbn + qn−1

}
= 0.

Proof of (a’): Recall that by Theorem 2.6, fn+1(z) = P ◦ψ−1(e2παn+1i · z), for some univalent

map ψ : U → e−2παn+1i · Dom(fn+1) with ψ′(0) = 1. The ellipse E defined in Section 2.2 is

contained in B(0, 2), and hence, U contains B(0, 8/9). The 1/4-Theorem implies that ψ(U)

and Dom fn+1 contain B(0, 2/9). Thus,

(27) {w : Imw ≥ 2} ⊂ Exp−1(Dom fn+1).

The definition of renormalization implies that

Exp(Φn((C♯n)−kn)) = f−1
n+1(B(0, 4

27
e−4π)).
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By an explicit estimate on the polynomial P and the distortion theorem applied to the map z 7→
8
9
ψ(9

8
· z) one concludes that f−1

n+1(B(0, 4
27
e−4π)) ⊂ B(0, 4

27
e4π). Therefore, Exp(Φn((C♯n)−kn)) ⊂

B(0, 4
27
e4π), or in other words,

(28) Φn((C♯n)−kn) ⊂ {w ∈ C | Imw > −2}.
Combining the inclusions (27) and (28), one infers that ∂Ω0

n ∩ ∪bnj=0f
◦j
n ((C♯n)−kn) = ∅. By

Lemma 3.4, this implies that ∂Ωn0 ∩∪bnqn+qn−1

j=0 f ◦j
0 (Ψn(C♯n)−kn) = ∅. By the definition of Ωn0 , this

finishes the proof of part (a’).

Proof of (b’): By the definition of renormalization,

Exp(Φn(C−kn
n )) = f−1

n+1

(
B(0, 4

27
e4π) \B(0, 4

27
e−4π)

)
.

We have (P−1(B(0, 4
27
e−4π)) ∩ U) ⊂ B(0, 8

27
e−4π), and the distortion theorem applied to the

map z 7→ 8
9
ψ(9

8
· z) implies that ψ(B(0, 8

27
e−4π)) ⊂ B(0, 1/10). Hence, f−1

n+1(B(0, 4
27
e−4π)) ⊂

B(0, 1/10). On the other hand, by the previous part, we have ψ(U) ⊃ B(0, 2/9). Combining

these, we have −4/27 ∈ Exp(Φn(C−kn
n )), or equivalently,

Φn(C−kn
n ) ∩ {1, 2, . . . , ⌊1/αn⌋ − k − 1} 6= ∅.

This means that for j = 0, 1, . . . , bn, f
◦j
n (C−kn

n ) ∩ O(cvfn) 6= ∅. By the definition of renormal-

ization, Ψn(O(cvfn) ∩ Pn) ⊂ O(cvf0). This finishes the proof of part (b’).

Proof of (c’): Since ψ has univalent extension onto V , the distortion theorem implies that

there exists a constant C, independent of n, such that Dom fn+1 is contained in B(0, C).

On the other hand, P (B(0, 4
54
e−4π)) ⊂ B(0, 4

27
e−4π) and by 1/4-Theorem, ψ(B(0, 4

54
e−4π)) ⊇

B(0, 1
54
e−4π). Combining these inclusions with the first equation in the proof of part (b’), we

obtain Exp(Φn(C−kn
n )) ⊂ B(0, C) \B(0, 1

54
e−4π). Thus,

ImΦn(C−kn
n ) ⊆

[
1
2π

log( 4
27C

), 2 + 1
2π

log 8)
]
.

We also have

ReΦn(C−kn
n ) ⊆ [1/2, ⌊1/αn⌋ − k − 1/2], and diam Re(Φn(C−kn

n )) ≤ k
′′,

by the choice of kn, Proposition 2.7, and condition (13).

Let Vn+1 := Bδ3(Φn(C−kn
n )), where δ3 is the constant in Lemma 5.2. The above equations

imply that Φn(C−kn
n ) has uniformly bounded hyperbolic diameter in Vn+1, independent of n.

For every n ≥ 1 and every j = 0, 1, . . . , bnqn + qn−1, there is a chain of maps as in (20)

that maps the closure of C−kn
n to the closure of f ◦j

0 (Ψn(C−kn
n )). That is, given j, there are

non-negative integers σi ∈ {0, 1, . . . , bi}, for i = 0, 1, . . . , n, such that j times iterating f0 on

the closure of Ψn(C−kn
n ) breaks down to σi times iterating fi on level i, for i = 0, 1, . . . , n, using

the changes of coordinates. Then, one defines a chain of maps as in (20) so that each gi is

the composition of three maps ηi, Φ
−1
i , and f ◦σi

i , where ηi is an appropriate inverse branch of

Exp and σi ∈ {0, 1, . . . , bi}. As we have used this argument several times before, here we leave

further details to the reader. The uniform contraction in Lemma 5.5 implies that the supremum

exponentially tends to 0.
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Part (3): Each Ωn0 , for n ≥ 0, is a connected set. It is a finite union of connected sets (sectors)

all containing 0. If α is not a Brjuno number, by the first part, PC(f0) is the intersection of this

nest of connected sets, and hence is connected. If α is a Brjuno number, each Ωn0 , for n ≥ 0,

contains the full set ∆(f0) in its interior. Thus each Ωn0 \∆(f0), for n ≥ 0, is a connected set.

Therefore, their intersection, which is the post-critical set by Part 2-a, is a connected set.

Proof of Theorem E. — Let fα be a continuous family of maps in QISα. Define the notation

Λ(fα) = PC(fα) ∪∆(fα). For values of α in HTN , we may use the construction in Section 3.5

to define the nest of domains Ωn0 (fα) for the map fα. Denote Λ(fα) = PC(fα) ∪ ∆(fα). By

Proposition 5.10, Λ(fα) = ∩∞
n=0Ω

n
0 (fα).

Let us fix an arbitrary α0 ∈ HTN and ε > 0. By the above paragraph, there is a positive

integer n such that Ωn0 (fα) ⊆ B(Λ(fα), ε/2).

Let In denote the set of rotation numbers α ∈ (0, r3] such that the first n + 1 entries of the

continued fraction expansion of α are equal to the corresponding entries of α0. The set In is a

connected subset of the real line. By the hypothesis of the theorem, α0 ∈ HTN . Therefore, the

first n + 1 entries of every α ∈ In are bigger than or equal to N . Then, by Theorem 2.6, for

all α ∈ In, fα is n + 1 times near-parabolic renormalizable. In particular, the sets Ωn0 (fα) are

defined for all those α. Note that if fα is n+ 1 times renormalizable, we may define Ωn0 (fα).

Recall that the Fatou coordinate of a map, defined in Proposition 2.3, depends continuously

on the map. Then, it follows from the definitions that for α ∈ (0, r3], the closure of Ω0
0(fα)

depends continuously on α, with respect to the Hausdorff distance on compact subsets of C.

Moreover, for α ∈ In, the maps R◦i(fα), for 0 ≤ i ≤ n are defined and depend continuously on

α. This implies that there is a neighborhood Jn ⊆ In of α0 such that for all α ∈ Jn we have

Ωn0 (fα) ⊆ B(Ωn0 (fα), ε/2).

By the above paragraphs, for all α ∈ Jn, we have Ω
n
0 (fα) ⊆ B(Λ(fα0), ε). For α in Jn∩HTN ,

Λ(fα) = ∩∞
n=0Ω

n
0 (fα) ⊂ Ωn0 (fα). In particular, we must have Λ(fα) ⊆ B(Λ(fα0), ε). As ε was

chosen arbitrarily, this finishes the proof of the theorem.

6. Perturbed Fatou coordinates

In this section we analyze the perturbed Fatou coordinates. Our approach incorporates

ideas from quasi-conformal mappings and the generalized Cauchy integral formula, although

quasi-conformal mappings do not directly appear here. After writing this paper, the meth-

ods presented here have been further developed in [Che13] to prove an optimal infinitesimal

estimate on the perturbed Fatou coordinates. This method is also employed in [CC15] to

prove some sharp estimates on the dependence of the Fatou coordinates on the linearity and

non-linearity of the maps.

We shall work with the maps in the class

QISα := ISα ∪ {Qα},
where α ∈ R, and ISα as well as {Qα} are the sets of maps defined in Section 2.2. The unique

critical point of a map in QIS is used to normalized the Fatou coordinate, i.e. make it unique.
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However, most of the arguments presented here may be applied to more general maps, provided

there is a special point that can be used to make the Fatou coordinate unique.

6.1. Unwrapping the map, pre-Fatou coordinate. — Recall that an element of ISα is

of the form

h(z) = P ◦ ϕ−1(e2πiα · z) : e−2παi · ϕ(U) → C,

where α ∈ R, as well as ϕ : U → C is a univalent map with ϕ(0) = 0 and ϕ′(0) = 1.

Lemma 6.1. — The domain U contains B(0, 8/9). Every h ∈ QISα, with α ∈ R, is univalent

on B(0, 4/27), and |cph| ∈ [4/27, 4/3].

Proof. — Recall from Section 2.2 that the ellipse E is contained in B(0, 2). By a simple

calculation, this implies that U contains B(0, 8/9).

The polynomial P is univalent on B(0, 1/3). That is because,

P (w1)− P (w2) = (w1 − w2)((1 + w1 + w2)
2 − w1w2),

while for w1, w2 ∈ B(0, 1/3), Re(1 + w1 + w2)
2 > 1/9 and −1/9 < Re(w1w2) < 1/9. Hence, for

w1 and w2 in B(0, 1/3), P (w1) = P (w2) only if w1 = w2.

The map ψ(z) = 3
2
ϕ(2

3
· z) is defined and univalent on the disk |z| < 1. By the distortion

Theorem 2.1, ψ(B(0, 1/2)) contains the ball of radius (1/2)/(1 + 1/2)2 = 2/9. Moreover,

2/9 ≤ |ψ(−1/2)| ≤ 2. This implies that ϕ(B(0, 1/3)) ⊃ B(0, 4/27) and |cph| = |ϕ(−1/3)| ∈
[4/27, 4/3]. In particular, h must be univalent on B(0, 4/27).

The quadratic polynomial Qα has a critical point at −8e−2παi/27. By a calculation similar

to the above one for the polynomial P , Qα is univalent on the ball B(0, 8/27).

Recall from Theorem 2.3 that every h ∈ QISα, with α ∈ (0, r1], has a non-zero fixed point

σh ∈ ∂Ph. We will see in Lemma 6.4 that on some fixed neighborhood of 0 independent of h,

0 and σh are the only fixed points of h. Following [Shi00], we write

h(z) = z + z(z − σh)uh(z),

with uh(z) a holomorphic function defined on Dom h. If 0 is a simple fixed point of h, i.e.

h′(0) 6= 1, uh(0) 6= 0. Differentiating this equation at 0, one obtains

(29) σh =
1− e2πiα

uh(0)
.

Let us define the constant

(30) C0 := inf{|uh(0)| : h ∈ ∪α∈(0,r1]ISα}.
Lemma 6.2. — We have C0 > 0.

Proof. — For every α ∈ (0, r1], and every h in the closure of the class of maps ISα (with

respect to the uniform convergence on compact sets), h has two preferred fixed points at 0

and σh. Hence, for every such h, uh(z) is defined on Dom h. Moreover, since for all those

h, h′(0) = e2πiα 6= 1, 0 is a simple fixed point of h, and so uh(0) 6= 0. This implies that for

every α ∈ (0, r1], inf{|uh(0)|; h ∈ ISα} is non-zero. On the other hand, when α = 0, σh = 0
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is a double fixed point of h ∈ IS0, and we may define uh(z) = (h(z) − z)/z2. In particular,

uh(0) = h′′(0)/2. By Equation (2), |h′′(0)| ∈ [2, 7]. The map h 7→ uh(0) is defined on the

closure of the set of maps ∪α∈[0,r1]ISα, and depends continuously on α and h. This finishes the

proof of the lemma.

For the map h = Qα, σh = (1− e2πiα)16
27
e−4παi. Define the constant

(31) C1 = max
{2π
C0
,
32π

27

}
.

By Lemma 6.2 and Equation (29), for all α ∈ (0, r1] and all h ∈ QISα,
(32) |σh| ≤ C1α.

Define the map τh : C → Ĉ \ {0, σh}, where Ĉ denotes the Riemann sphere, by the formula

(33) τh(w) :=
σh

1− e−2πiαw
.

This is a covering transformation from C onto Ĉ \ {0, σh} with the deck transformation group

generated by the map w 7→ w+1/α, that is, τh(w+1/α) = τh(w). Moreover, we have τh(w) → 0

as Imw → +∞, and τh(w) → σh as Imw → −∞.

For α ∈ (0, r1] and R ∈ (0,+∞), define the set

Θα(R) := C \ ∪n∈ZB(n/α,R).

Lemma 6.3. — We have

(1) for all δ > 0, all α with 0 < α ≤ min{r1, δ/(2C1)}, and all h ∈ QISα,
τh(Θα(C1/(πδ))) ⊂ B(0, δ).

(2) for all α ∈ (0, r1], all h ∈ QISα, all r ∈ (0, 1/2], and all w ∈ Θα(r/α), we have

|τh(w)| ≤ e2πC1
α

r
e−2πα Imw.

Proof. — Part (1) Fix δ > 0 and let ε = min{r1, δ/(2C1)} and R = C1/(πδ). For all α ∈ (0, ε]

and all w ∈ ∂B(0, R), |1 − e−2πiαw| ≥ 1 − e−2παR. Also, by elementary calculations, for all

α ∈ [0, ε], 1− e−2παR− παR ≥ 0 (This holds at the end points 0 and ε as well as at the critical

point δ log 2/(2C1)). Thus, by Equation (32), and the periodicity of τh, for w ∈ ∂Θα(0, R),

|τh(w)| ≤ | σh
1− e−2παR

| ≤ C1α

παR
= δ.

On the other hand, for every α ∈ (0, ε], and every h ∈ QISα, as w ∈ Θα(R) tends to +i∞,

τh(w) → 0, and as w → −i∞, τh(w) → σh, where |σh| ≤ C1α ≤ δ/2. Therefore, by the

maximum principle, the inequality in part 1 holds on Θα(R).

Part (2) For w ∈ ∂Θα(r/α), we have

|1− e−2πiαw| ≥ 1− e−2πr ≥ e−2πre2πr ≥ e−2πre2πα Imw.
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Also, as Imw → ±∞, |1 − e−2πiαw| ≥ e−2πre2πα Imw holds. By the maximum principle, for

w ∈ Θα(r/α) we must have |1− e−2πiαw| ≥ e−2πre2πα Imw. Then, by Equation (32),

|τh(w)| =
|σh|

|1− e−2πiαw| ≤ C1e
2πα

r
e−2πα Imw.

One may lift h under τh to obtain a map Fh defined near +i∞ and −i∞. Any such lift

satisfies

(34) h ◦ τh(w) = τh ◦ Fh(w), Fh(w) + α−1 = Fh(w + α−1),

wherever they are defined. In the next lemma we analyze the domain of definition of Fh and

its asymptotic behaviors near +i∞ and −i∞. The plan is to study how the perturbed Fatou

coordinate of h, Φh, compares with an appropriate inverse branch of τh.

6.2. Estimates on the lift Fh. —

Lemma 6.4. — There are constants r′2 > 0, C2, and C3 such that for all α ∈ (0, r′2], and all

h ∈ QISα, there exists a lift of h under τh, denoted by Fh such that

(1) Fh is defined and univalent on Θα(C2);

(2) for all w ∈ Θα(C2) we have

|Fh(w)− (w + 1)| < 1/4, |F ′
h(w)− 1| < 1/4;

(3) for all r ∈ (0, 1/2] and all w ∈ Θα(r/α) ∩Θα(C2) we have

|Fh(w)− (w + 1)| < C3
α

r
e−2πα Imw, |F ′

h(w)− 1| < C3
α

r
e−2πα Imw.

Proof. — Part (1): By Lemma 6.1, for every α ∈ R, every map h ∈ QISα is defined and is uni-

valent on B(0, 4/27). We apply Lemma 6.3-1 with δ = 4/27 to obtain ε1 = min{r1, 2/(27C1)}
such that for all α ∈ (0, ε1] and h ∈ QISα we have τh(Θα(27C1/(4π))) ⊂ B(0, 4/27). In par-

ticular, σh = limImw→−∞ τh(w) must be in B(0, 4/27). On the other hand, as h is univalent on

B(0, 4/27), 0 and σh are the only pre-images of 0 and σh in B(0, 4/27). This implies that any

lift of h under τh is a well-defined, finite, and univalent function on Θα(27C1/(4π)). There are

many choices for this lift, but we may choose one with

(35) lim
Imw→+∞

(Fh(w)− w) = 1.

Since ε1 ≤ 2π/(27C1), Θα(27C1/(4π)) is connected and the normalization of Fh near +i∞
uniquely determines the lift Fh on Θα(27C1/(4π)). Although Fh may be defined beyond

Θα(27C1/(4π)), it may have singularities outside of Θα(27C1/(4π)) when h−1(σh) \ {σh} is

not empty.
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Part (2): Using the first formula in Equation (34), one can see that Fh is given by the formal

expression

Fh(w) = w +
1

2παi
log

(
1− σhuh(z)

1 + zuh(z)

)

= w + 1 +
1

2παi
log

(
e−2παi(1− σhuh(z)

1 + zuh(z)
)
)
, with z = τh(w).

The branch of log on the second line of the above equations is determined by−π < Im log(·) < π.

This is consistent with our choice of the branch in Equation (35).

Recall that by Lemma 6.1 every h ∈ QISα is defined on B(0, 4/27). Moreover, by the

distortion Theorem 2.1, ∪α∈[0,r1]QISα forms a pre-compact class of maps. By the continuous

dependence of uh on h, the restrictions of uh to B(0, 4/27) must also form a pre-compact class.

This implies that there exists a positive constant δ1 ≤ 4/27 such that

(36) ∀z ∈ B(0, δ1),
∣∣∣1− uh(z)

(1 + zuh(z))uh(0)

∣∣∣ <
1

4π
.

Using Lemma 6.3-1 with δ = δ1 we obtain

ε2 = min{r1, δ1/(2C1)}

such that for all w ∈ Θα(C1/(πδ1)), all α ∈ (0, ε2] and all h ∈ QISα, one has |z| = |τh(w)| < δ1.

Replacing σh by the expression in (29) and using |1− e2πiα| < 2πα, we obtain

∣∣∣e−2παi(1− σhuh(z)

1 + zuh(z)
)− 1

∣∣∣ =
∣∣∣1− σhuh(z)

1 + zuh(z)
− e2πiα

∣∣∣

=
∣∣∣(1− e2πiα)(1− uh(z)

(1 + zuh(z))uh(0)
)
∣∣∣

< 2πα · 1

4π
<

1

2
.

In particular, for all z ∈ τh(Θα(C1/(πδ1))), in the expression for Fh the branch of log is well

defined. Note that for all x ∈ B(1, 1/2) we have | log x| ≤ 2|x − 1|. Then, for all w ∈
Θα(C1/(πδ1)), using the above inequality we get

|Fh(w)− (w + 1)| =
∣∣∣

1

2παi
log

(
e−2παi(1− σhuh(z)

1 + zuh(z)
)
)∣∣∣

≤ 1

2πα
· 2 · (2πα · 1

4π
) <

1

4
.

This finishes the proof of the first inequality in part 2. On the other hand, for w0 in Θα(C1/(πδ1)+

1), the map Fh(w)−w− 1 is defined on B(w0, 1) and its absolute value is bounded by 1/4. By

the Schwarz-Pick lemma, we must have |F ′
h(w0)− 1| < 1/4. We may define

C2 := C1/(πδ1) + 1.
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Part (3): By Equation (36), for all z ∈ ∂B(0, δ1) we have,
∣∣∣1− uh(z)

(1 + zuh(z))uh(0)

∣∣∣ <
1

4π
=

1

4πδ1
|z|.

As z tends to 0, the expression on the left hand of the above equation tends to 0. By the

maximum principle, the above inequality must hold on B(0, δ1). Therefore, for w in Θα(r/α)∩
Θα(C1/(πδ1)) we have

|Fh(w)− (w + 1)| =
∣∣∣

1

2παi
log

(
e−2παi(1− σhuh(z)

1 + zuh(z)
)
)∣∣∣

≤ 1

2πα
· 2 ·

∣∣∣e−2παi(1− σhuh(z)

1 + zuh(z)
)− 1

∣∣∣

≤ 1

2πα
· 2 · 2πα ·

∣∣∣1− uh(z)

(1 + zuh(z))uh(0)

∣∣∣ ≤ |z|
2πδ1

.

By the estimate in Lemma 6.3-2, we obtain the first inequality in part 3 with

C3 =
e2πC1

2πδ1
.

The second inequality is similarly proved using the Schwarz-Pick lemma.

The polynomial P (z) = z(1 + z)2 belongs to IS0. This implies that C0 ≤ uP (0) = 2. Then,

ε2 ≤
δ1
2C1

≤ 4

27
· 1
2
·min

{
C0

2π
,
27

32π

}
≤ 2

27π
.

This guarantees that

(37) 2C2 +
3

2
= 2(

C1

πδ1
+ 1) +

3

2
≤ 1

πε2
+

7

2
≤ 1

ε2
≤ 1

α
.

In particular, for α ∈ (0, ε2], the set Θα(C2) is connected.

6.3. Fatou coordinate of Fh, Lh. — Let h ∈ QISα, α ∈ (0, r1], with the perturbed Fatou

coordinate Φh : Ph → C introduced in Theorem 2.3. The set τ−1
h (Ph) is periodic of period 1/α

and is contained in C \ (Z/α). Each connected component of τ−1
h (Ph) is simply connected and

is bounded by piece-wise analytic curves going from −i∞ to +i∞. Let P̃h denote the connected
component of τ−1

h (Ph) separating 0 from 1/α. We have a univalent map

(38) Lh := Φh ◦ τh : P̃h → C.

The map h : Ph → C \ {0, σh} lifts to a univalent map Fh : P̃h → C that agrees with the

lift we chose in Lemma 6.4. There is a unique point cpFh
∈ ∂P̃h with τh(cpFh

) = cph. As Fh
is univalent on Θα(C2), cpFh

must lie in B(0, C2) ∪ B(1/α, C2). Because of orientation, cpFh

must lie in B(0, C2).

By Theorem 2.3, Lh satisfies the following properties:

1) Lh(cpFh
) = 0;

2) as Im(w) → +∞ in P̃h, ImLh(w) → +∞, and as Im(w) → −∞ in P̃h, ImLh(w) → −∞;

3) Lh(P̃h) ⊃ {w ∈ C : 0 < Re(w) ≤ 1};
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4) If w and Fh(w) belong to P̃h, then
(39) Lh(Fh(w)) = Lh(w) + 1.

We wish to estimate the map Lh on P̃h. To this end, we need to extend Lh onto a larger

domain containing P̃h. This can be done using the above functional equation, carried out in

the remaining of this section.

By Lemma 6.4-2, for every w ∈ Θα(C2),

(40) | arg(Fh(w)− w)| < arcsin(1/4) < arcsin((
√
6−

√
2)/4) = π/12.

Let a = C2e
5πi/12, and a denote the complex conjugate of a. Define the piece-wise analytic

curve

ℓ = {w ∈ C : arg(w − a) = 11π/12}
∪ {w ∈ C : arg(w − a) = −11π/12}

∪ {C2e
2πiθ : θ ∈ [−5π/12, 5π/12]}.

Let ℓ′ denote the curve −ℓ + 1/α. The union of ℓ and ℓ′ decomposes C into three connected

components. Let

A1

denote the connected component of C \ (ℓ ∪ ℓ′) that contains 1/(2α). The set A1 is connected

and simply connected.

The line ℓ intersects the vertical line Rew = 0 at points denoted by b and b, with Im b > Im b.

Let θ0 := arcsin(1/4)/2 + π/24 ∈ (arcsin(1/4), π/12), and define

A := {w ∈ C | arg(w − b) ∈ [π − θ0, 11π/12]}}.
Set

A2 := A1 ∪ A ∪ s(A) ∪ (−A + 1/α) ∪ (−s(A) + 1/α),

where s(w) denotes the complex conjugate of w ∈ C.

Each of the curves L−1
h (iR) and L−1

h (1 + iR) divide C into two connected components; say

R for the right hand connected component of C \ L−1
h (iR) and L for the left hand connected

component of C \ L−1
h (1 + iR). Also, let L′ and R′ denote the corresponding components of

C \A2. These are open subsets of C. Define

A3 := (R ∩ L′) ∪ (L ∩ R′), (10).

The real analytic curves bounding A2 intersect the curves L−1
h (iR) and L−1

h (1 + iR) at most in

a finite number of places. Thus, A3 is a union of a finite number of simply connected domains.

Set

X := int (A2 ∪A3).

The set X is connected, cpFh
∈ ∂X , cvFh

:= Fh(cpFh
) ∈ X , and L−1

h ((0, 1) + iR) ⊂ X .

Lemma 6.5. — For every α ∈ (0, r′2] and every h ∈ QISα we have

10. The set L∩R′ is likely to be empty. We show in Lemma 6.10 that this is the case when α is small enough.
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(1) X is simply connected and Fh is defined and is univalent on X;

(2) for all w ∈ X, there are integers mw < nw such that for all integers j with mw < j < nw
we have F ◦j

h (w) ∈ X, but for j ∈ {mw, nw} we have F ◦j
h (w) /∈ X.

(3) for all w ∈ X, there exists a unique integer jw ∈ [mw + 1, nw − 1] with F ◦jw
h (w) ∈

L−1
h ((0, 1] + iR);

(4) for all w ∈ B(0, C2) ∩X, there is a positive integer lw with ReF ◦lw
h (w) ≥ C2. Moreover,

lw is uniformly bounded from above independent of α, h, and w.

Proof. — Part (1): As A2 ⊂ Θα(C2), by Lemma 6.4, Fh is defined on A2. The main issue we

face here is to show that 0 and 1/α do not belong to A3.

Fix h0 ∈ IS0∪{Q0} and for α ∈ (0, r′2] let hα(z) := h0(e
2πiαz) be an element of QISα. When

α → 0, τhα converges uniformly on compact sets to the map τh0(w) := −2/(h′′0(0)w), and h0
may be lifted under τh0 to a unique map Fh0 . Recall the petal Ph0, the Fatou coordinate Φh0 ,

and the relation Φh0(Ph0) = (0,+∞) + iR from Theorem 2.2. Under τh0, Ph0 lifts to a set P̃h0
and Φh0 lifts to the univalent map Lh0 : P̃h0 → C. Then, we have Lh0(P̃h0) = (0,+∞)+ iR and

Lh0(Fh0(w)) = Lh0(w) + 1, for all w ∈ P̃h0. The map L−1
h0

extends onto [0,+∞) + iR and its

image covers the right hand connected component of C \ L−1
h0
(iR). On the other hand, as Ph0

is compactly contained in Dom h0, 0 does not belong to the closure of P̃h0. Thus, 0 must be in

the left hand connected component of L−1
h0
(iR). For all α ∈ (0, r′2], 0 /∈ τ−1

hα
(Dom h \ {0, σhα}).

Hence, by the continuous dependence of Lhα on α, for all α ∈ (0, r′2], 0 must belong to the left

hand connected component of L−1
hα
(iR). Similarly, this implies that for all h ∈ ∪α∈(0,r′2]QISα,

1/α belongs to the right-hand side connected component of C \ L−1
h (1 + iR).

Recall the set A3 = (R∩L′)∪ (L∩R′). By the above paragraph, 0 ∈ L and 1/α ∈ R. Using

the periodicity of Fh and the above argument, one may prove that −n/α ∈ L−n/α, for n ∈ N,

and n/α ∈ R+n/α, for n ∈ N. Therefore, −n/α ∈ L, for n ∈ N∪{0} and n/α ∈ R, for n ∈ N.

Clearly, −n/α /∈ R′, for n ∈ N ∪ {0}, and n/α /∈ L′, for n ∈ N. Putting these together, we

deduce that for all n ∈ Z, n/α /∈ A3.

Let Uh = Dom h ⊂ C. The set Ĉ \ Uh lifts under τh to countably many simply connected

components each containing a unique n/α for some n ∈ Z. Since every component of A3

is a simply connected region whose boundary is contained in τ−1
h (Uh), and A3 avoids Z/α,

A3 ⊂ τ−1
h (Uh). This implies that Fh is defined on A3, except possibly on a discrete set of

singularities. Such singularities might arise at τ−1
h of h−1({0, σh}) \ {0, σh}, if such points lie

in τh(A3). Thus, so far we know that such singularities may not occur on ∂A3, and hence may

not occur on ∂X .

Recall the polynomial P (z) = z(1+ z)2 in the definition of the class IS0. There is ε > 0 such

that B(0, ε) is only covered once by the map P : U → C, that is, P : P−1(B(0, ε))∩U → B(0, ε)

is a homeomorphism. When α is small enough, σh belongs to B(0, ε). Thus, 0 and σh must

be the only pre-images of 0 and σh within Uh. Combining with the above paragraph, for small

values of α, there is no singularity of Fh within X . On the other hand, ∂X has continuous

dependence on α and h. The singularities also depend continuously on α and h, when they
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exist, and do not hit ∂X by the above paragraph. Therefore, for all α ∈ (0, r′2] and h ∈ QISα,
Fh has no singularity in X .

The set A2 is simply connected and is bounded by a finite number of analytic curves. The

set X is formed of attaching to A2 a finite number of simply connected domains that share a

connected and analytic boundary curve with A2. This implies that X is simply connected. By

the same argument Fh(X) is also simply connected.

Let u : X → B(0, 1) and u′ : Fh(X) → B(0, 1) be some uniformizations. The map u′ ◦ Fh ◦
u−1 : B(0, 1) → B(0, 1) is a proper mapping. So, it must be a finite Blaschke product. But,

F−1
h is uniquely defined near ±i∞. Thus, the blaschke product must be of degree one, or in

other words, Fh : X → Fh(X) is a homeomorphism.

Part (2): Let βl, βr : R → ∂X be the piece-wise analytic curves bounding X , with βl on the

left side of βr as well as Im βl(t) and Im βr(t) tending to +∞ as t→ +∞. There are four points

ti ∈ R, for i = 1, 2, 3, 4, such that

∀t ∈ (t1, t2), Im βl(t1) < Im βl(t) < Im βl(t2), Imβl(t1) ≤ −C2, Imβl(t2) ≥ C2,

∀t ∈ (t3, t4), Im βr(t3) < Im βr(t) < Im βr(t4), Imβr(t3) ≤ −C2, Im βr(t4) ≥ C2.

Moreover, one may choose t2 and t4 arbitrarily large, as well as t1 and t3 arbitrarily small.

Then adjust the curves βr and βl into simple curves β̂r and β̂l as follows.

β̂l(t) :=






βl(t2) + (t− t2)i if t ≥ t2

βl(t) if t ∈ (t1, t2)

βl(t1) + (t− t1)i if t ≤ t1

, β̂r :=






βr(t4) + (t− t4)i if t ≥ t4

βr(t) if t ∈ (t3, t4)

βr(t3) + (t− t3)i if t ≤ t3

Let B denote the region bounded by the two curves β̂l and β̂r. As t1, t3 → −∞ and t2, t4 → +∞,

the corresponding sets B exhaust X . Note that Fh maps β̂l into B and F−1
h maps β̂r into B.

The domain B′ := B ∩ F−1
h (B) is simply connected and bounded by β̂l and F

−1
h (β̂r).

There is a harmonic function u : B → (0, 1) such that u(w) → 0 as w → β̂l and u(w) → 1

as w → β̂r. Near the upper end of B, u(w) tends to a linear function of Rew, that is, as

Imw → +∞, u(w) tends to the function (Rew − Re β̂l(t2))/(Re β̂r(t4) − Re β̂l(t2)). That is

because, as Imw → +∞, the probability of a Brownian motion in B that starts at height Imw

to hit the height max{Im β̂r(t4), Im β̂l(t2)} tends to zero. Similarly, near the lower end of B, u

tends to a linear function of Rew.

Consider the harmonic function u1 : B
′ → R defined as u1(w) := u(Fh(w))− u(w). We claim

that the infimum of u1 on B′ is strictly positive. By the maximum principle, we only need to

show this on the boundary of B′. At w ∈ β̂l, u1(w) = u(Fh(w)) > 0, and at w ∈ F−1
h (β̂r),

u1(w) = 1 − u(w) > 0. By the above paragraph, near the two ends of B, u(w) tend to some

linear functions of Rew and we have |Fh(w)−w−1| ≤ 1/4. This implies that u1(w) is uniformly

bounded away from 0 when | Imw| is large enough. This finishes the proof of the claim.

By the above paragraph, the forward orbit of every point in B eventually leaves B on the

right hand of β̂r and the backward orbit of every point in B eventually leaves B on the left
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hand of β̂l. As the sets B exhaust X , we conclude the same statement about every orbit in X .

In particular, any orbit in X must cross the closure of the region bounded by the two curves

L−1
h (iR) and Fh(L

−1
h (iR)).

Part (3): By the previous part, for every w ∈ X both forward and backward orbit of w under

Fh leave X . In particular, every such orbit must hit L−1
h ((0, 1] + iR).

To see the uniqueness, assume that for some j1, j2 ∈ Z and w ∈ X , F ◦j1
h (w) and F ◦j2

h (w)

belong to L−1
h ((0, 1] + iR). Then F

◦(j2−j1)
h maps the point F ◦j1

h (w) in L−1
h ((0, 1] + iR) into

L−1
h ((0, 1] + iR). However, by Equation (39), Fh maps every point to the right of L−1

h (iR) to

a point to the right of L−1
h (1 + iR), and F−1

h maps every point to the left of L−1
h (1 + iR) to a

point to the left of L−1
h (iR). Thus, we must have j1 = j2, which proves the uniqueness of jw.

Part (4): Since the forward orbit of every point in X under Fh leaves the domain X on

the right hand, the existence of lw follows. The uniform bound on lw is a result of the pre-

compactness of the class ∪α∈[0,r′2]QISα. Indeed, as a sequence hi tends to some map h (not

necessarily in the class ∪α∈[0,r′2]QISα), the sequence of Fatou coordinates Φhi converges uni-

formly on compact sets to some univalent map Φh that enjoys the same equivariance property

on its domain of definition. Further details are left to the reader.

Lemma 6.6. — For all α ∈ (0, r′2] and all h ∈ QISα, Lh has a unique univalent extension

onto X. In particular, when both w and Fh(w) belong to X, Lh(Fh(w)) = Lh(w) + 1.

Proof. — By Lemma 6.5, for all w ∈ X there is a unique integer jw with F ◦jw
h (w) belongs to

L−1
h ((0, 1] + iR). Define Lh(w) := Lh(F

◦jw
h (w))− jw. Although jw cannot be continuous in w,

thanks to Equation (39) on P̃h, this provides us with a well-defined holomorphic map on X .

To prove that Lh is one-to-one, assume that for some w1 and w2 in X , Lh(w1) = Lh(w2).

Choose j ∈ Z with ReLh(w1) = ReLh(w2) ∈ (j, j + 1]. We must have jw1 = jw2 = −j and the

equation Lh(wi) = Lh(F
◦(−j)
h (wi)) + j, for i = 1, 2. As Lh is univalent on P̃h ⊃ L−1

h ((0, 1] + iR)

and Fh is univalent on X , then w1 = w2.

Since the holomorphic function Lh(Fh(w)) − Lh(w) − 1 is identically zero on P̃h, by the

uniqueness of the analytic continuation, it must be 0 on all of X .

Re z

Im z

o
b

1/α

b
b

b b

Fh
w2

w1

K
cpFh

Figure 8. The light gray region shows the domain A2, and the dark gray regions show

the sets K and L−1
h ([0, 1] + iR).
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6.4. Estimates on Lh. — The univalent map Lh : X → C provides us with two foliations

on X that are the pre-images of the horizontal and vertical line segments in Lh(X). In other

words, the horizontal leaves are the solutions of the vector field 1/L′
h, while the vertical ones are

the integral curves of the vector field i/L′
h. By Lemma 6.5, the horizontal leaves are invariant

under Fh while the vertical leaves are mapped to one another under Fh. In this section we

prove some geometric features of these foliations.

In the next lemma, the sets A1 and A2 refer to the sets defined in Section 6.3. The constants

r′2 and C3 are introduced in Lemma 6.4.

Lemma 6.7. — There exists C ∈ R such that for all α ∈ (0, r′2] and all h ∈ QISα, the

following hold.

(1) For all w with B(w, 5) ⊆ A2, we have | arg(L′
h(w))| < π/3 and 2/5 ≤ |L′

h(w)| ≤ 8/3.

(2) For all R ∈ [3.25, 1/(2α)] and all w with B(w,R) ⊆ A2,

| arg(L′
h(w))| ≤

8C3

3R
e−2πα Imw +

40

3R
,

(1− 8C3

3R
e−2πα Imw)(1− 5

R
) ≤ |L′

h(w)| ≤ (1 +
8C3

3R
e−2πα Imw)(1 +

40

3R
).

(3) For all w ∈ A1, C
−1 ≤ |L′

h(w)| ≤ C.

(4) As Imw → +∞ in A1, |L′
h(w) − 1| = O(1/ Imw + αe−2πα Imw), with the constant in O

independent of α and h.

Proof. — Part (1): Given w0 with B(w0, 5) ⊆ A2, let w1 := 4(Fh(w0)−w0)/15. By Lemma 6.4-

2, |Fh(w0) − w0| < 1 + 1/4, |w1| < 1/3, and B(Fh(w0), 15/4) ⊂ B(w0, 5). Thus, Lh is defined

and univalent on B(Fh(w0), 15/4). The function

ψ(w) =
(
Lh(Fh(w0))− Lh(Fh(w0)−

15w

4
)
) 4

15L′
h(Fh(w0))

,

is defined and univalent on |w| < 1 with ψ(0) = 0 and ψ′(0) = 1. Applying Theorem 2.1-4 to

the above map at w1 we obtain

| arg(w1L
′
h(w0))| = | arg(w1L

′
h(w0)

15

4
)|=| arg(w1ψ

′(w1)/ψ(w1))|

≤ log
1 + |w1|
1− |w1|

≤ log
1 + 1/3

1− 1/3
<

3

4
<
π

4
.

Above, we have used log 2 =
´ 2

1
1/x dx < 1/8(8/8 + 8/9 + 8/10 + · · ·+ 8/15) < 3/4.

By Equation (40), | arg(w1)| < π/12. Therefore, | arg(L′
h(w0))| < π/12 + π/4 = π/3.

Applying Theorem 2.1-3 to the function ψ we obtain

1

2
· 4
5
≤ 1− 1/3

1 + 1/3
· | 4

15w1

| ≤ |L′
h(w0)| ≤ | 4

15w1

| · 1 + 1/3

1− 1/3
≤ 4

3
· 2.

Above, we use 4/5 ≤ |4/(15w1)| ≤ 4/3 which is obtained from |15w1/4− 1| ≤ 1/4.
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Part (2): Fix w0 with B(w0, R) ⊂ A2. Let R
′ := R − 1.25 and w1 := (Fh(w0)− w0)/R

′. By

Lemma 6.4-2, and a simple calculation,

(41) |w1| ≤
5

4R′
≤ 5

8
,

1

R
≤ 1

R′
≤ 2

R
.

As B(w0, R) ⊂ A2, d(w0,Z/α) ≥ R > R′. Hence w0 ∈ Θα(R
′). Using Lemma 6.4-3 with

r = R′α ∈ [0, 1/2], we have

(42) |R′w1 − 1| ≤ C3

R′
e−2πα Imw0 ≤ 2C3

R
e−2πα Imw0 .

Then, using Equation (40), and the inequality d arcsin x/dx = 1/
√
1− x2 ≤ 4/3 on [0, 1/4], we

get

| arg(w1)| = | arg(R′w1)| < arcsin
(
min

{
2C3

R
e−2πα Imw0, 1

4

})
≤ min

{
4
3
· 2C3

R
e−2πα Imw0 , π

12
}.

By Lemma 6.4-2, B(Fh(w0), R
′) ⊂ B(w0, R) ⊂ A2. Hence, Lh is defined and univalent on

B(Fh(w0), R
′). The function

(43) ψ(w) =
(
Lh(Fh(w0))− Lh(Fh(w0)− R′w)

) 1

R′L′
h(Fh(w0))

is defined and univalent on |w| < 1 with ψ(0) = 0 and ψ′(0) = 1. Using the distortion

theorem 2.1-4 at w1, we get

| arg(w1ψ
′(w1)/ψ(w1))| = | arg(w1L

′
h(w0))|

≤ log(
1 + |w1|
1− |w1|

) = log(1 +
2|w1|

1− |w1|
)

≤ 2|w1|
1− |w1|

≤ 16

3
|w1| ≤

16

3
· 5

4R′
≤ 40

3R
.

Therefore,

| arg(L′
h(w0))| ≤ | arg(w1)|+ | arg(w1L

′
h(w0))| ≤

8C3

3R
e−2πα Imw0 +

40

3R
.

Applying Theorem 2.1-3 to the function ψ at w1 we have

1− |w1|
1 + |w1|

≤
∣∣∣
w1ψ

′(w1)

ψ(w1)

∣∣∣ = |L′
h(w0)w1R

′| ≤ 1 + |w1|
1− |w1|

This implies

|L′
h(w0)| ≤

∣∣ 1

R′w1

∣∣ · 1 + |w1|
1− |w1|

=
∣∣R

′w1 + 1− R′w1

R′w1

∣∣ · 1− |w1|+ 2|w1|
1− |w1|

≤ (1 +
|1−R′w1|
|R′w1|

)(1 +
2|w1|

1− |w1|
)

≤ (1 +
4

3

2C3

R
e−2πα Imw0)(1 +

40

3R
).
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In the last inequality of the above estimates we have used the inequalities in Equations (42)

and (41), as well as |R′w1| ≥ 3/4.

Similarly,

|L′
h(w0)| ≥

1

|R′w1|
· 1− |w1|
1 + |w1|

≥ (1− |1−R′w1|
|R′w1|

)(1− 2|w1|
1 + |w1|

)

≥ (1− 4

3

2C3

R
e−2πα Imw0)(1− 5

R
).

Part (3): The set A1 is simply connected and is bounded by two piece-wise analytic curves,

say ℓ1 and ℓ2 with ℓ1 on the left hand of ℓ2. By Lemma 6.4-2, as well as Equations (40) and

(37), Fh(ℓ1) and F−1
h (ℓ2) are defined and belong to A1. Indeed, there is δ > 0 such that the

Euclidean distances d(Fh(ℓ1), ∂A1) and d(F
−1
h (ℓ2), ∂A1) is at least δ.

Let B = {w ∈ A1 : B(w, 5) ⊂ A1}, and let dhyp denote the poincaré metric on A1 (i.e. the

complete metric of constant curvature −1). The set B is closed, but not necessarily connected.

By the previous paragraph, there is δ′ > 0, depending only on δ, such that for every w ∈ A1 there

is jw ∈ {−1, 0, 1} such that dhyp(F
◦jw
h (w), B) ≤ δ′. Define B′ = {w ∈ A1 : dhyp(w,B) ≤ δ′}.

Let us fix an arbitrary w in A1. To find uniform upper and lower bounds on |L′
h(w)| we

consider the three cases w ∈ B, w ∈ B′ \B, and w ∈ A1 \B′.

If w ∈ B, then by Part (1), 2/5 ≤ |L′
h(w)| ≤ 8/3.

Assume that w ∈ B′\B (here jw = 0). There is w′ ∈ B with dhyp(w,w
′) ≤ δ′, and a Riemann

mapping u : B(0, 1) → A1 with u(0) = w′. It follows that there is δ′′ < 1 depending only on δ′,

such that |u−1(w)| ≤ δ′′. By the distortion Theorem 2.1-1,

1− δ′′

(1 + δ′′)3
≤ |(Lh ◦ u)′(u−1(w))|

|(Lh ◦ u)′(0)|
≤ 1 + δ′′

(1− δ′′)3
,

and
1− δ′′

(1 + δ′′)3
≤ |u′(u−1(w))|

|u′(0)| ≤ 1 + δ′′

(1− δ′′)3
.

These imply that

(44) |L′
h(w)| ≤

1 + δ′′

(1− δ′′)3
· (1 + δ′′)3

1− δ′′
· |L′

h(w
′)| ≤ (1 + δ′′)4

(1− δ′′)4
· 8
3
,

and

(45) |L′
h(w)| ≥

1− δ′′

(1 + δ′′)3
· (1− δ′′)3

1 + δ′′
· |L′

h(w
′)| ≥ (1− δ′′)4

(1 + δ′′)4
· 2
5
.

Assume that w ∈ A1\B′. By the first paragraph, w′ = F ◦jw
h (w) ∈ B′ for some jw ∈ {+1,−1}.

If jw = +1, then

L′
h(w) = (Lh ◦ Fh − 1)′(w) = L′

h(w
′) · F ′

h(w),
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while the absolute value of the right hand of the above equation is bounded from above and

away from 0 by Equations (44) and (45), and Lemma 6.4. If jw = −1, then

L′
h(w) = (Lh ◦ F−1

h + 1)′(w) = L′
h(w

′) · (F−1
h )′(w),

with the size of the right hand of the above equation uniformly bounded from above and away

from 0 by Equations (44) and (45), and Lemma 6.4.

Part (4): Since there is a positive angle between the rays bounding the set A1 and A2, there

is δ > 0, independent of α and h, such that for w0 ∈ A1 with Imw0 ≥ 2C2, B(w0, δ Imw0) ⊂ A2.

The function

ψ(w) =
(
Lh(w0)− Lh(w0 − δ Imw0 · w)

) 1

δ Imw0L′
h(w0)

is defined and univalent on |w| < 1, ψ(0) = 0, and ψ′(0) = 1. Let us define w1 = (w0 −
Fh(w0))/(δ Imw0). For Imw0 large enough, |w1| ≤ 1/2.

Applying Theorem 2.1-3 to ψ at w1 we get

1

|w0 − Fh(w0)|
· 1− |w1|
1 + |w1|

≤ |L′
h(Fh(w0))| ≤

1 + |w1|
1− |w1|

· 1

|w0 − Fh(w0)|
which implies ∣∣|L′

h(Fh(w0))| − 1
∣∣ = O(1/ Imw0).

Applying Theorem 2.1-4 to ψ at w1 we get

| arg(L′
h(Fh(w0)))| ≤ | arg(L′

h(Fh(w0))(w1δ Imw0))− arg(w1δ Imw0)|

≤ log
1 + |w1|
1− |w1|

+ | arg(Fh(w0)− w0)|

≤ O(1/ Imw0) +O(αe−2πα Imw0).

In the last line of the above equations we have used |Fh(w0)−w0 − 1| = O(αe−2πα Imw0) which

is provided by Lemma 6.4 (with r = 1/2). Combining the above inequalities we conclude

|L′
h(Fh(w0))− 1| ≤ | arg(L′

h(Fh(w0)))| · |L′
h(Fh(w0))|+

∣∣|L′
h(Fh(w0))| − 1

∣∣

=
(
O(1/ Imw0) +O(αe−2πα Imw0)

)
+ O(1/ Imw0).

Finally,

|L′
h(w0)− 1| = |L′

h(Fh(w0)) · F ′
h(w0)− 1|

= |L′
h(Fh(w0))(F

′
h(w0)− 1)|+ |L′

h(Fh(w0))− 1|
≤ C · O(αe−2πα Imw0) +O(1/ Imw0) +O(αe−2πα Imw0).

The constant in all of O depend only on δ.

We also need to control the geometry of the vertical leaves of the foliation in X . But,

integrating the vector field i/L′
h, using the estimates in Lemma 6.7, results in diverging integrals.

We present an alternative approach to deal with this issue in the next proposition.
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Proposition 6.8. — For all M ′ ∈ R, there is M > 0 such that for all α in (0, r′2], all h ∈
QISα, and all r ∈ (0, 1/2] the following holds. Let w1, w2 ∈ A1 with

– Rew1 = Rew2, and Imw2 ≥ Imw1 ≥M ′/α,

– for all t ∈ (0, 1), tw1 + (1− t)w2 ∈ Θα(r/α) ∩ A1.

Then,

(1) |Re(Lh(w1)− Lh(w2))| ≤M/r,

(2) | Im (Lh(w1)− Lh(w2))− Im(w1 − w2)| ≤ M/r,

(3) As M ′ tends to +∞, M tends to 0.

Proof. — For the simplicity of the notations let ti := Imwi, i = 1, 2. Define

l := {tw1 + (1− t)w2 : t ∈ [0, 1]}.
Let us assume that Fh(l) ⊂ A1. By Lemma 6.4-2, the two curves l, Fh(l), as well as the two

line segments w1+ t(Fh(w1)−w1), t ∈ [0, 1], and w2+ t(Fh(w2)−w2), t ∈ [0, 1], cut C into two

connected components. Denote the closure of the bounded one by K (see Figure 8). We have

K ⊂ A1, and by Lemma 6.6, Lh is defined on K.

Define the rectangle

D := {s+ it : 0 ≤ s ≤ 1, t1 ≤ t ≤ t2},
and the map g : D → K as

g(s+ it) := (1− s)(Re(w1) + it) + sFh(Re(w1) + it).

By the estimates in Lemma 6.4-2, g is uniformly close to a translation onD. To prove the desired

estimates in the proposition, we compare Lh to g−1 by analyzing the map G := Lh ◦g : D 7→ C.

Using the notations ζ = s+ it, dζ = ds+ idt and dζ̄ = ds− idt, by Green’s Theorem, we have


∂D

G(ζ) dζ =

¨

D

−∂G
∂ζ̄

(ζ) dζ ∧ dζ̄.(46)

With notation w = g(ζ) and the Cauchy-Riemann equation ∂Lh/∂w̄ = 0, the complex chain

rule for G can be written as

∂G

∂ζ̄
= (

∂Lh
∂w

◦ g)∂g
∂ζ̄

+ (
∂Lh
∂w̄

◦ g)∂ḡ
∂ζ̄

= (
∂Lh
∂w

◦ g)∂g
∂ζ̄
.

A simple differentiation gives

∂g

∂ζ̄
(s+ it) =

1

2
[
∂g

∂s
+ i

∂g

∂t
](s+ it)

=
1

2
[Fh(Rew1 + it)− (Rew1 + it)− 1 + s(1− F ′

h(Rew1 + it))].

Since l ⊂ Θα(r/α), by Lemma 6.4-3,

|∂g
∂ζ

(s+ it)| ≤ 1

2
|Fh(g(it))− g(it)− 1|+ 1

2
|F ′
h(g(it))− 1| ≤ C3

α

r
e−2παt.
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Also recall that by Lemma 6.7, |L′
h| ≤ C on K. Then, the right hand of Equation (46) may be

controlled as follows:

(47)

∣∣∣
¨

D

∂G

∂ζ̄
(ζ) dζ ∧ dζ̄

∣∣∣ ≤ 2

ˆ t2

t1

ˆ 1

0

∣∣∂G
∂ζ̄

(s+ it)
∣∣ dsdt

≤ 2 sup
w∈K

|L′
h(w)|

ˆ t2

t1

ˆ 1

0

C3
α

r
e−2παt dsdt

≤ 2CC3α

r

ˆ ∞

M ′/α

e−2παt dt

≤ CC3

πr
e−2πM ′

.

The left hand of Equation (46) may be written as

ˆ t2

t1

G(it)i dt+

ˆ 1

0

G(s+ it2) ds

+

ˆ t2

t1

G(1 + i(t1 + t2 − t))(−i) dt+

ˆ 1

0

G(1− s+ it1)(−1) ds.

By definition, for t ∈ [t1, t2], we have g(1 + it) = Fh(g(it)). This implies that for all t ∈ [t1, t2],

G(1 + it) = G(it) + 1. Using this relation in the third integral of the above equation and then

making a change of coordinate, the above sum is equal to

−i(t2 − t1) +

ˆ 1

0

G(s+ it2) ds+

ˆ 1

0

−G(1 − s+ it1) ds.

Set

Mi := sup
s∈[0,1]

∣∣L′
h(g(s+ iti))− 1

∣∣, i = 1, 2.

By Lemma 6.7-3, M1 and M2 are uniformly bounded from above independent of α and h.

Moreover, by Lemma 6.4, |∂g/∂s| ≤ 5/4 on K and |∂g/∂s− 1| ≤ C3αe
−2πM ′

/r on K. Hence,

(48)

∣∣∣
ˆ 1

0

G(s+ it2) ds− Lh(w2)− 1/2
∣∣∣ =

∣∣∣
ˆ 1

0

G(s+ it2)−G(it2)− s ds
∣∣∣

≤
ˆ 1

0

|G(s+ it2)−G(it2)− s| ds

≤ sup
s∈[0,1]

|G(s+ it2)−G(it2)− s|

≤ sup
s∈[0,1]

∣∣∂G
∂s

(s+ it2)− 1
∣∣

≤ sup
s∈[0,1]

∣∣∂g
∂s

(s+ it2) · L′
h(g(s+ it2))− 1

∣∣

≤ 5

4
·M2 +

C3α

r
e−2πM ′

.
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To get the fifth inequality in the above equation we have used the formula AB − 1 = A(B −
1) + A− 1. On the other hand,

ˆ 1

0

−G(1− s+ it1) ds+ Lh(w1) + 1/2 =

ˆ 1

0

−G(1− s + it1) + Lh(w1) + (1− s) ds

= −
ˆ 1

0

G(s+ it1)− Lh(w1)− s ds.

Thus, the inequalities in Equation (48) may be repeated for the above integral to conclude

(49)
∣∣∣
ˆ 1

0

−G(1− s+ it1) ds+ Lh(w1) + 1/2
∣∣∣ ≤ 5

4
·M1 +

C3α

r
e−2πM ′

.

One infers the inequalities in Parts (1) and (2) of the proposition by considering the real part

and the imaginary part of Equation (46) as well as using the bounds in Equations (48) and

(49). For instance, for Part (2),

| Im(w2 − w1)− Im(Lh(w2)− Lh(w1))|

≤
∣∣∣(t2 − t1)− Im

(ˆ 1

0

G(s+ it2) ds
)
− Im

( ˆ 1

0

−G(1 − s+ it1) ds
)∣∣∣

+
∣∣∣ Im

( ˆ 1

0

G(s+ it2) ds
)
− Im(Lh(w2))− 1/2

∣∣∣

+
∣∣∣ Im

( ˆ 1

0

−G(1 − s+ it1) ds
)
+ Im(Lh(w1)) + 1/2

∣∣∣

≤
(CC3e

−2πM ′

π
+

5M2r

4
+

5M1r

4
+ 2C3αe

−2πM ′)1
r
.

This finishes the proof of the inequalities in Parts (1) and (2) under the assumption Fh(l) ⊂ A1

that we made at the beginning of the proof.

If F−1
h (l) ⊂ A1, one considers the bounded region K′ enclosed by the curves l, F−1

h (l),

t 7→ w1 + t(F−1
h (w1) − w1), t ∈ [0, 1] and t 7→ w2 + t(F−1

h (w2) − w2), t ∈ [0, 1]. One may

repeat the above calculations and estimates for the map g : D → K′ defined as g(s + it) :=

s(Re(w1) + it) + (1 − s)F−1
h (Re(w1) + it). This leads to the same estimates in Parts (1) and

(2), under this condition.

There is also the possibility that for some w1 and w2 neither Fh(l) ⊂ A1 nor F−1
h (l) ⊂ A1

holds. (This is when the two balls B(0, C2) and B(1/α, C2) are close.) By the assumption

on α in Equation (37), the balls B(0, C2) and B(1/α, C2) are at least 5/4 apart. Thus, there

are w′
1 ∈ B(w1, 1) and w

′
2 ∈ B(w2, 1) with Rew′

1 = Rew′
2, the line segment l′ connecting them

remains in Θα(r/(2α))∩A1, and either Fh(l
′) ⊂ A1 or F

−1
h (l′) ⊂ A1. By the above argument we

obtain the inequalities in the proposition for w′
1 and w′

2. From that, one infers the inequalities

in Parts (1) and (2) for wi using the uniform bound on L′
h in Lemma 6.7-3, by making M large

enough.

Part (3): For M ′ ≥ 1/2, we may fix r = 1/2 in the above arguments. Also, by Lemma 6.7-4,

the constants M1 and M2 are O(α/M ′ + αe−2πM ′
). In particular, M1 and M2 tend to 0 as M ′
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tends to +∞. This implies that

M = (
CC3e

−2πM ′

π
+

5M2r

4
+

5M1r

4
+ 2C3αe

−2πM ′)

tends to 0 as M ′ tends to +∞.

Lemma 6.9. — The limit

ℓh := lim
Imw→+∞
w∈A1

Lh(w)− w

exists and is finite.

Proof. — For w1 and w2 on the vertical line Rew = 1/(2α) we may use Proposition 6.8 with

r = 1/2 and large values of M ′ to conclude that |(Lh(w2)− Lh(w1))− (w2 −w1)| tends to 0 as

Imw1 and Imw2 tend to +∞. This implies that the function Lh(w)− w satisfies the Cauchy

criterion and hence its limit exists as Imw → +∞ along Rew = 1/(2α).

By Lemma 6.7-4, |L′
h(w) − 1| tends to 0 as Imw → +∞ in A1. This implies that as

Imw → +∞ in the strip Rew ∈ [1/(2α)− 1, 1/(2α) + 1], the limit of Lh(w)− w exists.

Using Lemma 6.4-2, for w ∈ A1 there is an integer j with |j| ≤ O(Imw) such that ReF ◦j
h (w) ∈

[1/(2α)− 1, 1/(2α) + 1]. Moreover, by Lemma 6.4-3 with r = 1/2,

|F ◦j
h (w)− j − w| ≤ j · 2C3αe

−2πα Imw ≤ O((Imw) · e−2πα Imw).

Therefore,

Lh(w)− w = Lh(F
◦j
h (w))− j − w =

(
Lh(F

◦j
h (w))− F ◦j

h (w)
)
+
(
F ◦j
h (w)− j − w

)
.

Thus, Lh(w)− w has a limit as w ∈ A1 tends to +i∞.

We shall give an upper bound on the size of ℓh in Corollary 6.20.

6.5. The image of Lh. — Recall that Lh(X) is an open subset of C containing (0, 1] + iR.

In this section we prove a lower bound on

(50) xh := sup{t ∈ (0,+∞) | (0, t) + iR ⊆ Lh(X)}.
Recall the constants r′2 and C2 introduced in Lemma 6.4. Define the constant

(51) r2 := min{r′2, 1/(4C2 + 20)}.
For α ≤ r2, 2C2+10 and α−1 − 2C2 − 10 belong to X , and hence Lh is defined at these points.

Let

(52) s1 = Re(Lh(2C2 + 10)), s2 = Re(Lh(α
−1 − 2C2 − 10)).

Lemma 6.10. — For all α ∈ (0, r2] and h ∈ QISα, we have

(1) 1 < s1 ≤ s2 ≤ xh;

(2) ∀w ∈ L−1
h ((s1, s2) + iR), B(w, 5) ⊂ A1;

(3) ∀t ∈ R, | arg(L−1
h (1 + it)− 2C2 − 10)| ≥ π/6;

(4) ∀t ∈ R, | arg(L−1
h (xh + it)− α−1 + 2C2 + 10)| ≤ 5π/6;

(5) lim sup|t|→+∞ | arg(L−1
h (it)− 2C2 − 10)| ≤ 5π/6;
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(6) lim sup|t|→+∞ | arg(L−1
h (xh + it)− α−1 + 2C2 + 10)| ≥ π/6.

Proof. — Let X ′ be the set of points w ∈ C such that

| arg(w − 2C2 − 10)| ≤ 5π/6, and | arg(w − 1/α+ 2C2 + 10)| ≥ π/6.

The condition α ≤ r2 implies that X ′ is a connected set containing the points 2C2 + 10 and

α−1 − 2C2 − 10. Moreover, for w ∈ X ′, |w − i/α| ≥ C2 + 5, for all i ∈ Z. In particular,

for w ∈ X ′, B(w, 5) ⊂ A1 ⊂ A2. Then, by Lemma 6.7-1, for w ∈ X ′, arg(L′
h(w)) belongs to

(−π/3, π/3).
By the above paragraph, for every w ∈ X ′, the argument of the tangent line to the vertical

foliation passing through w at w belongs to π/2 + (−π/3, π/3) = (π/6, 5π/6), modulo π. In

particular, L−1
h (s1 + iR) and L−1

h (s2 + iR) stay within X ′ ⊂ X , and spread from −i∞ to +i∞.

This implies parts 1 and 2 of the lemma.

By the above paragraph, L−1
h (s1+ iR) lies to the left of the curve | arg(w−2C2−10)| = π/6.

Also, since vertical leaves are disjoint, the vertical leaf passing through cvFh
, L−1

h (1+ iR), must

lie to the left of L−1
h (s1 + iR). This implies part 3 of the lemma. Similarly, L−1

h (s2 + iR) lies to

the right of the curve | arg(w − α−1 + 2C2 + 10)| = 5π/6, and L−1
h (xh + iR) lies to the right of

the leaf L−1
h (s2 + iR). This implies part 4 of the lemma.

By the second paragraph, L−1
h (s1+iR) lies to the right of the curve | arg(w−2C2−10)| = 5π/6.

By the uniform bound on |Fh(w)−w−1| in Lemma 6.4, L−1
h (iR) lies within uniformly bounded

distance from L−1
h (s1 + iR). This implies part 5 of the lemma. Similarly, part 6 of the lemma

follows from comparing L−1
h (xh + iR) to the curve L−1

h (s2 + iR).

By Lemma 6.10-(5)-(6), the top end of L−1
h ((0, xh) + iR) is contained in A1. Therefore, by

Lemma 6.9, we have

(53) lim
Imw→+∞
Rew∈(0,xh)

L−1
h (w)− w = −ℓh.

Lemma 6.11. — For all ε > 0 there is Mε such that for all α ∈ (0, r2], all h ∈ QISα, and all

ζ ∈ ([0, xh] + iR) \B(0, ε), we have

M−1
ε ≤ |(L−1

h )′(ζ)| ≤Mε.

Proof. — By Lemma 6.10-3, A3 ∩B(1/α, C2) = ∅ (in the definition of A3, L∩R′ = ∅). Hence,
by Lemma 6.4-1, on X \B(0, C2), we have |F ′

h − 1| < 1/4.

By the pre-compactness of the class ∪α∈[0,r2]QISα and the continuous dependence of Lh on h,

there is ε′ > 0 such that Lh(X ∩B(cpFh
, ε′)) ⊂ B(0, ε). For the same reason, |F ′

h| is uniformly

bounded from above and away from zero on (B(0, C2) ∩X) \B(0, ε′).

By Lemmas 6.10-2 and 6.7-3, when s1 ≤ Re ζ ≤ s2, C
−1 ≤ |(L−1

h )′(ζ)| ≤ C, where C is a

uniform constant.

On the other hand, by Lemmas 6.4-2, 6.5-4, and 6.6, s1 and xh − s2 are uniformly bounded

from above. Thus, for ζ with 0 ≤ Re ζ ≤ xh, there is jζ ∈ Z, with |jζ | uniformly bounded from

above, such that s1 ≤ Re(ζ − jζ) ≤ s2. Then, the desired bounds on |(L−1
h )′(ζ)| follow from the
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functional equation Lh ◦ Fh = Lh + 1 in Lemma 6.6 and the above upper and lower bounds on

|F ′
h|.
Define the sets

B0 := {ζ ∈ C | Re ζ ∈ [0, 1]}, B1 := {ζ ∈ C | Re ζ ∈ [xh − 1, xh]}.

Lemma 6.12. — For all α ∈ (0, r2], all h ∈ QISα, and all w ∈ L−1
h (B0) + 1/α with | Imw| ≥

3C2 + 5, there is lw ∈ Z such that F ◦lw
h (w) is defined and belongs to L−1

h (B1). Moreover,

(1) if lw ≥ 0, then for 0 ≤ j ≤ lw we have F ◦j
h (w) ∈ X;

(2) if lw < 0, for lw ≤ j ≤ 0, we have F ◦j
h (w) ∈ X;

(3) for every constant c ≥ 5 and for every w with 3C2+5 ≤ | Imw| ≤ 3C2+ c, |lw| is bounded
from above by a constant depending only on c (independent of w, α, and h);

(4) as Imw → ±∞, we have ImF ◦lw
h (w) → ±∞.

Proof. — By Lemma 6.10-3, L−1
h (B0) + 1/α lies to the left of the curve | arg(w − 2C2 − 10 −

1/α)| = π/6, and L−1
h (B1) lies to the right-hand of | arg(w + 2C2 + 10 − 1/α)| = 5π/6. The

curve | arg(w−2C2−10−1/α)| = π/6 crosses the left-hand boundary of A1 at two points with

imaginary parts ±2C2/(
√
6 −

√
2) + C2 + 5. Note that 2C2/(

√
6 −

√
2) + C2 + 5 ≤ 3C2 + 5.

Thus, the intersection of L−1
h (B0) + 1/α and {w : | Imw| ≥ 3C2 + 5} is contained in A1.

By Lemma 6.5, the forward orbit and the backward orbit of every point in A1 eventually

leave X . Combining with the above paragraph, the backward or the forward orbit of any

w ∈ L−1
h (B0)+1/α with | Imw| ≥ 3C2+5 must cross L−1

h (B1). Moreover, the uniform estimate

in Lemma 6.4-2 shows that for w ∈ L−1
h (B0) + 1/α with 3C2 + 5 ≤ | Imw| ≤ 3C2 + c, |lw| is

uniformly bounded from above by a constant depending only on C2.

Part (4) of the lemma follows from the upper bound on | arg(Fh(w)− w)| ≤ π/12 in Equa-

tion (40) and the above argument.

For ζ near the top and bottom ends of B0 let w = L−1
h (ζ) + 1/α and mζ = lw be the integer

defined in Lemma 6.12. For some of those ζ , there may be more than one choice for mζ , in

which case, one may choose either one. Then, consider the map

(54) Th(ζ) := Lh(F
◦mζ

h (L−1
h (ζ) + 1/α)),

near the two ends of B0, with values in B1.

Lemma 6.13. — There is η > 1 such that for all α ∈ (0, r2] and all h ∈ QISα, the map

Th : {ζ ∈ B0 : | Im ζ | ≥ η}/Z → B1/Z

is defined and univalent. Moreover,

(1) Im Th(ζ) → ±∞, as Im ζ → ±∞;

(2) for η ≤ | Im ζ | ≤ η + 1, |mζ| is uniformly bounded from above independent of α, ζ, and h.

Proof. — By the pre-compactness of the class QISα (see the proof of Lemma 6.11) there is

η > 1, independent of α and h, such that for all ζ ∈ B0 with | Im ζ | ≥ η, | ImL−1
h (ζ)| ≥ 3C2+5.

Combining this with Lemma 6.12, we conclude that Th is defined above the height η and below
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the height −η. Moreover, by Equation (34) and Lemma 6.6, Th(ζ + 1) = Th(ζ) + 1 when

Re ζ = 0. Therefore, Th projects to a well-defined map from {ζ ∈ B0 : | Im ζ | ≥ η}/Z to B1/Z.

Also, as Fh and Lh are univalent on X , Th must be univalent.

We have ImLh(ζ) → ±∞ when Im ζ → ±∞ within B0, and ImF ◦lw
h (w) → ±∞ as Imw →

±∞ by Lemma 6.12-4. This implies the asymptotic behavior of Th in part 1. Part (2) of the

lemma follows from Lemma 6.12-3 and the uniform bound on |L′
h| in Lemma 6.11.

Remark 6.14. — The map Th projects under z 7→ (−4/27)e2πiz to the inverse of R′(h) re-

stricted to the ball B(0, e−2πη), see Section 2.3. The reason for considering this inverse here is

that a priori we do not know how large Dom T−1
h is, that is, the values of L−1

h on B1.

Recall the covering map τh and the relation Lh = Φh ◦ τh in Equations (33) and (38). Define

(55) yh := sup{t ∈ (0, xh) | τh is univalent on L−1
h ((0, t) + iR)}.

We have yh ≥ 1. That is because, Φh and Lh are univalent maps, and Φh(Ph) ⊃ (0, 1] + iR.

Proposition 6.15. — There is k > 0 such that for all α ∈ (0, r2] and all h ∈ QISα, we have

(1) α−1 − k ≤ yh ≤ α−1;

(2) xh ≤ α−1 + k.

Proof. — First we claim that

b′h = sup{|mζ| : ζ ∈ B0, | Im ζ | ≥ η}

is uniformly bounded from above independent of α and h. That is because, by Lemma 6.13,

Th projects under e2πiz and e−2πiz to univalent maps on B(0, e−2πη), denoted by T̂h,t and T̂h,b
respectively, satisfying T̂h,t(0) = T̂h,b(0) = 0. By the distortion Theorem 2.1, the image of any

ray {reiθ : r ∈ (0, e−2π(η+1))}, for fixed θ ∈ [0, 2π), under T̂h,t and T̂h,b have uniformly bounded

spirals about 0. (Indeed, using a sharp distortion theorem on the argument obtained from

Loewner theory (see Thm 3.5 in [Dur83]) the total spiral is bounded by log((1+e−2π(η+1))/(1−
e−2π(η+1))) ≤ 2e−2π(η+1) ≪ 2π. But we don’t need this exact value here.) In terms of the lift

map Th and the integers mζ , this means that |mζ −mζ′ | is uniformly bounded from above for

ζ and ζ ′ in B0 with | Im ζ | ≥ | Im ζ ′| ≥ η +1. On the other hand, when | Im ζ | ∈ [η, η+ 1], |mζ |
is uniformly bounded from above, independent of α and h, by Lemma 6.13-2. This finishes the

proof of the claim.

Recall that τh is periodic of period 1/α. If L−1
h (B0) + 1/α lies to the right of L−1

h (B1), then

τh is univalent on L−1
h ((0, xh) + iR) and we have yh = xh. Otherwise, as we show below, yh is

obtained from subtracting a uniformly bounded value from xh.

By Lemmas 6.10 and 6.11, inf ReL−1
h (i[−η, η]) is uniformly bounded from below, and supReL−1

h (xh+

i[−η, η])−1/α is uniformly bounded from above, both independent of α and h. Then, Lemma 6.4-

2 implies that there is a positive integer j, uniformly bounded from above, such that

supRe
(
F−j
h (L−1

h (xh + i[−η, η]))
)
< supRe

(
(L−1

h (i[−η, η]) + 1/α)
)
.
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By the first paragraph,

F
−b′h−2

h (L−1
h (xh + i[η,+∞]) ∩ (L−1

h (iR) + 1/α) = ∅
F

−b′h−2

h (L−1
h (xh + i(−∞,−η]) ∩ (L−1

h (iR) + 1/α) = ∅.

Therefore, there is bh > 0, uniformly bounded from above independent of α and h, such that

L−1
h (iR) + 1/α lies to the right of L−1

h (xh − bh + iR). This implies that, τh is univalent on

L−1
h ((0, xh − bh) + iR). That is, yh ≥ xh − bh. Note that xh − bh ≥ 1, since L−1

h (iR) + 1/α lies

to the right of L−1
h (1 + iR).

By Equation (53), L−1
h tends to a translation near the top end of (0, xh) + iR, and τh is

periodic of period 1/α. Hence, yh ≤ 1/α. For the same reason, near the top end of B0,

|mζ−(xh−1/α)| ≤ 2. Hence, xh ≤ 1/α+2+b′h and yh ≥ xh−bh ≥ 1/α+mζ−2−bh ≥ 1/α−2−bh,
where bh is uniformly bounded from above.

The argument in the proof of Proposition 6.15 through studying Th has a key consequence

stated in the next proposition.

Proposition 6.16. — There is C ′ > 0 such that for all α ∈ (0, r2] and all h ∈ QISα, we have

|L−1
h (xh)− 1/α| ≤ C ′.

Proof. — Let η ≥ 1 be the constant introduced in Lemma 6.13. For ζ ∈ B0 with Im ζ ≥ η,

define Eh(ζ) := Lh ◦ F−nζ

h ◦ F ◦mζ

h (L−1
h (ζ) + 1/α), where mζ is the integer in Equation (54) and

nζ is the number of backward iterates required to map F
mζ

h (L−1
h (ζ) + 1/α) into L−1

h (B0). The

integer nζ exists because of Lemma 6.5. By Lemma 6.13, Eh is defined above the height η, and

its values belong to B0.

By Equations (35) and (53), ImEh(ζ)− Im ζ → 0 when Im ζ → +∞. Also, by Equation (34)

and Lemma 6.6, Eh(ζ + 1) = Eh(ζ) + 1, when Re ζ = 0. Hence, Eh projects under e2πiζ to a

well defined univalent map Ẽh : B(0, e−2πη) → C satisfying Ẽh(0) = 0 and |Ẽ ′
h(0)| = 1. By

the distortion Theorem 2.1, Ẽh(B(0, e−2πη)) contains the ball B(0, e−2πη/4). Then, applying

the distortion theorem to the map Ẽ−1
h : B(0, e−2πη/4) → C we conclude that |Ẽ−1

h (e−4πη)|
is uniformly bounded from above and away from 0. This implies that | ImE−1

h (2ηi)| must be

uniformly bounded from above and below.

On the other hand, by the pre-compactness of QISα, on any given compact subset of B0,

| ImL−1
h (ζ) − Im ζ | is uniformly bounded from above. Combining with the above paragraph,

we conclude that | ImL−1
h ◦ E−1

h (2ηi)| ≤ C1, for some constant independent of α and h.
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Now we have,

| ImL−1
h (xh)| ≤ | ImL−1

h (nζ)|+ 2M1

≤ | ImL−1
h (nζ + 2ηi)|+M12η + 2M1

= | ImF
◦nζ

h (L−1
h (2ηi))|+ 2M1(η + 1)

≤ | ImF
◦(−mζ+nζ)
h (L−1

h (2ηi))|+ |mζ |
1

4
+ 2M1(η + 1)

≤ | Im
(
F

◦(−mζ+nζ)

h (L−1
h (2ηi))− 1

α

)
|+ b′h

1

4
+ 2M1(η + 1)

≤ | ImL−1
h ◦ E−1

h (2ηi)|+ b′h
4

+ 2M1(η + 1)

≤ C1 +
b′h
4
+ 2M1(η + 1).

In the first line of the above equation we have used nζ ∈ (xh − 2, xh) and Lemma 6.11 with

ε = 1. In the second line we have used Lemma 6.11 with ε = 1. In the third line we have

used the functional equation (39). In the fourth line we have used |Fh(w)−w − 1| ≤ 1/4 from

Lemma 6.4. In the fifth line we have used |mζ| ≤ b′h, where b
′
h is the constant in the proof of

Proposition 6.15, which is uniformly bounded from above.

On the other hand, by the definition of xh, L
−1
h (xh+ iR) touches the right hand boundary of

X . Combining with the upper bound on | argL−1
h (xh+ iR)− π/2| in Lemma 6.10, we conclude

that |ReL−1
h (xh)− 1/α| is also uniformly bounded from above. This finishes the proof of the

proposition.

6.6. A uniform bound on |L−1
h (ζ)− ζ |. —

Proposition 6.17. — There exists a constant C4 such that for every α in (0, r2], every h in

QISα, and every t ∈ (0, xh),

|L−1
h (t)− t| ≤ C4min{log(2 + t), log(2 + xh − t)}.

Proof. — Within this proof all the constants D1, D2, D3, . . . are assumed to be independent of

α and h.

Let us define

x′h = sup{t ≥ 0 | (0, t) ⊂ Lh(X)}.
By definition, x′h ≥ xh. However, by Lemma 6.4-2 and Proposition 6.16, there is a constant D1

such that x′h ≤ xh +D1 and L−1
h (x′h) ∈ B(1/α,D1).

Let l1 denote the vertical line Rew = C2 + 5, l2 denote the vertical line Rew = 1/(2α),

and l3 denote the vertical line Rew = 1/α − C2 − 5. By Lemma 6.6, the closure of the

curve L−1
h (0, x′h) connects the left hand boundary of X to the right hand boundary of X . Let

t1 ∈ (0, x′h) be the smallest element with L−1
h (t1) ∈ l1 and let t3 ∈ (0, x′h) be the largest element

with L−1
h (t3) ∈ l3. By Lemma 6.4-2 and the above paragraph, there is a constant D2 such that

t1 ≤ D2, x
′
h − t3 ≤ D2. For the same reason, there is also a constant D3 such that

| ImL−1
h (t)| ≤ D3, ∀t ∈ [0, t1] ∪ [t3, x

′
h].
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So far we have shown that the inequality in the proposition holds for t ∈ [0, t1]∪ [t3, xh]. Below

we deal with values of t ∈ [t1, t3].

For w ∈ X lying between l1 and l3 we have B(w, 5) ⊂ A1 ⊂ A2. Then by Lemma 6.7-1,

for t ∈ (t1, t3), L
−1
h (t) lies between the lines l1 and l3, and we have | arg(L′

h(L
−1
h (t)))| ≤ π/3

as well as 2/5 ≤ |L′
h(L

−1
h (t))| ≤ 8/3. It follows that there is a unique t2 ∈ (t1, t3) such that

L−1
h (t2) ∈ l2, and

(56)

ReL−1
h (t) ≥ ReL−1

h (t1) +
2

5
cos(

π

3
)(t− t1) ≥ C2 + 5 +

1

5
(t− t1), ∀t ∈ (t1, t2),

ReL−1
h (t) ≤ ReL−1

h (t3)−
2

5
cos(

π

3
)(t3 − t) ≤ 1

α
− C2 − 5− 1

5
(t3 − t), ∀t ∈ (t2, t3),

| ImL−1
h (t)| ≤ | ImL−1

h (t1)|+
8

3
sin(

π

3
)(t3 − t1) ≤ D3 +

4√
3
(t3 − t1), ∀t ∈ (t1, t3).

In particular, by Proposition 6.15, |α ImL−1
h (t)| ≤ α(D3 + 1/α + k +D1) ≤ D3 + 1 + k +D1.

Let D4 = D3 + 1 + k +D1.

On the other hand,

(57)
d(L−1

h (t),Z/α) = d(L−1
h (t), 0) ≥ ReL−1

h (t), ∀t ∈ (t1, t2),

d(L−1
h (t),Z/α) = d(L−1

h (t), 1/α) ≥ 1/α− ReL−1
h (t), ∀t ∈ (t2, t3).

Therefore,

B(L−1
h (t),ReL−1

h (t)− C2) ⊂ A1, ∀t ∈ (t1, t2),

B(L−1
h (t),

1

α
− ReL−1

h (t)− C2) ⊂ A1, ∀t ∈ (t2, t3).

Now, it follows from Lemma 6.7-2 and Equations (56) and (57) that there is a constant D5,

such that

(58)

|ReL′
h(L

−1
h (t))− 1| ≤ D5

5 + (t− t1)/5
, ∀t ∈ (t1, t2)

|ReL′
h(L

−1
h (t))− 1| ≤ D5

5 + (t3 − t)/5
, ∀t ∈ (t2, t3)

and

(59)

| ImL′
h(L

−1
h (t))| ≤ D5

5 + (t− t1)/5
, ∀t ∈ (t1, t2)

| ImL′
h(L

−1
h (t))| ≤ D5

5 + (t3 − t)/5
, ∀t ∈ (t2, t3).

Integrating the inequalities in (58) we conclude that there is a constant D6 such that for

t ∈ (t1, t2)

|ReL−1
h (t)− t| ≤ |ReL−1

h (t1)− t1|+
ˆ t

t1

D5

5 + (t− t1)/5
dt ≤ D6 +D6 log(1 + (t− t1)),

and for t ∈ (t2, t3)

|ReL−1
h (t)− t| ≤ |ReL−1

h (t3)− t3|+
ˆ t3

t

D5

5 + (t− t1)/5
dt ≤ D6 +D6 log(1 + (t3 − t)).
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Similarly, integrating the inequalities in (59) we obtain

| ImL−1
h (t)| ≤ D3 +D6 log(1 + (t− t1)), ∀t ∈ (t1, t2),

| ImL−1
h (t)| ≤ D3 +D6 log(1 + (t3 − t)), ∀t ∈ (t2, t3).

These imply the desired inequality in the proposition for t ∈ [t1, t3], with a constant C4 de-

pending only on D3 and D6.

For z ∈ C\{0} there is an inverse branch of the covering map Exp defined on a neighborhood

of z. The derivative at z of any such inverse branch is well-defined and is independent of the

choice of the lift and the neighborhood. We let (Exp−1)′(z) denote this complex number. As a

corollary of Proposition 6.17 we obtain the following estimate on the derivative of Φh, which is

convenient to write in terms of (Exp−1)′. Recall the constant k defined in Proposition 6.15.

Proposition 6.18. — There exists a constant C5 such that for every α in (0, r2], every h in

QISα, and every t with 1 ≤ t ≤ min{1/(2α), xh}, we have

1

C4t
≤ (Exp−1 ◦Φ−1

h )′(t) ≤ C4

t
.

Proof. — By Proposition 6.15, xh ≥ α−1 − k, for some uniform constant k. For large values of

α, xh may be less than 1/(2α). The condition 1 ≤ t ≤ min{1/(2α), xh} guarantees that Φ−1
h (t)

is defined.

We assume that the constants Di, i = 1, 2, 3, . . . , within this proof, are independent of α and

h.

Using Lemma 6.11 with ε = 1, there isD1 such that for all t ∈ [1, xh], D
−1
1 ≤ |(L−1

h )′(t)| ≤ D1.

Therefore, it is enough to show that for some constant D2 we have

(60)
1

D2t
≤ (Exp−1 ◦τh)′(L−1

h (t)) ≤ D2

t
.

There are essentially two arguments to prove the above bounds. To introduce these, recall the

constant C4 in Proposition 6.17. There is t0 ≥ 1 such that for t ≥ t0 we have C4 log(2+t) ≤ t/2.

First we consider the case α ≥ min{1/(5k), 1/(2t0)}. By definition, for t ∈ [1, xh], L
−1
h (t) ∈

X , and for nonzero integers n, X ∩ B(n/α, C2) = ∅. On the other hand, by Lemma 6.11 with

ε = 1/2, the image of the strip 1/2 ≤ Re ζ ≤ 1 under L−1
h uniformly separates L−1

h (t) from

0. That is, there is a constant D3 such that for all t ∈ [1, xh], |L−1
h (t)| ≥ D3. Therefore,

for t ∈ [1, xh], L
−1
h (t) is uniformly away from the set Z/α. On the other hand, since xh ≤

α−1+ k ≤ 6k is uniformly bounded from above, by the pre-compactness of the class of maps h,

for t ∈ [1, xh], |L−1
h (t)| is uniformly bounded from above independent of t, α, and h. These imply

that |τh(L−1
h (t))| is uniformly bounded from above and away from 0, by constants independent

of t, α, and h.

By the above paragraph, and explicit estimates of the formula for Exp−1 ◦τh, there is a

constant D4 such that D−1
4 ≤ |(Exp−1 ◦τh)′(L−1

h (t))| ≤ D4. In this case, t is uniformly bounded

away from 0 and from above by 1 ≤ t ≤ xh ≤ α−1 + k ≤ 6k. Therefore, one may adjust the

constant D4 to some uniform constant D2 so that Equation (60) holds for t ∈ [1, xh].
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Now assume that α ≤ min{1/(5k), 1/(2t0)}. Here, by Proposition 6.15, 1/(2α) ≤ xh, and

t0 ≤ 1/(2α). On the uniformly bounded subset 1 ≤ t ≤ t0, the above argument may be repeated

to conclude that t · |(Exp−1 ◦τh)′(L−1
h (t))| is uniformly bounded from above and away from 0

on this interval. It remains to consider t ∈ [t0, 1/(2α)].

For t ∈ [t0, 1/(2α)] define the set

Ot := {ξ ∈ C : | Im ξ| ≤ t/2, |Re ξ − t| ≤ t/2} .
Using the uniform bound |σh| ≤ C1α in Equation (32), and some explicit estimates of Exp−1 ◦τh,
there exists a constant D5 such that

1

D5t
≤ |(Exp−1 ◦τh)′(t)| ≤

D5

t
.

For 1 ≤ t ≤ 1/(2α), the modulus of the annulus Φh(Ph) \Ot is uniformly bounded away from

zero, by a constant independent of t, α, and h. Then, one infers from the above bounds and

the distortion Theorem 2.1 that there is a constant D6 such that for all ξ ∈ Ot,

1

D6t
≤ |(Exp−1 ◦τh)′(ξ)| ≤

D6

t
.

By Proposition 6.17 and the choice of t0, for t0 ≤ t ≤ 1/(2α), L−1
h (t) ∈ Ot. Thus, we obtain

the uniform bounds in Equation (60) for t ∈ [t0, 1/(2α)].

Proposition 6.19. — For every M ′ ∈ R, there is M > 0, such that for all α ∈ (0, r2], all

h ∈ QISα, and all ζ ∈ [0, xh] + i[M ′,+∞) we have

|L−1
h (ζ)− ζ | ≤M log(1 + 1/α).

Proof. — All the constants D1, D2, D3, . . . within this proof are assumed to be independent of

α and h. Without loss of generality we may assume that M ′ ≤ 0.

Recall the numbers s1 and s2 introduced in Equation (52), and define

Y1 = [0, xh] + i[M ′,+∞), Y2 = [s1, s2] + i[M ′,+∞).

By Lemmas 6.4-2, 6.5-4, and 6.6, there is a constant D1 such that s1 ≤ D1 and xh − s2 ≤ D1.

In particular, by Lemma 6.4-2, and Equation (39), it is enough to prove the uniform upper

bound in the proposition for values of ζ ∈ Y2. On the other hand, by the maximum principle,

it is enough to prove the inequality on the boundary of Y2.

Assume that ζ ∈ ∂Y2 with Re ζ = s1. By Lemma 6.10-(2), B(L−1
h (ζ), 5) ⊂ A1 ⊂ A2. Then,

by Lemma 6.7-(1), | argL′
h(L

−1
h (ζ))| ≤ π/3 and 2/5 ≤ |L′

h(L
−1
h (ζ))| ≤ 8/3. Hence, the function

Im ζ 7→ ImL−1
h (ζ) is strictly monotone, and there is a constant D2 such that

8

3
Im ζ +D2 ≥ ImL−1

h (ζ) ≥ 2

5
sin

π

3
· (Im ζ)−D2.

This implies that there are t1 ≤ t2, with |t1| and α|t2| uniformly bounded from above, such that

ImL−1
h (s1 + it1) ≥ 3.25 and ImL−1

h (s1 + it2) ≥ 1/(2α). By Lemma 6.7-(2), there is a constant

D3 such that for all t ∈ [t1, t2], |(L−1
h )′(s1 + it) − 1| ≤ D3/t. Integrating this inequality we

conclude that there is a constant D4 such that for Im ζ ∈ [t1, t2], |L−1
h (ζ)− ζ | is bounded from

above by a uniform constant times logα−1 +D4.
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On the other hand, by Proposition 6.8 (with M ′ = 1/2 and r = 1/2), the map Lh is

uniformly close to a translation on vertical lines with imaginary part bigger than 1/(2α), with

an error bounded by M/r = 2M . It follows from Lemma 6.11 that for t ≥ t2, the function

t 7→ L−1
h (s1 + it) is uniformly close to a translation. Combining this with the above paragraph,

we conclude that there is a constant D5 such that |L−1
h (ζ)− ζ | ≤ D5 log(1 + 1/α), for ζ with

Re ζ = s1 and Im ζ ≥ t1.

By an identical argument, one can show that there are t′1, with |t′1| uniformly bounded from

above, and a constant D6 such that |L−1
h (ζ)− ζ | ≤ D6 log(1 + 1/α), for ζ with Re ζ = s2 and

Im ζ ≥ t′1.

Let D7 = max{t1, t2} and assume that ζ ∈ ∂Y2 with Im ζ ≤ D7. Recall that s1 > 1 by

Lemma 6.10-(1). Let M1 be the constant obtained from applying Lemma 6.11 with ε = 1.

Then, by virtue of Propositions 6.15 and 6.17, we have

|L−1
h (ζ)− ζ | ≤ |L−1

h (ζ)− L−1
h (Re ζ)|+ |L−1

h (Re ζ)− Re ζ |+ |Re ζ − ζ |
≤M1(D7 −M ′) + C4 log(2 + α−1 + k) + (D7 −M ′).

This implies the desired inequality, with a uniform bound, on the boundary of Y2 with imaginary

part less than D7.

By Equation (53), |L−1
h (ζ) − ζ | tends to a constant near the top end of Y2. The limit

is independent of ζ , and, by the above paragraphs, it is bounded from above by a uniform

constant times log(1 + α−1) along Re ζ = s1. Then, |L−1
h (ζ) − ζ | is bounded by a uniform

constant times log(1+α−1) near the top end of Y2. Combining with the above paragraphs, the

desired inequality with a uniform bound is proved on the boundary of Y2. This finishes the

proof of the proposition.

The above proposition gives an upper bound on the asymptotic translation of L−1
h in Equa-

tion (53), which we state below for reference purposes.

Corollary 6.20. — There is C > 0 such that for all α ∈ (0, r2] and all h ∈ QISα, we have

|ℓh| ≤ C log(1 + α−1).

Remark 6.21. — When α tends to zero, h(z) := P ◦ φ−1(e2πiα · z) tends to a map h0 with a

parabolic fixed point at 0. Then, Lh tends to some univalent map Lh0 which is the lift of the

attracting Fatou coordinate of h0 under the change of coordinate w = −2/(h′′(0)z). It is known

that Lh0 has asymptotic expansion w+a logw+ c+o(1) near +i∞, for some constants a and c,

for instance see [Shi00, Prop. 2.2.1]. So, it seems the logarithmic bound in Propositions 6.17

and 6.19 is necessary. The main point used in this paper is that since α log(1 + 1/α) → 0 as

α → 0, the logarithmic error is absorbed in the formula of τh as the rotation numbers degenerate

along the renormalization tower.

6.7. Geometry of the petals. — Recall that Lh = Φh ◦ τh, where τh is given by the

formula (33), Lh and its domain of definition X are defined in Section 6.3, and Φh is the Fatou

coordinate defined in Theorem 2.3. In this section we employ the estimates on Lh established
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in Sections 6.4, 6.5, and 6.6, as well as some explicit estimations of τh to prove the geometric

properties of the maps Φh, as well as their domain and range, stated in Propositions 2.4, 2.7,

4.1, and 5.1.

Proof of Proposition 2.4. — Let r2 be the constant defined in Equation (51). Let us fix h ∈
QISα, α ∈ (0, r2]. By the definitions of the constants xh ≥ yh in Equations (50) and (55),

the map L−1
h is defined on (0, yh) + iR, and τh is univalent on L−1

h ((0, yh) + iR). Moreover, by

Lemma 6.6, L−1
h is univalent on (0, yh) + iR. We define

Ph = τh ◦ L−1
h ((0, yh) + iR),Φh = Lh ◦ τ−1

h : Ph → C.

By Proposition 6.15, yh ≥ α−1− k, where k is a constant independent of α and h. This implies

part 2 of the proposition by defining k = k. Below we prove part 1 of the proposition.

Since Ph is simply connected and 0 /∈ Ph, there is a continuous branch of argument defined

on Ph.
The map Lh has a holomorphic extension onto a neighborhood of L−1

h (iR) using the functional

equation Lh(Fh(ζ)) = Lh(ζ) + 1. Then, L−1
h (iR) intersects the real axis at least once and at

most at a finite number of points. There is t1 ∈ R such that L−1
h (t1i) is the closest point to

0 among all such intersections. That is, L−1
h (t1i) ∈ R. Moreover, there is t2 > t1 such that

for t ≥ t2, L
−1
h (ti) /∈ B(0, C2), where C2 is the constant in Lemma 6.4. By the normalization

of Lh, L
−1
h (0) = cpFh

∈ B(0, C2), where cpFh
denotes the critical point of Fh. It follows from

the pre-compactness of the class of maps h that |t1| and t2 are uniformly bounded from above

independent of h and α.

Let us define the curve γ1 as the interval (0, L−1
h (t1i)] ⊂ R, the curve γ2 as L−1

h (ti) for

t ∈ [t1, t2], and the curve γ3 as L−1
h (ti) for t ∈ [t2,∞). We denote the union of these curves by

γ. Since L−1
h ((0, yh) + iR) ⊂ X and X ∩ B(n/α, C2) = ∅, for integers n 6= 0, τh(γ) is a simple

curve in C \Ph. Moreover, τh(γ) belongs to C \ {0} and tends to 0 and infinity at its two ends.

To prove the existence of a constant k̂ for part 1 of the proposition, it is enough to show that

for any continuous branch of argument defined on τh(γ), sup | argw− argw′|, for w,w′ ∈ τh(γ),

is uniformly bounded from above by a constant independent of h and α.

The curve γ1 is mapped to a half-line under τh tending to infinity in C. Hence, sup | argw−
argw′|, for w,w′ ∈ τh(γ1) is bounded by π. On the other hand, for every h, sup | argw−argw′|,
for w,w′ ∈ τh(γ2) is finite. Hence, by the pre-compactness of the class of maps h, there is a

uniform upper bound on these numbers independent of h and α.

Using Proposition 6.19 with M ′ = 0, there is M > 0 such that for t ≥ t2, |L−1
h (ti) − ti| ≤

M log(1 + 1/α). Therefore, γ3 is contained in the set

[−M log(1 + 1/α),M log(1 + 1/α)] + i[−M log(1 + 1/α),+∞).

Recall that τh is periodic of period 1/α, and it maps every vertical line to an arc of a circle

connecting 0 to σh (Each such arc segment spirals at most by π about 0). Since α log(1 +α−1)

is uniformly bounded from above, it follows that sup | argw − argw′|, for w,w′ ∈ τh(γ3), is

uniformly bounded from above by a constant depending only on M .
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Proof of Proposition 2.7. — Fix h with h′(0) = e2πiα and α ∈ (0, r3]. By Equation (53),

each curve τh ◦ L−1
h (t + iR), t ∈ [0, 1/α − k], approaches zero with a well-defined tangent

at 0. This implies that if w ∈ Ch ∪ C♯h is close enough to zero, there exists a unique inverse

orbit w, h−1(w), . . . , h−j(w) staying near zero such that j is the smallest positive integer with

h−j(w) ∈ Ph. Comparing with the rotation of angle α, one can see that for |w| small enough

k + 1 ≤ j ≤ k + 2.

By Theorem 2.6, R(h) is of the form z 7→ P ◦ψ−1(e2πi/α · z), where ψ : U → C is a univalent

mapping that has a univalent extension onto the larger domain V which contains the closure

of U . By the distortion Theorem 2.1, R(h) must be uniformly close to a rotation on U , with a

constant independent of h and α. Moreover, we also conclude that the pre-image (under R(h))

of any ray in P (U) landing at 0 must have uniformly bounded spiral about zero. Thus, any lift

of R(h) under Exp must be uniformly close to some translation, with the bound independent

of h and α. This implies that |kh − j|, for any j as above, is uniformly bounded from above.

In particular, kh ≤ |kh − j|+ j is uniformly bounded from above independent of h and α.

Proof of Proposition 4.1. — Recall that for α ≤ r3 the sector Sf is defined (see Theorem 2.6).

Let M denote the constant produced by Proposition 6.19 applied with M ′ = −2. We consider

two cases separately.

Recall the constant k from Proposition 6.15. The first case is to assume that α is small

enough such that

α ≤ 1/(3 + 2k) and 3/2 +M log(1 + 1/α) ≤ 1/(4α).

Define the set A := [⌊1/(2α)⌋ + 1/2, ⌊1/(2α)⌋ + 3/2] + i[−2,+∞). By definitions, A = Φf ◦
f ◦(kf+⌊1/(2α)⌋)(Sf), and by the above condition on α, A is contained in [0, yh] + i[−2/α,∞). By

Proposition 6.19 with M ′ = −2, for all ζ ∈ A we have

ImL−1
h (ζ) ≥ −2−M log(1 + 1/α), |ReL−1

h (ζ)− 1/(2α)| ≤ 3/2 +M log(1 + 1/α).

Now, using the second condition on α, the uniform bound |σf | ≤ C1α in Equation (32), and an

explicit calculation of the formula for τf , there is a constant M ′
1 (depending only on M) such

that

diam (f ◦(kf+⌊1/2α⌋)(Sf)) = diam (Φ−1
f (A)) = diam (τf ◦ L−1

f (A)) ≤M ′
1 · α.

Here, when estimating τf , one uses that α log(1 + 1/α) is uniformly bounded from above on

(0, 1).

The second case is to assume that α is larger than some constant, but still less than r3. Recall

the constant s1 defined in Equation (52), and define A := [⌊s − 1/2⌋, ⌊s + 1/2⌋] + i[−2,+∞).

By Lemmas 6.10-2 and 6.7-1, for all t ∈ R, | argL′
h(L

−1
h (s1+ it))| ≤ π/3. Then, by Lemma 6.4,

L−1
h (A) must be contained within 5/4 of the set | arg(w−2C2−10)−π/2| ≤ π/3. Also, as in the

previous case, A lies above the line Imw = −2−M log(1+ 1/α). Then, an explicit calculation

on τf shows that for all ζ ∈ A, |τf ◦L−1
f (ζ)| ≤M ′′

1 , for some constantM ′′
1 , independent of α and

f . Here we only use that |σf | is uniformly bounded from above independent of α and f (Indeed,

|σf | ≤ 4/27 is assumed for α ≤ r′2 in the proof of Lemma 6.4). Because α is bounded from

below in this case, one can adjust the constant M ′′
1 such that |τf ◦ L−1

f (ζ)| ≤M ′′
1 α holds.
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Proof of Proposition 5.1. — There are two arguments; one for values of α near 0 and one for

values of α away from zero. First we present the former case, where we impose a number of

upper bounds on α along the way so that the proof works. The second case is based on a

pre-compactness argument, and is presented at the end of this proof.

All the constants D1, D2, D3, . . . introduced within this proof are assumed to be independent

of α and f ∈ QISα.
Consider the line segment

ϑ(t) := t− (2 + t/2)i, for t ∈ [2, 1/(2α)].

Let η̂f : Pf → C be an arbitrary inverse branch of the covering map Exp, and define

(61) χf := η̂f ◦ Φ−1
f : Φf (Pf) → C.

We shall fixed the choice of the branch of η̂f in a moment, but until then, all statements

involving η̂f are independent of the choice of the branch.

For

(62) α ≤ 1

4k
,

by Proposition 6.15, the image of ϑ is contained in the domain of χf .

Sublemma 6.22. — There is D1 > 0 such that

| Imχf(ϑ(2))| ≤ D1, Imχf(ϑ(
1

2α
)) ≥ 1

2π
log

1

α
−D1.

Proof. — There is a topological annulus A in Φf (Pf ) which separates the pair of points 1

and ϑ(2) from a neighborhood of +i∞ and its modulus is uniformly bounded away from 0,

independent of α and f . Recall that χf(1) ∈ Z. The univalent map χf lifts A to an annulus of

the same modulus in (C \ Z) ∪ {χf(1)}, which encloses the pair of points χf(1) and χf(ϑ(2)).

As the modulus of this annulus is uniformly bounded away from 0, |χf(1)− χf (ϑ(2))| must be

uniformly bounded from above. This implies the first inequality in the sublemma.

By Proposition 6.19 (with M ′ = 0) and an explicit estimate on τf , there is a constant D2

such that |Φ−1
f (1/(2α))| ≤ D2α. Therefore,

Imχf (
1

2α
)) ≥ 1

2π
log

1

α
− 1

2π
log

27D2

4
.

Let γ denote the line segment connecting 1/(2α) to ϑ(1/(2α)). Then, by Equation (62), the

modulus of the annulus Φf (Pf )\γ is uniformly bounded away from 0 by a constant independent

of α and f . By Proposition 6.18 and the distortion Theorem 2.1, |χ′
f | on γ is bounded from

above by a uniform constant times α. This implies that the length of the curve χf (γ) is

uniformly bounded from above. Combining this with the above inequality we conclude the

second inequality in the sublemma.

Sublemma 6.23. — There is D3 > 0 such that for all t ∈ [2, 1/(2α)] we have

1

D3t
≤ |χ′

f(ϑ(t))| ≤
D3

t
.
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Figure 9. The figure shows a cartoon of the lift of the sectors under Exp, and the

balls in their complement.

Proof. — First note that by Equation (62) and Proposition 6.15, 1/(2α) ≤ xh. For each t in

[2, 1/(2α)], let γt denote the line segment connecting t to ϑ(t). For α satisfying Equation (62),

the modulus of the annulus Φf (Pf )\γt is uniformly bounded away from 0. Thus, by the uniform

bounds in Proposition 6.18 and the distortion Theorem 2.1, we obtain the uniform bound in

the sublemma.

When

(63) α ≤ 1

4(k′′ + k + 2)
,

for every t ∈ [2, 1/(2α)], we have

(64)
B(ϑ(t), t/2) ⊂ {w ∈ C : 1 ≤ Re(w) ≤ α−1 − k − k

′′ − 2, Imw ≤ −2},
B(ϑ(t), t/2) + 1 ⊂ {w ∈ C : 1 ≤ Re(w) ≤ α−1 − k − k

′′ − 1, Imw ≤ −2}.

In particular, χf is defined and univalent on B(ϑ(t), t/2). By Sublemma 6.23 and the Koebe

1/4-theorem,

(65) B
(
χf (ϑ(t)),

1

8D3

)
⊆ χf

(
B(ϑ(t), t/2)

)
.

Let us define

D4 := min{1/(8D3), 1/4}.
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Let ζ0 ∈ C be an arbitrary point that satisfies the hypothesis of the proposition. We have

(66) Im ζ0 ≤
1

2π
log

1

α
+ E.

Let us assume that ζ0 also satisfies

(67) Im ζ0 ≥ 1.

(We shall deal with Im ζ0 ≤ 1 in a moment.)

By Sublemma 6.22, Imχf (ϑ(2)) ≤ D1 and Imχf(ϑ(1/(2α))) ≥ (2π)−1 logα−1 − D1. If we

assume that

(68) α ≤ e−4πD1−2π,

then
1

2π
log

1

α
−D1 ≥ D1 + 1.

Then, it follows from Equations (66) and (67) that there exists t′ ∈ [2, 1/(2α)] = Dom ϑ, such

that

(69) Im(χf(ϑ(t
′))) ≥ 1, −D1 + 1 ≤ Im ζ0 − Imχf (ϑ(t

′)) ≤ D1 + E.

Note that (Φf ◦ Exp)−1(ϑ(t′)) forms a 1-periodic set of points. Then, there is a choice of the

branch of η̂f such that

(70) |Re ζ0 − Reχf(ϑ(t
′))| ≤ 1/2.

From here on we shall fix this choice of the inverse branch χf . See Figure 9.

Let us define the curve

γ(s) = (1− s)ζ0 + sχf(ϑ(t
′)), s ∈ [0, 1].

Fix an arbitrary δ1 ∈ (0, 1/16).

Since D4 ≤ 1/4, by Equations (67) and (69) the set B(γ(1), D4) ∪ γ[0, 1] is contained above

the line Im ζ = 3/4. On the other hand, by Lemma 6.1, Dom f ⊃ B(0, 8/9), and hence,

Exp
(
{ζ ∈ C : Im ζ ≥ 0}

)
⊂ Dom f \ {0}.

In particular,

Exp
(
Bδ1

(
B(γ(1), D4) ∪ γ[0, 1]

))
⊆ Dom f \ {0}.

This proves Part (1) of the proposition.

As D4 ≤ 1/4, by Equation (70),

diam (Re(B(γ(1), D4) ∪ γ[0, 1])) ≤ 1/2 + 1/4 = 3/4,

which implies Part (3) of the proposition.

As γ is a straight line segment of uniformly bounded length, one may choose a uniform δ2
for Part (4) of the proposition.

Recall that by Proposition 2.7, kf ≤ k
′′. This implies that

Pf ∩ ∪kf−1
j=0 f

◦j(Sf) ⊂ Φ−1
f

(
{w ∈ C : Rew ∈ [0, 1/2] ∪ (α−1 − k − k

′′ − 1, α−1 − k)}
)
.
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On the other hand,

Pf ∩ ∪kf+⌊1/α⌋−k−1
j=kf

f ◦j(Sf) ⊂ Φ−1
f

(
{w ∈ C : Imw ≥ −2}

)
.

Hence, by Equation (64),

Ω0
0(f) ∩ Φ−1

f (B(ϑ(t′), t′/2)) = ∅, Ω0
0(f) ∩ f(Φ−1

f (B(ϑ(t′), t′/2))) = ∅.
On the other hand, by Equation (65),

Exp(B(γ(1), D4)) ⊂ Exp(χf (B(ϑ(t′), t′/2))) = Φ−1
f (B(ϑ(t′), t′/2))).

Hence,

Exp(B(γ(1), D4)) ∩ Ω0
0(f) = ∅, f(Exp(B(γ(1), D4))) ∩ Ω0

0(f) = ∅,
as desired in Part (2) of the proposition.

This finishes the proof of the proposition when α satisfies Equations (62), (63), and (68), as

well as ζ0 satisfies Equation (67). Below we consider the remaining case.

By the assumption Im ζ0 ≤ 1
2π

log 1
α
+ E, if any of the conditions in Equations (62), (63),

(68), and (67) does not hold, there is a uniform constant D5 ≥ 1 such that

Im ζ0 ≤ D5.

Below we prove the position for such points ζ0 (while assuming that α ∈ (0, r2]).

Recall the sector Sf defined in Section 2.3. Let us denote the connected component of f−1(Sf)

which lies in Pf by S ′
f . In other words, S ′

f = Φ−1
f (Φf (Sf)− 1). The set S ′

f might be contained

in Ω0
0(f), but this does not make any difference in the argument we present below.

There is a constant D7 > 0, independent of α and f , such that Ω0
0(f) ∪ S ′

f ⊂ B(0, D7). To

see this, first note that there is an integer nf ≥ 0, uniformly bounded from above, such that

L−1
f ({ζ ∈ C | nf + 1/2 ≤ Re ζ ≤ xf}) is contained in Θα(C2), where C2 is the constant in

Lemma 6.4. Then,

kf+⌊1/α⌋−k−2⋃

i=kf+nf

f ◦i(Sf ) ⊆ Φ−1
f ({ζ ∈ C | nf + 1/2 ≤ Re ζ ≤ xf}) ⊂ τf(Θα(C2)).

The diameter of τf (Θα(C2)) is uniformly bounded from above, independent of α and f . On the

other hand, for f ∈ QIS0 the sets f ◦i(Sf), for i ≥ 0, are defined and compactly contained in

Dom f . Indeed, according to [IS06], for every f ∈ QIS0, Sf and all its forward and backward

iterates are defined and contained in Dom f . Moreover, f ◦i(Sf), for i ≥ 0, tend to 0 in the

attracting direction, and f ◦i(Sf ) within the repelling Fatou coordinate, for i ≤ 0, tend to 0

in the repelling direction. For each α ∈ [0, r2] and f ∈ QISα, the diameter of each f ◦i(Sf),

for 0 ≤ i ≤ kf + nf , (let nf = ∞ when α = 0), are finite. Similarly, the diameter of each

S ′
f is also finite. Therefore, by the pre-compactness of the class of maps ∪α∈[0,r2]QISα and

the continuous dependence of the Fatou coordinates on the maps, the diameters of these sets

are uniformly bounded from above, independent of α and f . This proves the existence of the

uniform constant D7.
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By the pre-compactness of the class of maps ∪α∈[0,r2]QISα, there is a constant δ > 0 such

that

Bδ(Ω
0
0(f) ∪ S ′

f) ⊂ Dom f.

See Equation (11) for further details.

Let Exp(ζ0) = z. By the hypothesis of the proposition we have z ∈ Ω0
0(f), and hence by the

above paragraph, |z| ≤ D7. Moreover, because Im ζ0 ≤ D5 here, |z| ≥ 4e−2πD5/27 is uniformly

bounded from below.

Consider the smallest r ≥ 1 such that rz ∈ ∂(Ω0
0(f) ∪ S ′

f ). That is, r
′z ∈ Ω0

0(f) ∪ S ′
f for all

r′ ∈ [1, r]. Let z′ = rz.

Recall the set C−1
f defined in Section 2.3. We are looking for a small ball near z′ that is

outside Ω0
0(f) and is mapped outside Ω0

0(f) by f . However, points outside but near ∂C−1
f may

be mapped into Ω0
0(f), due to the branched covering f : C−1

f → Cf . Also, if the topological

interior of the set S ′
f \ Ω0

0(f) is not empty, points within this set are mapped into Sf ⊂ Ω0
0(f).

But, these are the only ways in which this issue occurs. Indeed, it follows from the definition

of the sets f ◦i(Sf), 0 ≤ i ≤ kf + ⌊1/α⌋ − k − 2, and the way they are mapped to one another,

that a given point z0 ∈ ∂Ω0
0(f) is mapped to a point on ∂Ω0

0(f), unless either

(a) z0 ∈ ∂C−1
f and Φf(f(z0)) ∈ (1/2 + i[−2, 2]) ∪ ([1/2, 3/2] + 2i) ∪ (3/2 + i[−2, 2]); or

(b) both z0 and f(z0) belong to the boundary of Sf .

Moreover, case (b) only occurs if z0 belongs to the common boundaries of Sf and S ′
f . We may

avoid case (b) by assuming that z′ is on the boundary of Ω0
0(f) ∪ S ′

f . While due to the issue

arising in case (a) we need to analyze two separate cases, which are presented below.

Let us first assume that z′ /∈ ∂Cf . There is a round ball B(z′′, δ′) ⊂ Bδ(Ω
0
0(f)) ⊂ Dom f

such that |z′ − z′′| ≤ δ/2, B(z′′, δ′) ∩ Ω0
0(f) = ∅, and f(B(z′′, δ′)) ∩ Ω0

0(f) = ∅. Indeed, by the

pre-compactness of the class QISα, and the continuous dependence of the sets C−i
f on f , we

may assume that δ′ is uniformly bounded from below, independent of α and f .

Define the curve γ′ as the union of the line segment connecting z to z′ and the line segment

connecting z′ to z′′. By definition, supw,w′∈γ′ | arg(w/w′)| < π. Moreover, γ′ is contained in

B(0, D7 + δ) \ {0}, and is uniformly away from 0.

Define the curve γ as the lift of γ′ under Exp which starts at ζ0. Since |z′′| is uniformly

bounded from above, |(Exp−1)′(z′′)| is uniformly bounded away from 0. Combining with a

bounded distortion argument (Theorem 2.1), we conclude that the lift of B(z′′, δ′) under Exp

contains a round ball about Exp−1(z′′) whose size is uniformly bounded away from 0, say by

r∗. If necessary, we reduce the size of the ball to make it less than 1/4. These readily imply

Parts (1) and (2) of the proposition for some δ1 > 0 uniformly away from 0. For Part (3) of

the proposition we note that

diam Re(Bδ1(B(γ(1), r∗) ∪ γ[0, 1])) ≤ 2δ1 +
π

2π
+ r∗,

where the term π/(2π) comes form the bound on the spiral of γ′ in the above paragraphs.

Then, to make the above diameter less than 1− δ1, we need to choose δ1 ≤ 3−1(1/2− r∗).
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Finally since the diameter of γ is uniformly bounded from above, the modulus in Part (4) is

uniformly bounded from above. So we may choose a uniform δ2 in this case. This finishes the

proof of the proposition in the case z′ /∈ ∂Cf .
In the remaining case z′ ∈ ∂Cf we only need to slightly modify the above argument. That

is, by Proposition 2.5, there is a smooth curve γ′ ⊂ Ω0
0(f) \ B(0, 4e−2πD5/27) connecting

z to z′ ∈ ∂Ω0
0(f) \ Cf such that the length of γ′ is uniformly bounded from above and

supw,w′∈γ′ | arg(w/w′)| ≤ C < 2π. Now by the above argument, there is a ball B(z′′, δ′) ⊂
Bδ(Ω

0
0(f)), whose size is uniformly bounded from below, B(z′′, δ′)∩Ω0

0(f) = ∅, and f(B(z′′, δ′))∩
Ω0

0(f) = ∅.
Define the curve γ′′ as the union of the curve γ′ and the line segment connecting z′ to z′′. As in

the above paragraphs, lifting γ′′∪B(z′′, δ′) under Exp, we obtain the curve γ as well as a round

ball whose size is uniformly bounded away from 0. Here, one must choose r∗ ≤ (1−C/(2π))/2

and δ1 ≤ (1− C/(2π)− r∗)/3.

6.8. Metric properties of the orbits in the renormalization tower. —

Proof of Proposition 4.2. — By the pre-compactness of the class of maps ∪α∈[0,r2]QISα, and
the continuous dependence of the normalized Fatou coordinate on the map, the diameter of

PR(f) is uniformly bounded from above. In particular, the absolute value of w ∈ PR(f) is

uniformly bounded from above.

Let ηR(f) : PR(f) → Φf (Pf) be an inverse branch of Exp that satisfies Re(ηR(f)(PRf)) ⊂
[0, k̂ + 1] as in Equation (7). Let ζ := ηR(f)(w). By the above paragraph, Im ζ = −1

2π
log 27|w|

4

must be bounded from below by a uniform constant, say M ′. Let M be the constant produced

by Proposition 6.19 for M ′.

To prove the proposition, we consider two cases; small values of α and large values of α.

Recall the constant k and k̂ from Proposition 2.4. First we assume that α is small enough so

that

α ≤ 1/(2k + 2k̂ + 2), and 1/(4α) ≥ k̂ + 2 +M log(1 + 1/α).

In this case we set κ(f) := ⌊1/(2α)⌋. By the first condition on α above, we have

0 < Re(ηR(f)(PRf )) + κ(f) ≤ k̂ + 1 + 1/(2α) ≤ 1/α− k.

In particular, combining with Proposition 2.4, we conclude that ηR(f)(PR(f)) + κ(f) ⊂ Φf (Pf).
This implies that

f ◦κ(f) ◦ ψR(f)(PR(f)) = f ◦κ(f) ◦ Φ−1
f ◦ ηR(f)(PR(f)) = Φ−1

f

(
ηR(f)(PR(f)) + κ(f)

)
⊂ Pf .

This proves part (1) of the proposition in this case.

On the other hand, one can see that by the above conditions on α, ζ + κ(f) belongs to the

set [0, 1/α− k] + i[M ′,+∞). Then, by Proposition 6.19, we have

|L−1
f (ζ + κ(f))− (ζ + κ(f))| ≤M log(1 + 1/α).
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Hence,

ImL−1
f (ζ + κ(f)) ≥ Im ζ −M log(1 + 1/α),(71)

|ReL−1
f (ζ + κ(f))− 1/(2α)| ≤ k̂ + 2 +M log(1 + 1/α) ≤ 1/(4α).(72)

Using Lemma 6.3-2 (with r = 1/4) and the above inequalities, there is a constantM2 depending

only on C1 and M , such that

|f ◦κ(f)(ψR(f)(w))| = |Φ−1
f (ηRf (w) + κ(f))|

= |τf ◦ L−1
f (ηRf(w) + κ(f))|

= |τf (L−1
f (ζ + κ(f)))|

≤ 4C1e
2παe−2πα ImL−1

f (ζ+κ(f))

≤ 4C1e
2παe−2πα(Im ζ−M log(1+1/α)) ≤M2 · α|w|α.

This proves Part (2) of the proposition for small values of α.

Now we consider larger values of α that do not satisfy the above conditions. Here we set

κ(f) = 0. Then, f ◦κ(f) ◦ ψR(f)(PR(f)) = ψR(f)(PR(f)) ⊂ Pf , by Equation (8). This proves

Part (1) of the proposition in this case.

Since ζ ∈ [0, 1/α − k] + i[M ′,+∞), as in the above argument, we must have ImL−1
f (ζ) ≥

Im ζ −M log(1 + 1/α). (Here we do not need the bound in (72).) Then, by an elementary

estimate on τh, there is a uniform constant M2 such that |τf (L−1
f (ζ))| ≤ M2 · |w|α. That

is, |ψR(f)(w)| ≤ M2|w|α. However, since α is bounded from below here, one may adjust M2

to accommodate the parameter α in the formula. This finishes the proof of Part (2) in this

case.

Proof of Proposition 5.4. — By Proposition 6.19, with M ′ = 0, we find a constant M (inde-

pendent of n) such that for all ζ ∈ [0, xh] + i[0,+∞) we have

ImL−1
n+1(ζ) ≥ Im ζ −M log(1 + 1/αn+1).

Choose D1 > 0 such that for all α ∈ (0, 1), we have

D1

α
−M log(1 +

1

α
) ≥ 1

4α
.

If Im ζn+1 ≥ D1/αn+1, the above equations guarantee that

ImL−1
n+1(ζn+1) ≥

1

4αn+1
.

This implies that L−1
n+1(ζn+1) ∈ Θαn+1(

1
4αn+1

). By Lemma 6.3-2, with r = 1/4,

|τn+1(L
−1
n+1(ζn+1))| ≤ 4C1e

2παn+1e
−2παn+1(Im ζn+1−M log(1+1/αn+1))

≤ Cαn+1e
−2παn+1 Im ζn+1 ,

for some constant C that depends only on C1 and M . Here we have used that αn+1 log(1 +

1/αn+1) is uniformly bounded from above independent of αn+1 ∈ (0, 1). Recall that Φn+1(wn+1) =

ζn+1, and Φ−1
n+1 = τn+1 ◦ L−1

n+1. Hence, we have shown that |wn+1| ≤ Cαn+1e
−2παn+1 Im ζn+1.
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By Proposition 2.7 and Equation (15), wn+1 is mapped to zn+1 in a uniformly bounded

number of iterates of fn+1. The map fn+1 is of the form

z 7→ P ◦ φ−1
n+1(e

2πiαn+1 · z) : (e−2πiαn+1 · φn+1(U)) → C,

with |φ′
n+1(0)| = 1 and φn+1 has univalent extension over the larger domain V (see Theorem 2.6).

This implies that, there exists a uniform constant C ′ such that |zn+1| ≤ C ′|wn+1|.
Recall that Exp(ζn) = zn+1. Combining the above two paragraphs, we have

4

27
e−2π Im ζn = |−4

27
e−2πiζn| = |zn+1| ≤ C ′Cαn+1e

−2παn+1 Im ζn+1 .

Multiplying the above equation by 27/4, and then taking log, we obtain

2παn+1 Im ζn+1 ≤ log(
27CC ′

4
) + logαn+1 + 2π Im ζn.

Then dividing through by 2παn+1 we obtain,

Im ζn+1 ≤
1

2παn+1

log(
27CC ′

4
) +

1

2παn+1

logαn+1 +
1

αn+1

Im ζn.

This is the desired inequality in the proposition when we define the constant D2 =
1
2π

log(27CC
′

4
).

Proof of Proposition 5.11. — First we prove that for every D > 0 there exists E > 0 such that

if Im ζn+1 ≤ D/αn+1 then Im ζn ≤ 1
2π

log 1
αn+1

+ E.

The map fn+2 has the form

z 7→ P ◦ φ−1
n+2(e

2παn+2i · z) : (e−2παn+2i · φn+2(U)) → C,

with |φ′
n+2(0)| = 1. Recall that by Theorem 2.6 the map φn+2 has univalent extension onto

the larger domain V . By the distortion theorem 2.1, this implies that Dom fn+2 = φn+2(U) ·
e−2παn+2i has a uniformly bounded diameter in C. Then, as Exp(ζn+1) ∈ Dom fn+2, Im ζn+1

must be uniformly bounded from below by a constant M ′ independent of n. Using Propo-

sition 6.19, with M ′, we obtain a constant M , independent of n, such that ImL−1
n+1(ζn+1) ≤

Im ζn+1 +M log(1 + 1/αn+1). For points ζn+1 with Im ζn+1 ≤ D/αn+1, we obtain

ImL−1
n+1(ζn+1) ≤ D/αn+1 +M log(1 + 1/αn+1).

By an explicit estimate on the covering map τfn+1 given by the formula in Equation (33), there

is a constant C independent of n such that

|wn+1| = |τfn+1(L
−1
n+1(ζn+1))| ≥ Cαn+1.

The point wn+1 is mapped to zn+1 by a uniformly bounded number of iterates of fn+1. Moreover,

if zn+1 is close to 0, then wn+1 must be also close to 0. That is due to the covering structure of

P on U , which covers a neighborhood of 0 only once. These imply that there is a constant C ′

independent of n such that |zn+1| ≥ C ′αn+1. Then, as ζn is mapped to zn+1 by Exp, we obtain

Im ζn ≤ −1

2π
log(

27C ′

4
) +

1

2π
log

1

αn+1
.

This finishes the proof of the claim by introducing E = −1
2π

log(27C
′

4
).
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It is proved in Lemma 3.11 in [Che13] that there exists a constant D > 0 such that given

any z ∈ ∩∞
n=0Ω

n
0 \∆(f) there are infinitely many integers m with Im ζm ≤ D/αm. (Indeed, the

statement of the lemma in that paper concerns z ∈ PC(f)\∆(f), however, the proof is written

for ∩∞
n=0Ω

n
0 \ ∆(f).) Combining this with the statement in the first paragraph, we conclude

that there are infinitely many levels m with Im ζm−1 ≤ 1
2π

log 1
αm

+ E.

Proof of Proposition 5.12. — Fix ζ ∈ Exp−1(Ω0
n+1) satisfying Im ζ ≤ 1

2π
logα−1

n+1 + E. Since

Ω0
n+1 has a uniformly bounded diameter, independent of n, there is a uniform constant C1 such

that Im ζ ≥ C1. See, for instance, the proof of Proposition 5.11 for further details.

First assume that αn+1 is small enough so that 2 ≤ 1/(2αn+1) ≤ 1/αn+1 − k. For an inverse

branch of Exp, denoted by η̂n+1, we may consider the continuous curve Υn+1(t) := η̂n+1◦Φ−1
n+1(t),

for 1 ≤ t ≤ 1
2αn+1

. By the same argument as in the proof of Sublemma 6.22, there exists a

uniform constant C2 such that for every choice of η̂n+1, we have

1

2π
log

1

αn+1

− C2 ≤ ImΥn+1(
1

2αn+1

).

Moreover,

ImΥn+1(1) = Im η̂n+1 ◦ Φ−1
n+1(1) = Im η̂n+1(−4/27) = 0.

By Proposition 6.15, α−1
n+1 − k ≤ yh ≤ xh. Thus, by our assumption in the above paragraph,

1/(2αn+1) ≤ xh. Then, Proposition 6.18 guarantees that for 1 ≤ t ≤ 1
2αn+1

, |Υ′
n+1(t)| ≤ C4.

Hence, for every integer i ∈ [2, 1
2αn+1

], the Euclidean distance d(Υn+1(i−1),Υn+1(i)) is at most

C4. It follows that there exists a choice of the inverse branch η̂n+1 and an integer i ∈ [1, 1
2αn+1

]

such that ζ ′ := Υn+1(i) satisfies the desired inequalities in the proposition.

Now let us assume that αn+1 is bounded from below, that is, 1/(2αn+1) > 1/αn+1 − k. (We

are still assuming that αn+1 ≤ r2, so there may not be any such αn+1.) Then, by the hypothesis

of the proposition, Im ζ is uniformly bounded from above. As in the second paragraph, it is also

uniformly bounded from below. Then, there is an element ζ ′ in the set Exp−1 ◦Φ−1
n+1(1) = Z

that satisfies the desired inequalities in the proposition.
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[Shi98] M. Shishikura – “The Hausdorff dimension of the boundary of the Mandelbrot set and
Julia sets”, Ann. of Math. (2) 147 (1998), no. 2, p. 225–267.

[Shi00] , “Bifurcation of parabolic fixed points”, in The Mandelbrot set, theme and varia-
tions, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge,
2000, p. 325–363.

[Sie42] C. L. Siegel – “Iteration of analytic functions”, Ann. of Math. (2) 43 (1942), p. 607–612.

[Sul83] D. Sullivan – “Conformal dynamical systems”, in Geometric dynamics (Rio de Janeiro,
1981), Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, p. 725–752.

[Yam08] M. Yampolsky – “Siegel disks and renormalization fixed points”, in Holomorphic dynam-
ics and renormalization, Fields Inst. Commun., vol. 53, Amer. Math. Soc., Providence,
RI, 2008, p. 377–393.
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