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Abstract. We prove the uniform hyperbolicity of the near-parabolic renormalisation op-
erators acting on an infinite-dimensional space of holomorphic transformations. This im-
plies the universality of the scaling laws, conjectured by physicists in the 70’s, for a combi-
natorial class of bifurcations. Through near-parabolic renormalisations the polynomial-like
renormalisations of satellite type are successfully studied here for the first time, and new
techniques are introduced to analyze the fine-scale dynamical features of maps with such
infinite renormalisation structures. In particular, we confirm the rigidity conjecture under
a quadratic growth condition on the combinatorics. The class of maps addressed in the
paper includes infinitely-renormalisable maps with degenerating geometries at small scales
(lack of a priori bounds).

1. Introduction

1.1. renormalisation conjecture. In the 1970’s, physicists Feigenbaum [Fei78] and inde-
pendently Coullet-Tresser [TC78], working numerically, observed universal scaling laws

in the cascades of doubling bifurcations in generic families of one-dimensional real analytic
transformations. To explain this phenomena, they conjectured that a renormalisation op-
erator acting on an infinite-dimensional function space is hyperbolic with a one-dimensional
unstable direction and a co-dimension-one stable direction. Subsequently, this remarkable
feature was observed in other bifurcation combinatorics (besides the doubling one) in generic
families of real and complex analytic transformations [DGP79]. A conceptual explanation for
this phenomena has been the focus of research ever since.

By the seminal works of Sullivan, McMullen, and Lyubich in the 90’s, there is a proof of the
renormalisation conjecture for combinatorial types arising for real and some complex analytic
transformations, [Sul92, McM96, Lyu02], see also Avila-Lyubich [AL11]. A central concept
in these works is the pre-compactness of the polynomial-like renormalisation; a non-
linear operator introduced by Douady and Hubbard in the 80’s [DH84]. While this provides
the first conceptual proof of the renormalisation conjecture for a class of combinatorial types,
lack of the pre-compactness of this renormalisation operator with arbitrary combinatorics is
a major obstacle to establishing the renormalisation conjecture for arbitrary combinatorics.

Inou and Shishikura in 2006 [IS06] introduced a sophisticated pair of renormalisations,
called near-parabolic renormalisations, acting on an infinite-dimensional class of com-
plex analytic transformations near parabolic maps. Using a new analytic technique in-
troduced by the first author [Che19, Che13] to control the dependence of these nonlinear
operators on the data, we prove the hyperbolicity of these renormalisation operators in this
paper, Theorem B. This implies the universality of the scaling laws for a (combinatorial)
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class of bifurcations. Our result covers some combinatorial types where the polynomial-like
renormalisations are not pre-compact.

Hyperbolicity versus rigidity. The proof of the expansion part of the hyperbolicity by Lyubich
relies on a major result on the combinatorial rigidity of the underlying maps. The latter
involves a detailed combinatorial and analytic study of the dynamics of the underlying maps,
successfully accomplished through a decade of intense studies [Lyu97, GŚ97], see also [Hub93,
McM94, LY97, LvS98, Hin00] and the references therein. As a result of this, it is slightly
short of providing the rates of expansions. In contrast, the expansion part of the hyperbolicity
stated here comes from the relations between the conformal data on the large-scale and the
small-scale, related via the renormalisations, see Theorem A. This provides basic formulas for
the rates of expansions, and in turn yields an elementary proof of the rigidity conjecture for
a class of combinatorial types, see Theorem D.

Tame and wild dynamics. A priori bounds, a notion of pre-compactness on the non-
linearities of long return maps to small scales, is a key concept that has been widely used
since the 90’s to analyze the fine-scale structure of the dynamics of real and complex ana-
lytic transformations (tame dynamics). This has also been at the center of the arguments
by Sullivan-McMullen-Lyubich. The hyperbolicity result in this paper applies to classes of
transformations that do not enjoy the a priori bounds. It also treats maps (of bounded type)
that are conjectured to enjoy the a priori bounds, but remained mysterious to date. Our
approach provides a strong set of tools to describe the fine-scale dynamics of these maps using
towers of near-parabolic renormalisations, see Theorem C. In particular, in forthcoming pa-
pers we shall construct the first examples of analytic transformations with some pathological
phenomena.

Below, we state the above notions and results more precisely.

1.2. Near-parabolic renormalisation operators. Renormalisation is a sophisticated tool
to study fine-scale structures in low-dimensional dynamics. It is a procedure to control the
divergence of large iterates of a map through regularizations. Starting with a class of maps,
to each f in the class, one often identifies an appropriate iterate of f on a region in its domain
of definition, which, once viewed in a suitable coordinate on the region (the regularization),
belongs to the same class of maps. Remarkably, iterating a renormalisation operator on a
class of maps provides significant information about the behaviour of individual maps in the
class.

Inou and Shishikura in [IS06] introduced a renormalisation scheme to study the local dy-
namics of near-parabolic holomorphic transformations. More precisely, there is an infinite-
dimensional class of maps F0 (the non-linearities), consisting of holomorphic maps h de-
fined on a neighbourhood of 0, with h(0) = 0, h′(0) = 1, and h has a particular covering
property from its domain onto its range. For ρ > 0, let (the set of linearities)

A(ρ) = {α ∈ C | 0 < |α|ρ, |Reα| ≥ | Imα|}.
Define the class of maps

A(ρ)⋉ F0 = {h(e2πiαz) | α ∈ A(ρ), h ∈ F0}.
For ρ small enough, every α ⋉ h in the above class has two distinct fixed points 0 and
σ = σ(α ⋉ h), with derivatives (α ⋉ h)′(0) = e2πiα and (α ⋉ h)′(σ) = e2πiβ, where β =
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β(α ⋉ h) ∈ C and −1/2 < Re β ≤ 1/2. There are two renormalisation operators, called the
top near-parabolic renormalisation and the bottom near-parabolic renormalisation

acting on the class A(ρ)⋉F0. They are defined as some sophisticated notions of return maps
of α⋉h near 0 and σ, respectively, viewed in some canonically defined coordinates. We denote
these by RNP-t and RNP-b, respectively, and refer to them as NP-renormalisations. According
to Inou and Shishikura, the non-linearities of RNP-t(α ⋉ h) and RNP-b(α ⋉ h) belong to the
same class F0, that is,

RNP-t(α ⋉ h) = (α̂(α, h)⋉ ĥ(α, h)), RNP-b(α ⋉ h) = (α̌(α, h)⋉ ȟ(α, h)),

where ĥ(α, h) and ȟ(α, h) belong to F0. It follows from the construction that α̂(α, h) = −1/α
mod Z and α̌(α, h) = −1/β mod Z (so α̂ and α̌ are not necessarily in A(ρ)).

A crucial step here is to understand the dependence of these renormalisation operators
on the data. In [IS06] F0 is identified with a Teichmüller metric in order to establish the

contractions of the maps h 7→ ĥ(α ⋉ h) and h 7→ ȟ(α ⋉ h) on F0, for each fixed α. On the

other hand, to control the maps α 7→ ĥ(α ⋉ h) and α 7→ ȟ(α ⋉ h), from A(ρ) to F0, one
faces the canonic transcendental mappings with highly distorting nature that appear as the
regularizations in the definitions of these renormalisation operators.

An analytic approach has been introduced by the first author in [Che19, Che13] to control
the geometric quantities, and their dependence on the data, involved in these renormalisation
schemes. That is, to discard the distortions via certain model maps, and study the differences
in the framework of nonlinear elliptic partial differential equations. We extend this approach
here to prove an upper bound on the dependence of these regularizations (and the renormal-
isations) on the data. A key step here is to study the variations of (the hyperbolic norm of)

the Schwarzian derivatives of ĥ(α ⋉ h) and ȟ(α⋉ h) as a function of α.

Theorem A. There exists a constant L such that for every h ∈ F0, the maps α 7→ ĥ(α, h),
and α 7→ ȟ(α, h) are L-Lipschitz with respect to the Euclidean metric on A(ρ) and the Te-
ichmüller metric on F0.

The Gauss maps α̂(α, h) = −1/α mod Z and α̌(α, h) = −1/β mod Z make RNP-t and
RNP-b expanding in the first coordinates. Combining these bounds, we build cone fields in
A(ρ)⋉ F0 that are respected by the maps RNP-t and RNP-b.

Theorem B. The renormalisations operators RNP-t and RNP-b are uniformly hyperbolic on
A(ρ) ⋉ F0. Moreover, the derivatives of these operators at each point in A(ρ) ⋉ F0 have
an invariant one-dimensional expanding direction and an invariant uniformly contracting co-
dimension-one direction.

In the above theorem, the rates of expansions along unstable directions are given in terms
of the Gauss map and a holomorphic index formula.

1.3. Polynomial-like renormalisable versus near-parabolic renormalisable. To re-

peat applying RNP-t or RNP-b to the map RNP-t(α ⋉ h) = α̂ ⋉ ĥ one requires the complex
rotation α̂ = −1/α mod Z belong to A(ρ). Similarly, to apply them to RNP-b(α⋉h) = α̌⋉ ȟ
one requires α̌ = −1/β mod Z belong to A(ρ). In general, to iterate some arbitrary composi-
tion of these operators at some α⋉h, one needs the inductively defined complex rotations

at 0 belong to A(ρ). For instance, to apply RNP-t infinitely often, we require α be real and
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the continued fraction expansion of α = [a1, a2, a3, . . . ] consist of entries ai ≥ 1/ρ. It follows
from Theorem B that the set of α⋉ h, where an infinite mix of NP-renormalisations may be
applied at, consists of a bundle over a Cantor set in A(ρ), with fibers isomorphic to the class
F0, see Theorem 5.1.

To employ the theory, one faces the problem of whether a given map lies on the (implicitly
defined) set of infinitely NP-renormalisable maps. We discuss two strategies here: one is
based on successive perturbations, and the other is based on somehow knowing the complex
rotations of a sequence of periodic points of the given map beforehand. Below we discuss an
instance of the first strategy and in Section 1.4 we discuss an instance of the second strategy.

Let Pc(z) = z2 + c, c ∈ C. The Mandelbrot set

M = {c ∈ C | the orbit 〈P ◦n
c (0)〉∞n=0 remains bounded}

is the set of parameters c ∈ C where Pc has a connected Julia set. To explain the appearance
of many homeomorphic copies ofM withinM , Douady and Hubbard in the 80’s [DH85] intro-
duced the foundational notion of polynomial-like (abbreviated by PL) renormalisation.
A map Pc : C → C is PL-renormalisable if there exist an integer q ≥ 2 and simply connected
domains 0 ∈ U ⋐ V ⊂ C such that P ◦q

c : U → V is a proper branched covering of degree
two and the orbit of 0 under the map P ◦q

c : U → V remains in U . Moreover, when there
is a fixed point of Pc in all the domains P ◦i

c (U), for 0 ≤ i ≤ q − 1, the PL-renormalisation
is said of satellite type. In turn, if P ◦q

c : U → V is PL-renormalisable of satellite type, Pc
is called two times PL-renormalisable of satellite type. Infinitely PL-renormalisable of

satellite type is naturally defined as when this scenario occurs infinitely often. These are
complex analogues of the period doubling bifurcations (Feigenbaum phenomena), which were
successfully studied in the 90’s, while these complex analogues remained widely out of reach.

When a Pc is PL-renormalisable of satellite type, the permutation of the domains P ◦i
c (U)

about the fixed point, for 0 ≤ i ≤ q − 1, under the action of Pc may be described by a
non-zero rational number p/q ∈ (−1/2, 1/2]. Naturally, an infinitely PL-renormalisable of
satellite type gives rise to a sequence of non-zero rational numbers 〈pi/qi〉∞i=1 in the interval
(−1/2, 1/2]. This describes the combinatorial behavior of the map. We use the notation

〈mi : bi,j : εi,j〉∞i=1,

with integers mi ≥ 1, bi,j ≥ 2, and εi,j = ±1, for i ≥ 1 and 1 ≤ j ≤ mi, to denote the
sequence of rational numbers defined by the (modified) continued fractions

pi
qi

=
εi,1

bi,1 +
εi,2

. . . +
εi,mi

bi,mi

, i ≥ 1.

Theorem C. There exists N ≥ 2 such that for every sequence of rational numbers 〈mi :
bi,j : εi,j〉∞i=1 with all bi,j ≥ N there is c ∈ M such that Pc is infinitely PL-renormalisable of
satellite type with combinatorics 〈mi : bi,j : εi,j〉∞i=1 and it is also infinitely NP-renormalisable.
Moreover, the successive types of NP-renormalisations is given by

· · · ◦ (R◦(mn-1)
NP-t ◦RNP-b) ◦ · · · ◦ (R◦(m2-1)

NP-t ◦RNP-b) ◦ (R◦m1-1
NP-t

◦RNP-b).
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The parameter c in the above theorem is obtained by an infinite perturbation procedure.
That is, by successively following the boundaries of the hyperbolic components of M bi-
furcating one from the previous one. To this end we introduce a continued fraction type
of algorithm (with correction terms satisfying universal laws) that produces the successive
complex rotations at 0 along the infinite NP renormalisations of Pc.

Successively applying NP-renormalisations produces a chain of maps linked via the regu-
larizations, that is, the renormalisarion tower. This allows one to study fine-scale dynamical
features of the original map. For instance, being infinitely RNP-t renormalisable has already
led to a breakthrough on the dynamics of maps tangent to irrational rotations. It was used
by Buff and Chéritat [BC12] to complete a remarkable program to construct quadratic poly-
nomials with Julia sets of positive area, see also [Yam08]. It is used in a series of papers
[Che19, BBCO10, Che13, AC18, CC15] to confirm a number of conjectures on the dynamics
of those maps, and is still being harvested. When RNP-b appears infinitely often in the chain
of NP-renormalisations, we are dealing with the complex analogues of the real Feigenbaum
maps. We shall use Theorem C to describe fine dynamical features of these maps in a series
of papers to appear in future.

1.4. Rigidity conjecture. The combinatorial rigidity conjecture in the quadratic family
suggests that the “combinatorial behavior” of a quadratic polynomial Pc uniquely determines
c, provided c ∈ M and all periodic points of Pc are repelling. This remarkable feature is
equivalent to the local connectivity of the Mandelbrot set and implies the density

of hyperbolic maps within this family; a special case of a conjecture attributed to Fatou
[Fat20].

Yoccoz in the 80’s proved the rigidity conjecture for quadratic polynomials that are not
PL-renormalisable, see [Hub93]. In [Sul92], Sullivan proposed a program, based on a priori
bounds and pull-back methods, to study the rigidity conjecture for infinitely renormalisable
quadratic polynomials. This has been the subject of intense studies for real values of c in
the 90’s, [GŚ97, Lyu97, LY97, LvS98, McM98]. The symmetry of the map with respect to
the real line plays an important role in these studies. When PL-renormalisations are not
of satellite type (called primitive type), the pre-compactness is established for a wide class
of combinatorial types [Lyu97, Kah06, KL08]. However, when all PL-renormalisations are of
satellite type, there is not a single combinatorial class for which the a priori bounds is known.
But, it is known that for some combinatorial types this property may not hold [Sr00].

We study the rigidity problem for PL-renormalisations of satellite type via their near-
parabolic renormalisations. To this end, we need to know when all PL-renormalisable maps
of a given combinatorial type are infinitely NP-renormalisable. That is, to know, beforehand,
the location of the complex rotations of the cycles associated with the PL-renormalisations.
We gain this information using a control on the geometry of the boundaries of the hyperbolic
components ofM that is proved in this paper, as well as the combinatorial-analytic multiplier
inequality of Pommerenke-Levin-Yoccoz [Hub93].

For N ≥ 1, define the class of sequences of rational numbers

QGN =
{

〈pi
qi

〉∞
i=1

= 〈mi : bi,j : εi,j〉∞i=1

∣

∣

∣

b1,1 ≥ N, bi,j+1 ≥ b2i,j , bi+1,1 ≥ q2i
∀i ≥ 1, 1 ≤ j ≤ mi − 1.

}

.

For a sequence of non-zero rational numbers 〈pi/qi〉ni=1 in (−1/2, 1/2], let M(〈pi/qi〉ni=1)
denote the set of c inM such that Pc is n times PL-renormalisable of satellite type 〈pi/qi〉ni=1.
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Theorem D. There are constants N , C, and λ ∈ (0, 1) such that for every 〈pi/qi〉∞i=1 in
QGN , we have

diam M(〈pi/qi〉ni=1) ≤ Cλn.

In particular, if Pc is infinitely PL-renormalisable of satellite type 〈pi/qi〉∞i=1 in QGN , it is
combinatorially rigid, and the Mandelbrot set is locally connected at c.

If one chooses mi = 1, for all i ≥ 1, then a sequence 〈pi/qi〉∞i=1 belongs to QGN provided
q1 ≥ N , pi = ±1, and qi+1 ≥ q2i , for all i ≥ 1. Choosing a larger value for some mi allows
us to have a rational number pi/qi of mixed type, but this requires the later denominators
become large because of the condition bi+1,1 ≥ qi. G. Levin had already proved the com-
binatorial rigidity under the relative growth conditions lim supn qn+1/(q1q2 . . . qn)

2 > 0 and
sup |pn/qn|q0q1 . . . qn−1 <∞, [Lev11, Lev14]. This is a faster growth condition on the denom-
inators, but it covers rational numbers with certain numerators that are not covered in the
above theorem. For parameters satisfying these growth conditions, he controls the location of
the sequence of periodic cycles that consecutively bifurcate one from another; quantifying a
construction due to Douady and Hubbard [Sr00], to obtain non-locally connected Julia sets.
His approach is different from the one presented in this paper.

We note that the post-critical set (i.e. the closure of the orbit of the critical point) of
the maps in the above theorem do not enjoy the a priori bounds (bounded geometry) pro-
posed in the program of Sullivan. The geometry of the post-critical set highly depends on
the successive complex rotations at 0 produced by successive NP-renormalisations. Moreover,
the Pommerenke-Levin-Yoccoz inequality does not provide the kind of estimates to deduce
that the post-critical sets of all maps with the same combinatorial behavior have compara-
ble geometries. Besides overcoming this issue, our approach allows us to treat all types of
geometries at once, rather than dealing with fine geometric considerations dependent on the
combinatorics, investigated in part two of [Lyu97] and in [Che10].

The combinatorial rigidity conjecture is meaningful for higher degree maps, and indeed
it has been successfully established for a number of classes of maps through the program
of Sullivan. Rational maps with all critical points periodic or pre-periodic are studied in
[DH85]. See [LvS98, KSvS07] for real infinitely PL-renormalisable polynomials of higher
degree, and [CvST17, CvS18] (and the references therein) for a broader result for real maps.
The papers [AKLS09, KvS09, PT15] treat higher degree complex polynomials that are not PL-
renormalisable. On the other hand, a near-parabolic renormalisation scheme for uni-critical
maps (i.e. maps with a single critical point of higher degree), similar to the one studied here,
has been announced by Chéritat in [Ché14]. The analysis of this paper may be carried out
in that setting to obtain the corresponding results for the higher degree uni-critical maps.

One may refer to the book by de Melo-van Strien [dMvS93] for historical notes on early
stages of the developments, and also for the real analysis tools that played a crucial role in
the pioneering work of Sullivan on the subject. An alternative approach to the existence
of the fixed point of doubling renormalisation was given by Martens in [Mar98]. A unified
approach to the uniform contraction of polynomial-like renormalisation for uni-singular maps
is presented in [AL11]. A number of renormalisation schemes in low-dimensional dynamics
have been studied in parallel to the one for holomorphic maps on plane-domains discussed
here. However, the issue of the pre-compactness addressed here does not arise in those cases.
One may refer to [Lan82, EE86, dF92, Yam02, dFdM00, LŚ05, GdM17, KK14] for critical
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circle maps; [McM98] for linearizable maps of bounded type; [LŚ02, LŚ12] for critical circle
covers; [GvST89, DCLM05] for Henon maps; [dFdMP06] for Cr uni-modal maps.
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0 34

Figure 1. The domain V , in gray, contains 0 and −1/3, but not −1.

2. Near-parabolic renormalisation scheme

In this section we introduce the class of maps F0, and define the top and bottom near-
parabolic renormalisations RNP-t and RNP-b.

2.1. The class of maps F0 and their perturbations. Consider the ellipse

E =
{

x+ iy ∈ C

∣

∣

∣

(

x+ 0.18

1.24

)2

+
( y

1.04

)2

≤ 1
}

and define the domain

V = g(Ĉ \ E), where g(z) =
−4z

(1 + z)2
.

The ellipse E is contained in the ball |z| < 2, and thus, the ball |z| < 8/9 is contained in V .
Consider the cubic polynomial

P (z) = z(1 + z)2.

The polynomial P has a fixed point at 0 with multiplier P ′(0) = 1, and it has two critical
points −1 ∈ C \ V and −1/3 ∈ V , where P (−1) = 0 and P (−1/3) = −4/27. See Figures 1
and 5.

Following [IS06] we consider the class of maps

F0 =

{

f = P ◦ ϕ−1 : ϕ(V ) → C

∣

∣

∣

ϕ : V → C is univalent1, ϕ(0) = 0, ϕ′(0) = 1, and
ϕ has quasi-conformal extension onto C.

}

.

Every map in F0 has a parabolic fixed point at 0, and a unique critical point at ϕ−1(−1/3)
which is mapped to −4/27. Indeed, every element of F0 has the same covering structure from
its domain onto its range as the one of P : V → P (V ). See Figure 5.

For h ∈ F0 and α ∈ C we use the notation α⋉ h to denote the map 2

(2.1) (α⋉ h)(z) = h(e2πiαz), z ∈ e−2πiαDom(h).

1Univalent is a standard terminology used for one-to-one holomorphic maps.
2Dom(f) denotes the domain of definition of a given map f , and is always assumed to be an open set.
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In the same fashion, for a set A ⊆ C, define the class of maps

A⋉ F0 = {α⋉ h | h ∈ F0, α ∈ A}.
For r > 0, we define

A+(r) = {α ∈ C | 0 < |α| ≤ r,Reα ≥ | Imα|},
A−(r) = {α ∈ C | 0 < |α| ≤ r,Reα ≤ −| Imα|},

A(r) = A+(r) ∪ A−(r).

We shall work on the class of maps A(r) ⋉ F0, for an appropriate constant r which will be
determined in Section 2.4.

Every f ∈ A(∞)⋉ F0 has a unique critical point, denoted by cpf . That is,

f ′(cpf ) = 0, f(cpf ) = −4/27 = cvf .

For our convenience, we normalise the quadratic polynomials into the form

Qα(z) = e2πiαz +
27

16
e4πiαz2,

so that their critical values lie at −4/27 and α⋉Q0 = Qα.
We consider the topology of uniform convergence on compact sets on the space of holomor-

phic maps g : Dom (g) → C, where Dom (g) is an open subset of C. A basis for this topology
is defined by

N(h;K, ε) =
{

g : Dom (g) → C

∣

∣

∣
K ⊂ Dom(g) and sup

z∈K
|g(z)− h(z)| < ε

}

,

where h : Dom (h) 7→ C is a holomorphic map, K ⊂ Dom(h) is compact, and ε > 0. In
this topology, a sequence hn : Dom (hn) 7→ C converges to h provided hn is contained in any
given neighbourhood of h defined as above, for large enough n. Note that the maps hn are
not necessarily defined on the same domain.

The class F0 naturally embeds into the space of univalent maps on the unit disk with
a neutral fixed point at 0. Therefore, by the Koebe distortion Theorem [Leh87], F0 is a
pre-compact class in the compact-open topology.

2.2. Teichmuller metric and the holomorphic dependence. Using the one-to-one cor-
respondence between the class F0 and the quasi-conformal mappings on C\V one may define
a metric on F0. This corresponds to the Teichmüller metric on the Teichmüller space of
C \ V . One may refer to [Leh76] for the definition of quasi-conformal mappings, and to
[GL00], [IT92], or [Leh87] for the theory of Teichmüller spaces. Recall that the dilatation
quotient of a quasi-conformal mapping h is defined as

Dil(h) = sup
z∈Dom h

|hz|+ |hz |
|hz| − |hz |

.

The Teichmüller distance between any two elements f = P ◦ ϕ−1
f and g = P ◦ ϕ−1

g in F0 is
defined as

dTeich(f, g) = inf
{

logDil(ϕ̂g ◦ ϕ̂−1
f )

∣

∣

∣

ϕ̂f and ϕ̂g are quasi-conformal extensions
of ϕf and ϕg onto C, respectively.

}

.
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It is known that the Teichmüller space of C \ V equipped with the Teichmüller distance is a
complete metric space, and so is F0 equipped with dTeich. The convergence with respect to
dTeich on F0 implies the uniform convergence on compact sets.

Let fλ : Dom (fλ) → C be a family of holomorphic maps parameterised by λ in a finite
dimensional complex manifold Λ, such that for every λ ∈ Λ, Dom (fλ) ⊂ C. We say that the
family fλ is a holomorphic family of maps, if for every λ0 ∈ Λ and every z0 ∈ Dom fλ0

,
the map (z, λ) 7→ fλ(z) is defined and holomorphic in z and λ, for z sufficiently close to z0
and λ sufficiently close to λ0. Let Υ : X → Y be a mapping where X and Y are some classes
of holomorphic maps. We say that the mapping f 7→ Υ(f) has holomorphic dependence

on f , if for every holomorphic family of maps fλ in X , the family Υ(fλ) is a holomorphic
family of maps.

2.3. Fatou coordinates. As we shall see in Lemma 3.10, the set of f ′′(0) over all f ∈ F0

is compactly contained in C. Thus every f ∈ F0 has a non-degenerate parabolic fixed point
at 0. For α ∈ C sufficiently close to 0 and f ∈ F0, the parabolic fixed point of 0 ⋉ f at 0
bifurcates into two distinct nearby fixed points for α⋉f . These two fixed points play a central
role in this paper. Below we introduce these formally, as they are needed for the definition
of the near-parabolic renormalisations, and postpone the proofs to Section 3.

Proposition 2.1. There exist a simply connected neighbourhood W of 0, bounded by a smooth
curve, and a constant r1 > 0 such that every map in A(r1)⋉F0 has exactly two distinct fixed
points in the closure of W .

The proof of the above proposition appears in Section 3.4.
The non-zero fixed point of f ∈ A(r1) ⋉ F0 contained in W is denoted by σf . There are

complex numbers α(f) and β(f) with their real parts in (−1/2, 1/2] such that

f ′(0) = e2πiα(f) and f ′(σf ) = e2πiβ(f).

These values are related by the holomorphic index formula

(2.2)
1

2πi

∫

∂W

1

z − f(z)
dz =

1

1− e2πiα(f)
+

1

1− e2πiβ(f)
.

Proposition 2.2. There exists r2 > 0 such that for every f in A+(r2) ⋉ F0 there exist a
domain Pf ⊂ Dom(f) and a univalent map Φf : Pf → C satisfying the following properties:

a) Pf is bounded by piecewise smooth curves, the closure of Pf is contained in Dom(f),
and the points cpf , 0, and σf belong to ∂Pf ;

b) ImΦf (z) → +∞ when z → 0 in Pf , and ImΦf (z) → −∞ when z → σf in Pf ;
c) Φf (Pf ) contains the vertical strip Rew ∈ (0, 2);
d) Φf satisfies

Φf (f(z)) = Φf (z) + 1,

whenever z and f(z) belong to Pf ;
e) Φf is uniquely determined by the above conditions and the normalisation Φf (cpf ) = 0.

Moreover, with this normalisation, the map f 7→ Φf has holomorphic dependence on
f .

When f = Qα : C → C, with α ∈ A+(r2), the existence of a domain Pf and a coordinate
Φf : Pf → C satisfying the properties in the above proposition is rather classical. Indeed,
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these are among the basic tools in complex dynamics for over a century now. However, their
existence for the maps in A(r)⋉F0 is highly non-trivial and is proved in [IS06]. The univalent
map Φf with the above properties is called the Fatou coordinate of f on Pf . See Figure 2.

cpf
cvf 0

σf

Figure 2. The pre-images of the vertical lines, with integer real parts, under
φf . These curves land at 0 and σf , and spiral about 0 and σf at well-defined
speeds when Imα 6= 0. The cross “×” in red is the location of cpf , and the
dots in red are the first few iterates of cpf .

Proposition 2.3. There are constants r3 ∈ (0, r2) and k such that for all f ∈ A+(r3)⋉ F0,
or f = Qα with α ∈ A+(r3), the domain Pf in Proposition 2.2 may be chosen (wide enough)
to satisfy the additional property

Φf (Pf ) =
{

w ∈ C

∣

∣

∣
0 < Re(w) < Re

1

α(f)
− k

}

.

The above proposition is proved in Sections 3.7.
In [Che19] it is proved that when α is real, Φ−1

f of every vertical line in the image of Φf is
a curve which lands at 0 and σf at some well-defined angles. That is, there are tangent lines
to these curves at 0 and σf . However, this is not the case when Imα 6= 0. The pre-images
of the vertical lines spiral about 0 and σf , and the corresponding speeds of spirals depend on
Imα and Imβ, respectively. This is stated in the next proposition.

Proposition 2.4. There exists a constant k′ such that for all f ∈ A+(r3) ⋉ F0, or f = Qα
with α ∈ A+(r3), there exists a continuous branch of argument defined on Pf satisfying the
following properties.

a) For all ξ1 in (0,Re 1
α(f) − k) and ξ2 ≥ 0, we have

lim
ξ2→+∞

(

argΦ−1
f (ξ1 + iξ2) + 2πξ2 Imα

)

= arg σf + 2πξ1 Reα+ cf ,

where cf is a real constant which depends only on f and |cf | ≤ k′(1− log |α|).
b) For all ξ1 in (0,Re 1

α(f) − k) and ξ2 ≤ 0, we have

lim
ξ2→−∞

(

arg(Φ−1
f (ξ1 + iξ2)− σf )− 2πξ2 Imβ

)

= arg σf − 2πξ1 Re β + c′f ,

where c′f is a real constant which only depends on f and |c′f | ≤ k′(1− log |α|).
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Part (a) of Proposition 2.4 is proved in Section 3.7, and its part (b) is proved in Section 3.9.

Remark 2.5. When f ∈ A(r) ⋉ F0 tends to a map f0 ∈ F0, the fixed point σf tends to 0,
and becomes a parabolic fixed point. Although it is not used in this paper, it may be useful
to note that as f tends to f0 ∈ F0, appropriately normalised Fatou coordinates Φf tend to
some conformal mappings, called attracting and repelling Fatou coordinates, that still satisfy
the relation in Proposition 2.2-(d). One may refer to [Shi00] for further details on this.

2.4. Top and bottom near-parabolic renormalisations. Let f either be in A+(r2)⋉F0

or be the quadratic polynomial Qα with α ∈ A+(r2). Let Φf : Pf → C be the Fatou
coordinate of f introduced in the previous section. Define the sets

(2.3)

Af = {z ∈ Pf : 1/2 ≤ Re(Φf (z)) ≤ 3/2 , 2 ≤ ImΦf (z)},
Cf = {z ∈ Pf : 1/2 ≤ Re(Φf (z)) ≤ 3/2 , −2 ≤ ImΦf (z) ≤ 2},
Bf = {z ∈ Pf : 1/2 ≤ Re(Φf (z)) ≤ 3/2 , ImΦf (z) ≤ −2}.

By Proposition 2.2, Φf (cvf ) = +1, and hence cvf ∈ int (Cf )
3. Moreover, 0 ∈ ∂Af and

σf ∈ ∂Bf .
See Figures 3 and 4 for an illustration of the following two propositions.

Proposition 2.6. For every f ∈ A+(r3)⋉F0, or f = Qα with α ∈ A+(r3), there is a positive
integer ktf satisfying the following properties.

a) For every integer k, with 0 ≤ k ≤ ktf , there exists a unique connected component of

f−k(Af ) which is compactly contained in Dom(f) and contains 0 on its boundary.

We denote this component by A−k
f .

b) For every integer k, with 0 ≤ k ≤ ktf , there exists a unique connected component of

f−k(Cf ) which has non-empty intersection with A−k
f , and is compactly contained in

Dom(f). This component is denoted by C−k
f,t .

c) We have

A
−ktf
f , C

−ktf
f,t ⊆

{

z ∈ Pf | 1/2 < ReΦf (z) < Re
1

α(f)
− k

}

.

d) The map f : C−k
f,t → C−k+1

f,t , for 2 ≤ k ≤ ktf , and f : A−k
f → A−k+1

f , for 1 ≤ k ≤ ktf ,

are univalent. On the other hand, the map f : C−1
f,t → Cf is a proper branched

covering of degree two.

Proposition 2.7. For every f ∈ A+(r3)⋉F0, or f = Qα with α ∈ A+(r3), there is a positive
integer kbf satisfying the following properties.

a) For every integer k, with 0 ≤ k ≤ kbf , there exists a unique connected component of

f−k(Bf ) which is compactly contained in Dom(f), and contains σf on its boundary.

We denote this component by B−k
f .

b) For every integer k, with 0 ≤ k ≤ kbf , there exists a unique connected component of

f−k(Cf ) which has non-empty intersection with B−k
f , and is compactly contained in

Dom(f). This component is denoted by C−k
f,b .

3The notation int (C) denotes the (topological) interior of a given set C.



SATELLITE RENORMALISATION OF QUADRATIC POLYNOMIALS 13

×

Figure 3. A presentation of the regions associated to the top renormalisa-
tion of f . The alternating green and brown shades denote the sets A−j

f , and

the alternating blue and yellow shades are the sets C−j
f . The grey region is

the petal Pf . Here, f = Qα and α = 0.01− 0.02i.

c) We have

B
−kbf
f , C

−kbf
f,b ⊆

{

z ∈ Pf | 1/2 < ReΦf (z) <
1

Reα(f)
− k

}

.

d) The map f : C−k
f,b → C−k+1

f,b , for 2 ≤ k ≤ kbf , and f : B−k
f → B−k+1

f , for 1 ≤ k ≤ kbf ,

are univalent. On the other hand, the map f : C−1
f,b → Cf is a proper branched

covering of degree two.

The above two propositions are appropriately adjusted and reformulated versions of several
statements which appear in Section 5.A in [IS06]. See in particular Propositions 5.6 and 5.7
in that paper. Note that here we are working with the value +2 in place of the parameter η
in that paper.

Let ktf and kbf be the smallest positive integers satisfying the above propositions.

Proposition 2.8. There exists a constant k′′ such that for every f ∈ A+(r3)⋉F0, or f = Qα
with α ∈ A+(r3), we have a) ktf ≤ k′′ and b) kbf ≤ k′′.

Part (a) of the above proposition is proved in Section 3.7 and its part (b) is proved in
Section 3.9.

Define the set

Stf = A
−ktf
f ∪ C−ktf

f,t , Sbf = B
−kbf
f ∪C−kbf

f,b .
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×

Figure 4. A presentation of the regions associated to the bottom renormal-
isation of f . The alternating green and brown shades show the sets B−j

f ,

and the alternating red and blue shades show the sets C−j
f .

Consider the induced maps

(2.4) Etf = Φf ◦f◦ktf ◦Φ−1
f : Φf (S

t
f ) → Φf (Pf ), Ebf = Φf ◦f◦kbf ◦Φ−1

f : Φf (S
b
f ) → Φf (Pf ).

By the functional relation in 2.2-(d), we have Etf (w + 1) = Etf (w) + 1 whenever both w and

w+1 are in Φf (S
t
f ). Similarly, Ebf commutes with the translation by +1 on the boundary of

Φf (S
b
f ).

Let us define the covering maps

(2.5) Expt(w) =
−4

27
e2πiw, Expb(w) =

−4

27
e−2πiw.

The map Etf : Φf (S
t
f ) → Φf (Pf ) projects via Expt to a well-defined holomorphic map

defined on a set containing a punctured neighbourhood of 0. We denote this map by RNP-t(f).

Similarly, Ebf : Φf (S
b
f ) → Φf (Pf ) projects via Expb to a well-defined holomorphic map defined

on a set containing a punctured neighbourhood of 0. This map is denoted by RNP-b(f). Both
of these maps have a removable singularity at 0 with asymptotic expansions

RNP-t(f)(z) = e−2πi/α(f)z +O(z2), RNP-b(f)(z) = e−2πi/β(f)z +O(z2),

near 0, where f ′(0) = e2πiα(f) and f ′(σf ) = e2πiβ(f). The above asymptotic expansions

are obtained from comparing f near 0 and σf to the linear maps z 7→ e2πiα(f)z and z 7→
σf + e2πiβ(f)(z − σf ), respectively.
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By Propositions 2.6 and 2.7, each of Etf and Ebf has a unique critical point. As Φf (cvf ) = 1,

the critical values of Etf and Ebf lie at +1. On the other hand, as Expt(+1) = Expb(+1) =

−4/27, each of RNP-t(f) and RNP-b(f) must have a unique critical value at −4/27.
The main result of [IS06] is formulated in the next theorem.

Theorem 2.9 (Inou-Shishikura). There exists a Jordan domain U ⊃ V satisfying the follow-
ing. For all f ∈ A+(r3)⋉F0, or f = Qα with α ∈ A+(r3), there are appropriate restrictions
(to smaller domains about 0) of the maps RNP-t(f) and RNP-b(f) which belong to the classes
{ −1
α(f)} ⋉ F0 and { −1

β(f)} ⋉ F0, respectively. That is, there exist quasi-conformal homeomor-

phisms ψ, ϕ : C → C which are holomorphic on V , ψ(0) = ϕ(0) = 0, ψ′(0) = ϕ′(0) = 1,
and

RNP-t(f)(z) = P ◦ ψ−1(e−2πi/α(f)z), ∀z ∈ e2πi/α(f)ψ(V )

RNP-b(f)(z) = P ◦ ϕ−1(e−2πi/β(f)z), ∀z ∈ e2πi/β(f)ϕ(V ).

Moreover, when f ∈ A+(r3)⋉F0, ψ : V → C and ϕ : V → C extend to univalent maps on U .

See the figure below for the covering structure of the polynomial P on the set V .

×

−4
27

0
×

−1
3

0

−1

P

V

Figure 5. Illustration of the covering property of the polynomial P . Similar
colors and line styles are mapped onto one another.

Remark 2.10. The renormalisations RNP-t(f) and RNP-b(f) are not obtained from the return
maps (iterates of f) to a region, in contrast to other notions of renormalisation in holo-
morphic dynamics, such as the PL-renormalisation [DH85] or the sector renormalisation of
Yoccoz [Yoc95]. Near 0 or σf , these renormalisations may be interpreted as return maps since
Etf and all its integer translations project to the same map RNP-t(f). That is, for w ∈ Φf (S

t
f )

with Imw large enough, there is iw ∈ N such that Etf (w) + iw ∈ Φf (S
t
f ); hence a return

map. But, this may not happen for every w in Φf (S
t
f ). For example, when |α| is small with

argα = −π/4, the σf is attracting and may attract the orbit of cpf . Then, the orbit of

cpf may not visit Stf , (and then “go around” 0 to return back to Pf ). However, this does

not contradict the above theorem and the top renormalisation is still defined. Here, RNP-t(f)
has a critical value, but it does not belong to the domain of RNP-t(f). For such values of α,
|e−2πi/α| is large, and hence by Theorem 2.9, Dom RNP-t(f) may be small and not contain
the critical value at −4/27. As we shall see in Sections 3.10 and 6.3, in the interesting cases
where both multipliers at 0 and σf are repelling, α belongs to a substantially smaller region
and this scenario does not occur.
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Definition 2.11. For every f ∈ A−(r3) ⋉ F0, the conjugate map s ◦ f ◦ s, where s(z) =
z denotes the complex conjugation, belongs to A+(r3) ⋉ F0. We may extend the above
definitions of renormalisations onto A−(r3)⋉ F0 by letting

RNP-t(f) = RNP-t(s ◦ f ◦ s), RNP-b(f) = RNP-b(s ◦ f ◦ s), ∀f ∈ A−(r3)⋉ F0.

In particular, the Fatou coordinates are also defined for maps in A−(r3)⋉F0. Similarly, one
defines the Fatou coordinates and the renormalisations for Qα with α ∈ A−(r3).

The following proposition is a consequence of the holomorphic dependence of the Fatou
coordinate on the map, Proposition 2.2-(e), and the definitions of the operators RNP-t and
RNP-b.

Proposition 2.12. The operators f 7→ RNP-t(f) and f 7→ RNP-b(f) have holomorphic depen-
dence on f ∈ A(r3) ⋉ F0. Similarly, α 7→ RNP-t(Qα) and α 7→ RNP-b(Qα) are holomorphic
families of maps, parametrized on A(r3).

Recall that β(f) is selected to satisfy Re β(f) ∈ (−1/2, 1/2]. A priori, this number, which
is determined by Equation (2.2), may not be a continuous function of α(f) and f . However,
when α(f) is close enough to 0, one can choose β(f) close to 0, so that it continuously depends
on α(f) and f . This condition is implicit in Proposition 2.12 and Theorem 2.9. That is, r3
is small enough so that β(f) continuously depends on f and satisfies Re β(f) ∈ (−1/2, 1/2].

The restrictions of the maps RNP-t(f) and RNP-b(f) to the smaller domain such that they
belong to A(∞)⋉F0, are called the top and bottom near-parabolic renormalisation of f ,
respectively. We use the notation RNP-t(f) and RNP-b(f) to denote these (domain restricted)
maps. Note that in this definition, RNP-t(f) and RNP-b(f) have extension onto the larger
domain U , by the above theorem. Also, note that although the renormalisation of a map has
extension onto a larger domain (U), the renormalisations are defined only using the iterates
of the map on the smaller domain (V ).

3. Analytic properties of the near-parabolic renormalisations

3.1. K-horizontal curves. In this section we study the dependence of the operators f 7→
RNP-t(f) and f 7→ RNP-b(f) on the linearity of f (that is, α(f)), and the non-linearity of f
(that is, the higher order terms of f). Let us introduce some notations in order to simplify
the statements that will follow.

By virtue of Theorem 2.9, using these notations, we may write

(3.1)
RNP-t(α⋉ h) = α̂(α⋉ h)⋉ ĥ(α⋉ h),

RNP-b(α ⋉ h) = α̌(α⋉ h)⋉ ȟ(α ⋉ h).

Here, α̂(α⋉h) and α̌(α⋉h) are complex numbers, which depend on α and h. Also, ĥ(α⋉h) and
ȟ(α⋉h) are elements of F0, which depend on α and h. Indeed, by definition, α̂(α⋉h) = −1/α

but α̌, ĥ and ȟ depend on both α and h. Recall from Section 2.3 that σα⋉h denotes the
preferred non-zero fixed point of α⋉ h, and β(α ⋉ h) is a complex number satisfying

(α ⋉ h)′(σα⋉h) = e2πiβ(α⋉h).

We frequently consider maps Υ : ∆ → C⋉F0 defined on a set ∆ ⊆ C. We may write any
such map as Υ(s) = α(s) ⋉ h(s) where for all s ∈ ∆, α(s) ∈ C and h(s) ∈ F0. For k > 0, we
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say that Υ is k-horizontal, if ∆ is connected, Υ is continuous on ∆, and for all s1, s2 ∈ ∆
we have

dTeich(h(s1), h(s2)) ≤ k|α(s1)− α(s2)|.
We call the image of any such curve a k-horizontal curve.

We aim to show that there is k > 0 such that each of the operators RNP-t and RNP-b

map any k-horizontal curve to a k/2-horizontal curve. That means, these renormalisation
operators map the “cone field” of k-horizontal curves passing through an arbitrary point
α0 ⋉ h0 well inside the cone field of k-horizontal curves passing through RNP-t(α0 ⋉ h0) and
RNP-b(α0 ⋉ h0), respectively. We start with the following property.

Recall the constant r3 introduced in Section 2.3.

Proposition 3.1. There are constants r4 ∈ (0, r3] and k1 > 0 satisfying the following prop-
erties:

a) for every k1-horizontal curve Υ in A(r4)⋉F0, RNP-t(Υ) and RNP-b(Υ) are k1-horizontal
curves in C ⋉ F0;

b) the curves α 7→ RNP-t(Qα) and α 7→ RNP-b(Qα) are k1-horizontal curves in C ⋉ F0,
for α ∈ A+(r4) and for α ∈ A−(r4).

In order to prove Proposition 3.1, we need to control the dependence of the linearities and
non-linearities of RNP-t and RNP-b on α and h. These are formulated in the following four
propositions.

Proposition 3.2. There exists a constant c2,1 such that for all h in F0 ∪ {Q0}, and all α1

and α2 in A+(r3) or all α1 and α2 in A−(r3), we have

dTeich(ĥ(α1 ⋉ h), ĥ(α2 ⋉ h)) ≤ c2,1|α1 − α2|,
dTeich(ȟ(α1 ⋉ h), ȟ(α2 ⋉ h)) ≤ c2,1|α1 − α2|.

The above proposition is stated in Section 1 as Theorem B. The Lipschitz property of

α 7→ ĥ(α⋉h) on the real slice (−r3, 0)∪(0, r3) is proved in [CC15]. In that paper, it is crucial
that RNP-t is fibre preserving, that is, α̂(α⋉ h) depends only on α. On the other hand, RNP-b

is not fibre preserving and the proof of the above proposition for ȟ(α ⋉ h) involves further
analysis carried out in this paper. Also, when α is real, ∂Pα⋉h consists of curves landing at
0 and σα⋉h at well defined angles, and hence, we did not need to deal with the spiralling
behaviour of the Fatou coordinates in Proposition 2.4.

Proposition 3.3. There exists a constant c2,2 ∈ (0, 1] such that for all α in A(r3), and all
h1 and h2 in F0 we have

dTeich(ĥ(α ⋉ h1), ĥ(α⋉ h2)) ≤ c2,2 dTeich(h1, h2),

dTeich(ȟ(α ⋉ h1), ȟ(α⋉ h2)) ≤ c2,2 dTeich(h1, h2).

Recall from Section 2.4 that α̌(α ⋉ h) = −1/β(α ⋉ h). By Proposition 2.12, for a fixed
h ∈ F0 ∪ {Q0}, α 7→ α̌(α⋉ h) is a holomorphic mapping from A(r3) into C.

Proposition 3.4. There exists a constant c1,1 > 0 such that for all h in F0 ∪ {Q0}, and all
α1 and α2 in A+(r3) or all α1 and α2 in A−(r3), we have

|α1 − α2|
c1,1|α1α2|

≤ |α̌(α1 ⋉ h)− α̌(α2 ⋉ h)| ≤ c1,1|α1 − α2|
|α1α2|

.
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Proposition 3.5. There exists a constant c1,2 > 0 such that for all α in A(r3) as well as all
h1 and h2 in F0, we have

|α̌(α⋉ h1)− α̌(α⋉ h2)| ≤ c1,2 dTeich(h1, h2).

Remark 3.6. By the definitions ofRNP-t andRNP-b, we only need to prove the Propositions 3.2-
3.5 for α ∈ A+(r3). The statements for α ∈ A−(r3) follow from the ones for α ∈ A+(r3).
Thus, within the rest of this section we assume that Reα > 0, unless otherwise stated.

Proof of Proposition 3.1 assuming Propositions 3.2, 3.3, 3.4, and 3.5.
Define k1 = c2,1/3, and choose r4 > 0 such that

(3.2) 4 +
c1,2c2,1

3
≤ 1

c1,1r24
.

Let Υ : ∆ → A(r4) ⋉ F0 be a k1-horizontal curve defined on a connected set ∆ ⊂ C.
Since RNP-t and RNP-b are continuous operators, RNP-t ◦Υ and RNP-b ◦Υ are continuous maps,
parametrised on the connected set ∆. Fix two (distinct) points α1⋉h1 and α2⋉h2 on Υ(∆),
and consider the third point α1 ⋉ h2 in A(r3) ⋉ F0. We denoted the images of these points
under RNP-t and RNP-b by

α̂1 ⋉ ĥ1 = RNP-t(α1 ⋉ h1), α̌1 ⋉ ȟ1 = RNP-b(α1 ⋉ h1),

α̂2 ⋉ ĥ2 = RNP-t(α2 ⋉ h2), α̌2 ⋉ ȟ2 = RNP-b(α2 ⋉ h2),

α̂3 ⋉ ĥ3 = RNP-t(α1 ⋉ h2), α̌3 ⋉ ȟ3 = RNP-b(α1 ⋉ h2).

First we deal with RNP-t. We have

(3.3)

dTeich(ĥ1, ĥ2) ≤ dTeich(ĥ1, ĥ3) + dTeich(ĥ3, ĥ2) (Triangle Inequality)

≤ c2,2 dTeich(h1, h2) + c2,1|α1 − α2| (Propositions 3.3 and 3.2)

≤ c2,2k1|α1 − α2|+ c2,1|α1 − α2| (Υ is k1-horizontal)

= (c2,2k1 + c2,1)|α1 − α2|.

On the other hand, as α̂1 = −1/α1 and α̂2 = −1/α2, we obtain

|α1 − α2| = |α1α2||α̂1 − α̂2|.

Combining the above two equations, and using c2,2 ≤ 1, 3k1 = c2,1, |α1| ≤ 1/2, and |α2| ≤
1/2, we obtain

dTeich(ĥ1, ĥ2) ≤ (c2,2k1 + c2,1)|α1 − α2| = 4k1|α1α2||α̂1 − α̂2| ≤ k1|α̂1 − α̂2|.

The above inequality implies that RNP-t(Υ) is a k1-horizontal curve, because α̂1 ⋉ ĥ1 and

α̂2 ⋉ ĥ2 are arbitrary points on RNP-t(Υ).

Now we deal with RNP-b. Repeating Equation (3.3) for RNP-b, we obtain

dTeich(ȟ1, ȟ2) ≤ (c2,2k1 + c2,1)|α1 − α2|.
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On the other hand, we have

|α̌1 − α̌2| ≥ |α̌2 − α̌3| − |α̌1 − α̌3| (Triangle Inequality)

≥ |α1 − α2|
c1,1|α1α2|

− c1,2 dTeich(h1, h2) (Propositions 3.4 and 3.5)

≥ |α1 − α2|
c1,1|α1α2|

− c1,2k1|α1 − α2| (Υ is k1-horizontal)

≥
( 1

c1,1r24
− c1,2c2,1

3

)

|α1 − α2| (|α1α2| ≤ 1/4, 3k1 = c2,1)

≥ 4|α1 − α2| (Equation (3.2)).

Combining the above two equations, and using 3k1 = c2,1, c2,2 ≤ 1, and 3.2 we obtain,

dTeich(ȟ1, ȟ2) ≤ (c2,2k1 + c2,1)|α1 − α2| ≤ 4k1|α1 − α2| ≤ k1|α̌1 − α̌2|.

This shows that RNP-b(Υ) is k1-horizontal.
The proof of the second part of the proposition is a special case of the above argument. �

The remaining of Section 3 is denoted to the proofs of Propositions 3.2, 3.3, 3.4, and 3.5.
In Section 3.2, we use the notion of Schwarzian derivative to reduce Proposition 3.2 to the
Euclidean variation of the functions, stated in Proposition 3.8. The proof of Proposition 3.8
requires a rather long series of calculations. To make the main idea clear, we first analyse the
top renormalisation, in Sections 3.4 to 3.8. Then, we prove the second part of Proposition 3.2
in Section 3.9. Proposition 3.3 follows from Theorem 2.9 and an infinite dimensional Schwartz
lemma of Royden-Gardiner (further details appear later). The proofs of Propositions 3.4 and
3.5 appear in Section 3.10.

3.2. Schwarzian derivative. The Schwarzian derivative of a univalent map f is defined as

DS f =

(

f ′′

f ′

)′
− 1

2

(

f ′′

f

)2

,

where “ ′ ” denotes the complex differentiation of an analytic map. This measures the
deviation of a univalent map from the Möbius transformations. We shall use this notion to
measure the Teichmüller distance between univalent maps. See [Leh87] for general properties
of this derivative.

When the maps RNP-t(α⋉h) and RNP-b(α⋉h) belong to C⋉F0, there are univalent maps

ψ̂α⋉h : V → C and ψ̌α⋉h : V → C, with ψ̂α⋉h(0) = ψ̌α⋉h(0) = 0 and ψ̂′
α⋉h(0) = ψ̌′

α⋉h(0) = 1,
such that

(3.4)
RNP-t(α⋉ h)(z) = P ◦ ψ̂−1

α⋉h(e
2πiα̂z), ∀z ∈ e−2πiα̂ψ̂α⋉h(V ),

RNP-b(α ⋉ h)(z) = P ◦ ψ̌−1
α⋉h(e

2πiα̌z), ∀z ∈ e−2πiα̌ψ̌α⋉h(V ).

In terms of our earlier notations ĥ and ȟ in Equation (3.1),

ĥ = P ◦ ψ̂−1
α⋉h, ȟ = P ◦ ψ̌−1

α⋉h.(3.5)
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For α and α′ in A(r3) and h ∈ F0, consider the maps

Ω̂α,α′,h = ψ̂α⋉h ◦ ψ̂−1
α′⋉h : ψ̂α′⋉h(V ) → ψ̂α⋉h(V ),

Ω̌α,α′,h = ψ̌α⋉h ◦ ψ̌−1
α′⋉h : ψ̌α′⋉h(V ) → ψ̌α⋉h(V ).

Studying the Schwarzian derivatives of the above maps allows us to control the distances

dTeich(ĥ(α⋉ h), ĥ(α′ ⋉ h)) and dTeich(ȟ(α⋉ h), ȟ(α′ ⋉ h)). Let η̂α⋉h|dz| and η̌α⋉h|dz| denote
the hyperbolic metrics of constant curvature−1 on ψ̂α⋉h(V ) and ψ̌α⋉h(V ), respectively. Then

the hyperbolic norms of the Schwarzian derivatives DS Ω̂α,α′,h and DS Ω̌α,α′,h are defined as

∥

∥DS Ω̂α,α′,h

∥

∥

ψ̂α′⋉h(V )
= sup
z∈ψ̂α′⋉h(V )

|DS Ω̂α,α′,h(z)|
|η̂α⋉h(z)|2

,

∥

∥DS Ω̌α,α′,h

∥

∥

ψ̌α′⋉h(V )
= sup
z∈ψ̌α′⋉h(V )

|DS Ω̌α,α′,h(z)|
|η̌α⋉h(z)|2

.

Proposition 3.7. There exists a constant D1 such that for all h in F0 ∪ {Q0}, and all α, α′

in A+(r3), we have

‖DS Ω̂α,α′,h‖ψ̂α′⋉h(V ) ≤ D1|α− α′|, ‖DS Ω̌α,α′,h‖ψ̌α′⋉h(V ) ≤ D1|α− α′|.

Proof of Prop. 3.2 assuming Prop. 3.7. The domain V is bounded by a smooth curve, and

hence is a quasi-circle. On the other hand, by Theorem 2.9, ψ̂α⋉h : V → C and ψ̌α⋉h : V → C

have univalent extensions onto the domain U , which contains the closure of V in its interior.
This implies that there exists a constant K, depending only on V and mod (U \ V ), such

that the boundaries of ψ̂α⋉h(V ) and ψ̌α⋉h(V ) are K-quasi-circles.
By a classical result on the relation between Schwarzian derivative and the quasi-conformal

extension, see [Leh87, Chapter 2, Thm 4.1] or [Ahl63], there exists a constant ε(K) such that

Ω̂α,α′,h and Ω̌α,α′,h can be extended to quasi-conformal maps of C whose complex dilatations
µ̂ and µ̌, respectively, satisfy

‖µ̂‖∞ ≤
‖DS Ω̂α,α′,h‖ψ̂α′⋉h(V )

ε(K)
, ‖µ̌‖∞ ≤

‖DS Ω̌α,α′,h‖ψ̌α′⋉h(V )

ε(K)
.

By the definition of dTeich on F0, and Proposition 3.7, we conclude that Proposition 3.2 holds
with the constant c2,1 = D1/ε(K). �

The Schwarzian derivative satisfies the chain rule

(3.6)

∥

∥

∥
DS(ψ̂α⋉h ◦ ψ̂−1

α′⋉h)
∥

∥

∥

ψ̂α′⋉h(V )
=
∥

∥

∥
DS ψ̂α⋉h −DS ψ̂α′⋉h

∥

∥

∥

V
,

∥

∥

∥
DS(ψ̌α⋉h ◦ ψ̌−1

α′⋉h)
∥

∥

∥

ψ̌α′⋉h(V )
=
∥

∥

∥
DS ψ̌α⋉h −DS ψ̌α′⋉h

∥

∥

∥

V
.

By virtue of these relations, we may boil down Proposition 3.7 to the following statement.

Proposition 3.8. For every Jordan domain V ′ with V ⋐ V ′ ⋐ U , there exists a constant
D2 such that for all α ∈ A(r3), all h ∈ F0 ∪ {Q0}, and all z ∈ V ′, we have

a) |∂ψ̂α⋉h(z)/∂α| ≤ D2,
b) |∂ψ̌α⋉h(z)/∂α| ≤ D2.
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Proof of Prop. 3.7 assuming Prop. 3.8. By the estimates in Proposition 3.8, and the Cauchy
integral formula, there is a constant D′

2 such that for all z ∈ V we have
∣

∣

∣

∂

∂α
ψ̂′
α⋉h(z)

∣

∣

∣
≤ D′

2,
∣

∣

∣

∂

∂α
ψ̂′′
α⋉h(z)

∣

∣

∣
≤ D′

2,
∣

∣

∣

∂

∂α
ψ̂′′′
α⋉h(z)

∣

∣

∣
≤ D′

2,

and
∣

∣

∣

∂

∂α
ψ̌′
α⋉h(z)

∣

∣

∣
≤ D′

2,
∣

∣

∣

∂

∂α
ψ̌′′
α⋉h(z)

∣

∣

∣
≤ D′

2,
∣

∣

∣

∂

∂α
ψ̌′′′
α⋉h(z)

∣

∣

∣
≤ D′

2.

Also, by the Koebe distortion theorem, |ψ̂′
α⋉h|, |ψ̂′

α′⋉h|, |ψ̌′
α⋉h| and |ψ̌′

α′⋉h| are uniformly
bounded from above and away from zero, on V , with bounds depending only on mod U \V .
Combining these bounds together, and using Equation (3.6), one obtains the uniform bounds
in Proposition 3.7. �

The proof of Proposition 3.8 constitutes a series of calculations that will be presented in
Sections 3.4 to 3.8.

3.3. Preliminary estimates for the maps in F0.

Lemma 3.9. For every α ∈ A(1/2), the following hold:

a) for every h ∈ F0, α ⋉ h is defined on the ball B(0, 2e−π/
√
2/9) and is univalent on

the ball B(0, 4e−π/
√
2/27);

b) for every h ∈ F0, the critical point of α⋉ h, cpα⋉h, satisfies

4e−π/
√
2/27 ≤ |cpα⋉h| ≤ 4eπ/

√
2/3;

c) Qα is univalent on B(0, 8e−π/
√
2/27), and its critical point cpα satisfies

8e−π/
√
2/27 ≤ |cpα| ≤ 8eπ/

√
2/27.

Proof. a) Let h = P ◦ ϕ−1, as in the definition of the class F0. Because E ⊂ B(0, 2),
B(0, 8/9) ⊂ V . Applying the Koebe 1/4-Theorem to the map z 7→ 9ϕ(8z/9)/8, one concludes
that B(0, 2/9) ⊆ ϕ(V ). Thus, B(0, 2/9) ⊂ Dom h.

The polynomial P is univalent on the ball B(0, 1/3) (which can be seen from the argu-
ment principle, for instance). By the above paragraph, ϕ is defined on the ball B(0, 2/3) ⊂
B(0, 8/9). Thus, we may apply the classical Koebe distortion theorem to the map z 7→
3ϕ(2z/3)/2, to conclude that ϕ(B(0, 1/3)) contains B(0, 4/27). (For the simplicity of calcu-
lations we have applied the Koebe Theorem to z 7→ 3ϕ(2z/3)/2 instead of z 7→ 9ϕ(8z/9)/8.)
This means that every map h ∈ F0 is univalent on the ball B(0, 4/27).

For α in A(1/2), | Imα| ≤
√
2/4. Composing with the rescalings at 0, the above paragraphs

imply that α⋉h must be defined on the ball (2/9)e−π/
√
2, and must be univalent on the ball

(4/27)e−π/
√
2.

b) The polynomial P has a unique critical point at −1/3 within V . By the Koebe distortion
theorem, applied to the map z 7→ 3ϕ(2z/3)/2, we conclude that |ϕ(−1/3)| ∈ [4/27, 4/3].
Recall that the critical point of h ∈ F0 is equal to ϕ(−1/3). Composing with the complex
rotations z 7→ e2πiαz, we conclude the bounds in Part b).

c) The unique critical point of Qα lies at −8e2πiα/27. Further details are left to the
reader. �
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Lemma 3.10. For every h ∈ F0, h
◦n(cph) tends to 0 as n tends to +∞, and 2 ≤ |h′′(0)| ≤ 7.

The above lemma is stated in [IS06, main theorem 1]. The uniform bound in the latter
part of the lemma also follows from the Area Theorem, since the conformal radius of the set
V is strictly larger than +1.

Proof of Proposition 2.1. Although the class of maps F0 is not compact (their domain of
definitions are quasi-circles), every sequence of maps in F0 has a sub-sequence which con-
verges, in the compact-open topology, to a holomorphic map with a non-degenerate parabolic
fixed point at 0. Indeed, as we saw in the proof of Lemma 3.9, the limiting map is defined
on B(0, 2/9), and by Lemma 3.10 the modulus of its second derivative at 0 belongs to the
interval [2, 7].

Every map h in the closure of F0, F0, has a non-degenerate parabolic fixed point at 0.
That is, a fixed point of order two. Every such h has an attracting and a repelling petal
covering a punctured neighbourhood of 0. Hence, h may not have any fixed point on the
union of the petals. Using Lemmas 3.9-a and 3.10, one may find a neighbourhood W of 0,
bounded by a smooth curve, such that every h ∈ F0 has a unique fixed point on the closure
of W .

By the Argument Principle, there is r1 ∈ (0, 1/2) such that for all α ∈ A(r1) and all
h ∈ F0, α ⋉ h has two fixed points in W , counted with multiplicity. As α 6= 0, 0 is a simple
fixed point of α ⋉ h, and hence, there must be another simple fixed point of α ⋉ h within
W . �

In order to analyse the dependence of ĥ on α we need to study the definitions of RNP-t and
RNP-b in detail. For h ∈ F0 and α ∈ A+(+∞), it is convenient to denote (α⋉ h) by hα, that
is,

hα(z) = h(e2πiαz), z ∈ e−2πiαDom(h).

This is consistent with the notation Qα(z) = Q0(e
2πiαz). For h in F0∪{Q0} and α in A+(r2),

Proposition 2.2 guarantees the existence of a Jordan domain Pα⋉h, and a conformal change
of coordinate

Φα⋉h : Pα⋉h → C,

which conjugates hα to the translation by +1. We aim to study the dependence of Φα⋉h on
α. It is convenient to do this in a certain coordinate called the pre-Fatou coordinate, as we
discuss in the next section.

3.4. The top pre-Fatou coordinate. Every map hα in A+(r1)⋉F0 or in A+(r1)⋉ {Q0},
may be written of the form

(3.7) hα(z) = z + z(z − σα⋉h)uα⋉h(z),

where uα⋉h is a holomorphic function defined on Dom hα which is non-zero at 0 and σα⋉h.
As α→ 0, σα⋉h → 0, and we may identify a holomorphic function u0⋉h such that

(3.8) h0(z) = z + z2u0⋉h(z),

with u0⋉h(0) 6= 0. By pre-compactness of the class F0, and the uniform bound in Lemma 3.10,
|uα⋉h(0)| is uniformly bounded from above and away from 0. More precisely, there is a
constant D3, independent of α in A+(r1) ∪ {0} and h in F0 ∪ {Q0}, such that

(3.9) D−1
3 ≤ uα⋉h(0) ≤ D3.
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Differentiating Equation (3.8) at 0 and σα⋉h provides us with the formulas:

(3.10) σα⋉h = (1 − e2πiα)/uα⋉h(0), h
′
α(σα⋉h) = 1 + σα⋉huα⋉h(σα⋉h).

In particular, there is a constant D4 such that for all α ∈ A+(r1) and h ∈ F0∪{Q0}, we have

(3.11)
1

D4
|α| ≤ |σα⋉h| ≤ D4|α|.

Following [Shi98], we consider the covering map τα⋉h : C → Ĉ \ {0, σα⋉h}, defined as

(3.12) τα⋉h(w) =
σα⋉h

1− e−2πiαw
,

where Ĉ denotes the Riemann sphere. We have,

τα⋉h(w + α−1) = τα⋉h(w), lim
Im(αw)→+∞

τα⋉h(w) = 0, lim
Im(αw)→−∞

τα⋉h(w) = σα⋉h.

Also, τα⋉h maps Z/α to the point at infinity in Ĉ.

Lemma 3.11. For all h ∈ F0 ∪ {Q0} and all α in A+(r1), we have the following estimates

a) if Im(αw) > 0, then

|τα⋉h(w)| ≤ D4
|α|

e2π Im(αw) − 1
;

b) if Im(αw) < 0, then

|τα⋉h(w)− σα⋉h| ≤ D4
|α|e2π Im(αw)

1− e2π Im(αw)
.

Proof. By Equation (3.11), for w with Im(αw) > 0,

|τα⋉h(w)| ≤ D4|α|
1

|1 − e−2πiαw| ≤ D4|α|
1

e2π Im(αw) − 1
.

Similarly, for w with Im(αw) < 0,

|τα⋉h(w)− σα⋉h| ≤ |σα⋉h|
|e−2πiαw|

|1− e−2πiαw| ≤ D4|α|
e2π Im(αw)

1− e2π Im(αw)
. �

We may lift hα : Pα⋉h → C via τα⋉h to a holomorphic map

Fα⋉h : τ−1
α⋉h(Pα⋉h) → C,

which is determined upto an additive constant in Z/α. Since there are no pre-images of 0
and σα⋉h in Pα⋉h, Fα⋉h takes a finite value at every point in τ−1

α⋉h(Pα⋉h). Being a lift, for
any choice of the additive constant in Z/α, we must have

(3.13) hα ◦ τα⋉h(w) = τα⋉h ◦Fα⋉h(w), Fα⋉h(w+1/α) = Fα⋉h(w)+1/α, w ∈ τ−1
α⋉h(Pα⋉h).

Indeed, we have a formula for Fα⋉h, in terms of uα⋉h in (3.7),

(3.14) Fα⋉h(w) = w +
1

2πiα
log
(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

, with z = τα⋉h(w).
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A choice of the branch of log in the above formula corresponds to a choice of the additive
constant in Z/α. In this paper, we work with the branch satisfying Im log(·) ⊆ (−π,+π), in
order to guarantee

(3.15) lim
Im(αw)→+∞

|Fα⋉h(w)− (w + 1)| = 0.

This can be verified using Equation (3.10). Let P̂α⋉h denote the connected component of
τ−1
α⋉h(Pα⋉h) which separates 0 and 1/α. The unique critical point of hα, which lies on the
boundary of Pα⋉h, lifts under τα⋉h to a 1/α-periodic set of points. There is a unique point

in this set which lies on the boundary of P̂α⋉h. This is denoted by ĉpα⋉h.
For r ∈ (0,+∞), define the set

Θα(r) = int
(

C \ ∪n∈ZB(n/α, r)
)

.

Lemma 3.12. There are constants r′3 > 0, D5, and D6 such that for all h ∈ F0 ∪ {Q0} and
α ∈ A+(r′3), Fα⋉h is defined and univalent on Θα(D5) and satisfies the following properties:

a) for all w ∈ Θα(D5),

|Fα⋉h(w)− (w + 1)| ≤ 1/4, |F ′
α⋉h(w) − 1| ≤ 1/4;

b) for all w ∈ Θα(D5) with Im(αw) > 0, we have

|Fα⋉h(w)− (w + 1)| ≤ D6|τα⋉h(w)|, |F ′
α⋉h(w) − 1| ≤ D6|τα⋉h(w)|;

c) for all w ∈ Θα(D5) with Im(αw) < 0, we have

|Fα⋉h(w)− w +
1

2πiα
log h′α(σα⋉h)| ≤ D6|τα⋉h(w)− σα⋉h|,

|F ′
α⋉h(w) − 1| ≤ D6|τα⋉h(w)− σα⋉h|.

Proof. By Equation (3.11), there is δ0 ∈ (0, r1] such that for all α ∈ A+(δ0) and every h

in F0 ∪ {Q0}, σα⋉h ∈ B(0, 2e−π/
√
2/27). Then, there is a constant C1 > 0 such that for

all α in A+(δ0) and h in F0 ∪ {Q0}, τα⋉h(Θα(C1)) is contained in B(0, 4e−π/
√
2/27). By

Lemma 3.9, hα is univalent on B(0, 4e−π/
√
2/27). Thus, there are no pre-image of 0 and

σα⋉h within B(0, 4e−π/
√
2/27), except 0 and σα⋉h. This implies that there is a lift of hα

defined on Θα(C1), which is holomorphic and one-to-one. Moreover, we may choose the lift

which agrees with the branch in Equation (3.14), on P̂α⋉h ∩Θα(C1).
We need to repeat the previous paragraph, with more explicit constants, so that the

inequalities in part (a) hold. By the pre-compactness of the class F0, there is a constant
C2, independent of α and h, such that for all z ∈ τα⋉h(Θα(C1)), |uα⋉h(z)| ≤ C2. Choose
δ1 ∈ (0, δ0] such that 4δ1D4C2 < 1, where D4 is the constant in Equation (3.11). This
implies that for all α ∈ A+(δ1) and all h ∈ F0 ∪ {Q0}, |σα⋉h| ≤ δ1D4 < 1/(4C2). Now,
there is C3 ≥ C1 such that for all α ∈ A+(δ1), all h ∈ F0 ∪ {Q0}, and all w ∈ Θα(C3),
|τα⋉h(w)| ≤ 1/(2C2). Putting these together, we have

(3.16)
∣

∣

∣

σα⋉huα⋉h(z)

1 + zuα⋉h(z)

∣

∣

∣
≤ D4|α|C2

1/2
≤ 2D4δ1C2 < 1/2, ∀z ∈ τα⋉h(Θα(C3)).

This guarantees that 1 − σα⋉huα⋉h(z)/(1 + zuα⋉h(z)) is away from the negative real axis
(−∞, 0]. In particular, the branch of log with Im log(·) ⊆ (−π, π) is defined in formula (3.14).
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Similarly, we have

(3.17) |σα⋉huα⋉h(σα⋉h)| ≤ D4δ1C2 < 1/2.

Thus, by Equation (3.10), h′α(σα⋉h) is away from the negative real axis as well. In particular,
the same branch of log is defined at h′α(σα⋉h).

We may now use the formula in (3.14) for Fα⋉h in order to prove the inequalities in the
lemma. With z = τα⋉h(w), we have

(3.18)

|Fα⋉h(w) − w − 1| =
∣

∣

∣

1

2πiα
log
(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− 1
∣

∣

∣

=
1

2π|α|
∣

∣

∣
log
(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− log e2πiα
∣

∣

∣

Let us define C4 as the maximum of the function x 7→ | log′(x)| = |1/x|, for x in the set

B(1, 2D4C2δ1) ∪ {1/x | x ∈ B(1, C2D4δ1) ∪ {e2παi | α ∈ A+(δ1)}.

Using e2πiα = 1− σα⋉huα⋉h(0) from (3.10), and (3.16), we have
(3.19)
∣

∣

∣
log
(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− log e2πiα
∣

∣

∣
≤ C4

∣

∣

∣

(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− e2πiα
∣

∣

∣

= C4

∣

∣

∣

(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− (1− σα⋉huα⋉h(0))
∣

∣

∣

= C4|σα⋉h|
∣

∣

∣

uα⋉h(z)

(1 + zuα⋉h(z))
− uα⋉h(0)

∣

∣

∣

≤ C4D4|α|C5|z|.

A uniform constant C5 in the above equation exists because of the pre-compactness of F0.
Now, we may choose r′3 ∈ (0, δ1], and then choose C6 ≥ C3 such that for all α ∈ A+(r′3), all

h in F0 ∪{Q0}, and all z ∈ τα⋉h(Θα(C6)), we have C4D4C5|z|/(2π) ≤ 1/4. Then, combining
(3.18) and (3.19), we conclude the first inequalities of Parts a and b.

Using z = τα⋉h(w), and h
′
α(σα⋉h) = 1 + σα⋉huα⋉h(σα⋉h) from (3.10), we have

(3.20)
∣

∣

∣
Fα⋉h(w) − w+

1

2παi
log h′α(σα⋉h)

∣

∣

∣

=
∣

∣

∣

1

2παi
log

(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− 1

2πiα
log

1

1 + σα⋉huα⋉h(σα⋉h))

∣

∣

∣

≤ C4

2π|α|
∣

∣

∣

(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− 1

1 + σα⋉huα⋉h(σα⋉h)

∣

∣

∣
.
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On the other hand,
(3.21)

∣

∣

∣

(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− 1

1 + σα⋉huα⋉h(σα⋉h)

∣

∣

∣

≤ |z − σα⋉h| sup
{
∣

∣

∣

∣

d

dy

(

1 + (y − σα,h)uα⋉h(y)

1 + yuα⋉h(y)

)
∣

∣

∣

∣

; y = tσα⋉h + (1− t)z, t ∈ (0, 1)

}

= |z − σα⋉h||σα⋉h| sup
{∣

∣

∣

∣

uα⋉h(y)
2 − u′α⋉h(y)

(1 + yuα⋉h(y))2

∣

∣

∣

∣

; y = tσα⋉h + (1− t)z, t ∈ (0, 1)

}

≤ |z − σα⋉h|D4|α|C′
5.

The constant C′
5 in the last inequality depends only on the class F0. Combining (3.20) and

(3.21), we obtain the first inequality in Part c.
To prove the uniform bounds for the derivatives in Parts a, b, and c, one may use the

Cauchy Integral formula for the first derivatives, at points in Θα(C6 + 1). This finishes the
proof of the proposition by introducing D5 = C6+1 and D6 as the maximum of C4D4C5/(2π)
and C4D4C

′
5/(2π). �

Lemma 3.13. There exists a constant D7 such that for all α, α′ ∈ A+(r′3) and all h ∈
F0 ∪ {Q0} we have the following inequalities:

a) for all w ∈ Θα(D5) with Im(αw) > 0,

|Fα⋉h(w)− Fα′⋉h(w)| ≤ D7|α− α′||τα⋉h(w)|;

b) for all w ∈ Θα(D5) with Im(αw) < 0,

|Fα⋉h(w) − Fα′⋉h(w)| ≤ D7|α− α′|.

Proof. Consider the continuous function B1 : C\ (−∞,−1] → C defined through log(1+x) =
xB1(x), and B2(α,w), for α ∈ A+(r′3) and w ∈ Θα(D5), by the formula

B2(α,w) =
(1− e−2παi)

α

( uα⋉h(z)

uα⋉h(0)(1 + zuα⋉h(z))
− 1
)

, z = τα⋉h(w).

In the proof of Lemma 3.12 we chose r′3 and D5 so that for z ∈ τα⋉h(Θα(D5)), 1 + zuα⋉h(z)
is uniformly away from 0. Combining this with the pre-compactness of the class F0, we have

|B2(α,w)| = O(|z|) = O(|τα⋉h(w)|),
∣

∣

∣

∣

B2(α,w)

τα⋉h(w)
− B2(α

′, w)

τα′⋉h(w)

∣

∣

∣

∣

= O(|α − α′|),

for some uniform constants in O.
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Let w ∈ Θα(D5). Using the formulas (3.10) and (3.14),

Fα⋉h(w) − w − 1 =
1

2παi
log

(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

− 1

2παi
log e2παi

=
1

2παi
log

((

1−
(

1− e2πiα

uα⋉h(0)

)

uα⋉h(z)

1 + zuα⋉h(z)

)

e−2παi

)

=
1

2παi
log

(

e−2πiα +

(

1− e−2πiα

uα⋉h(0)

)

uα⋉h(z)

1 + zuα⋉h(z)

)

=
1

2παi
log

(

1 + (1− e−2παi)

(

uα⋉h(z)

uα⋉h(0)(1 + zuα⋉h(z))
− 1

))

.

=
1

2πi
B2(α,w)B1(αB2(α,w)).

Define the set
O = ∂Θα(D5) ∪ {w ∈ Θα(D5) | Im(αw) = 0}.

For α′ sufficiently close to α, |τα⋉h(w)|/|τα′⋉h(w)| is uniformly bounded from above and away
from 0, independent of w ∈ O and h ∈ F0. For w ∈ O,

|Fα⋉h(w) − Fα′⋉h(w)| =
1

2π

∣

∣B2(α,w)B1(αB2(α,w)) −B2(α
′, w)B1(α

′B2(α
′, w))

∣

∣

≤ 1

2π
|B2(α,w)|

∣

∣B1(αB2(α,w)) −B1(α
′B2(α

′, w))
∣

∣

+
1

2π
|B1(α

′B2(α
′, w))|

∣

∣B2(α,w) −B2(α
′, w)

∣

∣

≤ C|τα⋉h(w)||α − α′|+ C′|α− α′||τα⋉h(w)|.
The constants C and C′ depend only on the class F0. Below we use the maximum principle
in the w variable in order to prove the estimates in (a) and (b).

By the above equation, the estimate in (a) holds on ∂{w ∈ Θα(D5) | Im(αw) > 0}. It also
holds as Im(αw) → +∞, since |Fα⋉h(w) − Fα′⋉h(w)| → 0 by Equation (3.15). This implies
that the uniform bound must hold for all w in Θα(D5) with Im(αw) > 0.

On {w ∈ O | Im(αw) ≤ 0}, |τα⋉h(w)| is uniformly bounded from above. Hence, by the
above equation, |Fα⋉h(w)− Fα′⋉h(w)| is bounded by a uniform constant times |α− α′|. We
need to look at the asymptotic behaviour of this difference as Im(αw) → −∞. That is,

lim
Im(αw)→−∞

|Fα⋉h(w)− Fα′⋉h(w)|

=

∣

∣

∣

∣

1

2παi
log

(

1− σα⋉huα⋉h(σα⋉h)

1 + σα⋉huα⋉h(σα⋉h)

)

− 1

2πα′i
log

(

1− σα′⋉huα′⋉h(σα′⋉h)

1 + σα′⋉huα′⋉h(σα′⋉h)

)∣

∣

∣

∣

=
∣

∣

∣

1

2παi
log(1 + σα⋉huα⋉h(σα⋉h))−

1

2πα′i
log(1 + σα′⋉huα′⋉h(σα′⋉h))

∣

∣

∣

≤ C′′|α− α′|,
for some constant C′′ depending only on the class F0. By the maximum principle, the uniform
bound in (b) must hold for all w ∈ Θα(D5) with Im(αw) < 0. �

Recall that the map α ⋉ h has a unique critical point in its domain of definition. This
point may be lifted by τα⋉h to a critical point for Fα⋉h which lies on ∂P̂α⋉h. We denote this



28 DAVOUD CHERAGHI AND MITSUHIRO SHISHIKURA

point by ĉpα⋉h. By Proposition 2.2, several iterates of ĉpα⋉h under Fα⋉h remain in P̂α⋉h,
and there is the first moment when an iterate exits P̂α⋉h. Once the orbit exits this set, it

falls in the connected component of C \ P̂α⋉h containing 1/α. In particular, by Lemma 3.12,
there is the smallest iα⋉h ∈ N such that

ReF
◦iα⋉h

α⋉h (ĉpα⋉h) ∈ (
√
2D5,

√
2D5 + 2).

Here we are assuming that Reα−1 ≥ 2
√
2D5 + 2 so that such a point exists. This can be

guaranteed by assuming that r′3 is small enough.
By the pre-compactness of A+(r′3)⋉F0, iα⋉h is uniformly bounded from above independent

of α and h. The integer iα⋉h may be chosen so that it is locally constant near a given
α ∈ A+(r′3) and h ∈ F0. We set the notation

vα⋉h = F
◦iα⋉h

α⋉h (ĉpα⋉h).

This point shall be used as a reference point for the normalisation of a number of maps we
aim to introduce in order to study the dependence of Φα⋉h on α.

Lemma 3.14. There exists a constant D8 such that for all α, α′ ∈ A+(r′3) and all h ∈
F0 ∪ {Q0}, we have

|vα⋉h − vα′⋉h| ≤ D8|α− α′|.

Proof. By the definition of Fα⋉h, vα⋉h is the pre-image of h
◦iα⋉h
α (cpα⋉h) = h

◦(iα⋉h−1)
α (−4/27).

Also, by the pre-compactness of the class F0, |h◦(iα⋉h−1)
α (−4/27)| is uniformly bounded from

above and away from 0. Then, the uniform bound in the lemma may be obtained by a
argument similar to the one in the proof of Lemma 3.13. �

3.5. Quasi-conformal Fatou coordinates. Consider the univalent map

(3.22) Lα⋉h = τ−1
α⋉h ◦ Φ−1

α⋉h : Φα⋉h(Pα⋉h) → P̂α⋉h,

where τ−1
α⋉h is the inverse of the map τα⋉h : P̂α⋉h → Pα⋉h. Since Φα⋉h conjugates α⋉ h to

the translation by +1, for every ξ ∈ Φα⋉h(Pα⋉h) with ξ + 1 ∈ Φα⋉h(Pα⋉h), we have

(3.23) Lα⋉h(ξ + 1) = Fα⋉h(Lα⋉h(ξ)).

The map Lα⋉h may be extended onto the boundary of Φα⋉h(Pα⋉h). It follows that Lα⋉h(0) =
ĉpα⋉h. Then, by the above functional equation, Lα⋉h(iα⋉h) = vα⋉h, where iα⋉h and vα⋉h
are defined at the end of Section 3.4. Let Σ2 denote the set of w ∈ C such that either

arg(w −
√
2D5) ∈ [−3π/4, 3π/4] + 2πZ,

or

arg(w − 1/α+
√
2D5) ∈ [π/4, 7π/4] + 2πZ.

Using (3.23) and Lemma 3.12-(a), one may extend L−1
α⋉h to a univalent map

L−1
α⋉h : Σ2 → C.

One may refer to [Che19] for a more detailed discussion on extending the domain of L−1
α⋉h.
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Lemma 3.15. There is a constant D9, independent of α and h, such that for all w in Σ2 we
have

1/D9 ≤ |(L−1
α⋉h)

′(w)| ≤ D9.

Moreover, as Imw → +∞ within Σ2, (L
−1
α⋉h)

′(w) → +1.

Proof. First assume w ∈ Σ2 so that B(w, 3/2) ⊆ Σ2. By the Koebe distortion theorem
applied to L−1

α⋉h on B(w, 3/2) we know that L−1
α⋉h is uniformly close to a (complex) linear

map on the strictly smaller ball B(w, 5/4). By Lemma 3.12-a, |Fα⋉h(w) − w − 1| ≤ 1/4.
Hence w and Fα⋉h(w) lie in B(w, 5/4), and are mapped by L−1

α⋉h to a pair of points apart

by +1. This implies that (L−1
α⋉h)

′(w) must be uniformly bounded from above and away from
zero.

For w near the vertical line Rew = Re(1/(2α)) and with Imw large, there is a ball of
radius comparable to Imw, centred at w, which is contained in Σ2. By the Koebe distortion
theorem, L−1

α⋉h tends to a (complex) linear map on B(w, 3/2), as Imw → +∞. Meanwhile,
the points w and Fα⋉h(w) that are nearly apart by one, are mapped to two points exactly
apart by one. This implies that (L−1

α⋉h)
′(w) → 1 as Imw → +∞.

An arbitrary w ∈ Σ2 marches under the iterates of Fα⋉h to a point near the vertical
line Rew = Re(1/(2α)), where (L−1

α⋉h)
′ is uniformly bounded from above and away from

zero. Moreover, this derivative tends to +1 as Imw → +∞. By the uniform estimate in
Lemma 3.12-a, the number of forward or backward iterates required to reach the proximity
of the vertical line is linear in Imw. Moreover, |F ′

α⋉h| is uniformly bounded from above and
away from 0 on Σ2, and also F ′

α⋉h tends to +1 exponentially fast as Imw → +∞. Using this

and the functional equation (3.22), we conclude that (L−1
α⋉h)

′(w) is uniformly bounded from
above and away from zero, and must tend to +1 as Imw → +∞ within Σ2. �

Remark 3.16. The proof of the above lemma provides us with a uniform bound on |(L−1
α⋉h)

′−1|
of order 1/ Imw. An exponentially decaying bound on |(L−1

α⋉h)
′ − 1| is obtained in [Che13],

which requires more involved analysis. We do not need that finer estimate here.

We shall analyse the dependence of Lα⋉h on α by comparing it to two quasi-conformal
changes of coordinates denoted by H1

α⋉h and H2
α⋉h. For α ∈ A+(r′3) and h in F0 ∪ {Q0},

define the map

H1
α⋉h : {ζ ∈ C | Re ζ ∈ [0, 1]} → Θα(D5) ⊆ Dom Fα⋉h

as

H1
α⋉h(ζ) = (1− Re ζ)(vα⋉h + i Im ζ) + (Re ζ)Fα⋉h(vα⋉h + i Im ζ).

When Re ζ = 0, we have

H1
α⋉h(ζ + 1) = Fα⋉h(H

1
α⋉h(ζ)).

We have normalised H1
α⋉h by H1

α⋉h(0) = vα⋉h.

Lemma 3.17. The map H1
α⋉h is quasi-conformal and its complex dilatation satisfies

∣

∣

∣
∂ζH

1
α⋉h(ζ)/∂ζH

1
α⋉h(ζ)

∣

∣

∣
≤ 1/3, ∀ζ ∈ Dom H1

α⋉h.
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Proof. It follows Lemma 3.12-a that H1
α⋉h is a homeomorphism. The first partial derivatives

of H1
α⋉h exist and are given by

(3.24)
∂ζH

1
α⋉h(ζ) =

(

Fα⋉h(vα⋉h + i Im ζ)− (vα⋉h + i Im ζ) + 1 + Re ζ(F ′
α⋉h(vα⋉h + i Im ζ)− 1)

)

/2

∂ζH
1
α⋉h(ζ) =

(

Fα⋉h(vα⋉h + i Im ζ)− (vα⋉h + i Im ζ)− 1− Re ζ(F ′
α⋉h(vα⋉h + i Im ζ) − 1)

)

/2.

By the estimates in Lemma 3.12, the complex dilatation of H1
α⋉h satisfies the bound in the

lemma. Evidently, H1
α⋉h is absolutely continuous on lines. �

By the formulas in (3.24), and Lemma 3.12-(b)-(c), we have

– if ImH1
α⋉h(ζ) ≥ 0, then

(3.25)
|∂ζH1

α⋉h(ζ)| ≤ D6|τα⋉h(vα⋉h + i Im ζ)|,
|∂ζH1

α⋉h(ζ) − 1| ≤ D6|τα⋉h(vα⋉h + i Im ζ)|,

– if ImH1
α⋉h(ζ) ≤ 0, then

(3.26)

∣

∣

∣
∂ζH

1
α⋉h(ζ) +

1

2
+

1

4παi
log h′α(σα⋉h)

∣

∣

∣
≤ D6|τα⋉h(vα⋉h + i Im ζ)− σα⋉h|,

∣

∣

∣
∂ζH

1
α⋉h(ζ) −

1

2
+

1

4παi
log h′α(σα⋉h)

∣

∣

∣
≤ D6|τα⋉h(vα⋉h + i Im ζ)− σα⋉h|.

Define the homeomorphism

G1
α⋉h = L−1

α⋉h ◦H1
α⋉h : {ζ ∈ C | Re ζ ∈ [0, 1]} → Φα⋉h(Pα⋉h).

Using the complex chain rule, Lemma 3.15, and (3.25)-(3.26), we obtain:

– if ImH1
α⋉h(ζ) ≥ 0, then

(3.27) |∂ζG1
α⋉h(ζ)| ≤ D6D9|τα⋉h(vα⋉h + i Im ζ)|,

– if ImH1
α⋉h(ζ) ≤ 0, then

(3.28)
∣

∣

∣∂ζG
1
α⋉h(ζ) +

1

2
+

1

4παi
log h′α(σα⋉h)

∣

∣

∣ ≤ D6D9|τα⋉h(vα⋉h + i Im ζ)− σα⋉h|.

Note that the chain rule does not automatically give us a similar upper bound on |∂ζG1
α⋉h−1|.

However, it implies that

(3.29) |(G1
α⋉h)

′| = O(1), and lim
Im ζ→+∞

(G1
α⋉h)

′(ζ) = 1,

with a uniform constant in O independent of α and h.
We do not a priori know the image of the map G1

α⋉h, except that when Re ζ = 0, we must
have

(3.30) G1
α⋉h(ζ + 1) = G1

α⋉h(ζ) + 1.

However, (3.27), (3.28), and (3.30) make this map to be almost an affine one. The precise
statement is formulated in the next lemma.
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Lemma 3.18. There exists a constant D10, independent of α and h, such that for all ζ with
Re ζ ∈ [0, 1] and Im ζ ≥ −2,

|G1
α⋉h(ζ)− ζ| ≤ D10(1 − log |α|).

Moreover, limIm ζ→+∞(G1
α⋉h(ζ)− ζ) exists and is a finite number.

Proof. Fix real numbers δ1 and δ2 such that δ2 > δ1 + 1 ≥ 1, and define the set

A = {ζ ∈ C | Re ζ ∈ [0, 1], Im ζ ∈ [δ1, δ2]}.
By the uniform bound in (3.27), we have

(3.31)
∣

∣

∣

∫∫

A

∂ζG
1
α⋉h(ζ) dζdζ

∣

∣

∣
≤ D6D9

∫∫

A

|τα⋉h(vα⋉h + i Im ζ)| dζdζ.

By the pre-compactness of F0, |vα⋉h| is uniformly bounded from above, independent of α
and h. By Lemma 3.11, there is a constant C, independent of α and h, such that the right
hand side of the above inequality is bounded by

(3.32)

C

(

1 + |α|
∫ δ2

δ1+1

1

e2πt|α| cos(argα) − 1
dt

)

≤ C

(

1 + |α| 1

2π|α| cos(argα)

(

(

log(1 − e−2πt|α| cos(argα)
) ∣

∣

∣

t=δ2

t=δ1+1

))

≤ C

(

1 +
1

π
√
2

(

(

log(1− e−2πt|α| cos(argα)
) ∣

∣

∣

t=+∞

t=δ1+1

))

≤ C

(

1− 1

π
√
2
log(1− e−2π(δ1+1)|α| cos(argα))

)

.

In the above inequalities we have used argα ∈ [−π/4, π/4] and so cos(argα) ≤
√
2/2. Since

r1 ≥ 0, we have

1− 1

π
√
2
log
(

1− e−2π(δ1+1)|α| cos(argα)
)

≤ 1− 1

π
√
2
log
(

1− e−2π|α| cos(argα)
)

≤ C′(1−log |α|),

for some explicit constant C′ independent of α. Combining the above inequalities we conclude
that the right hand side of Equation (3.31) is bounded from above by a uniform constant
times 1− log |α|.

On the other hand, by the Green’s integral formula, and using the relation in Equa-
tion (3.30) on the vertical side of A where Re ζ = 0, the integral in the left hand side of (3.31)
is equal to

(3.33)

∮

∂A

G1
α⋉h(ζ) dζ = (δ2 − δ1)i−

∫ 1

0

G1
α⋉h(δ2i+ t) dt+

∫ 1

0

G1
α⋉h(δ1i+ t) dt.

The derivative |∂ζG1
α⋉h(ζ)| is uniformly bounded from above independent of α and h, because

of the bounds in Equations (3.25)-(3.26) and Lemma 3.15. This implies that

∣

∣

∣

∫ 1

0

G1
α⋉h(δ2i+ t) dt−G1

α⋉h(δ2i)
∣

∣

∣
,
∣

∣

∣

∫ 1

0

G1
α⋉h(δ1i+ t) dt−G1

α⋉h(δ1i)
∣

∣

∣

are uniformly bounded from above, independent of α and h.
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Let us choose δ1 = 0 and a point ζ ∈ A with Re ζ = 0. By the above arguments we
conclude that |G1

α⋉h(ζ) − ζ| ≤ C′(1 − log |α|) + |G1
α⋉h(0)|. However, |G1

α⋉h(0)| = |iα⋉h|
is uniformly bounded from above, independent of α and h. This implies the desired upper
bound in the first part of the lemma at ζ. Now, the uniform bound in (3.29) may be used to
establish the first part of the lemma at other points ζ ∈ Dom G1

α⋉h with Im ζ ≥ −2.
Let ζ1 and ζ2 be two points with Re ζ1 = Re ζ2 = 0 and δ2 = Im ζ2 > δ1 = Im ζ1. By the

asymptotic estimate in Equation (3.25) and in Lemma 3.15, ∂ζG
1
α⋉h(ζ) → 1 as Im ζ → +∞.

This implies that the integral in (3.33) tends to (ζ2−G1
α⋉h(ζ2))−(ζ1−G1

α⋉h(ζ1)) as Im ζ2 and
Im ζ1 tend to +∞. On the other hand, as δ2 and δ1 tend to +∞, the right hand side of the first
“ ≤” in (3.32) tends to 0. This means that the difference (ζ2 −G1

α⋉h(ζ2))− (ζ1 −G1
α⋉h(ζ1))

satisfies the Cauchy’s criterion, and hence the limit of (ζ − G1
α⋉h(ζ)) exists as Im ζ → +∞

along the line Re ζ = 0. Finally, since ∂ζG
1
α⋉h(ζ) → 1 as Im ζ → +∞ within Dom G1

α⋉h, the

limit must exist as Im ζ → +∞ within Dom G1
α⋉h. �

Proposition 3.19. There exists a constant D11 such that for all α ∈ A+(r′3), h ∈ F0∪{Q0},
and all ξ ∈ Dom Lα⋉h with Im ξ ≥ −2 we have

|Lα⋉h(ξ)− ξ| ≤ D11(1− log |α|).

Moreover, the limit limIm ξ→+∞ Lα⋉h(ξ)− ξ exists.

Proof. Recall thatH1
α⋉h(0) = vα⋉h, and |vα⋉h| is uniformly bounded from above independent

of α and h. This implies that |H1
α⋉h(ζ) − ζ| is uniformly bounded from above, independent

of α, h, and ζ ∈ Dom H1
α⋉h. Indeed, H1

α⋉h(ζ) − ζ converges to vα⋉h as Im ζ → +∞.
Combining with Lemma 3.18, we obtain the uniform bound on |Lα⋉h(ξ) − ξ| on the image
of G1

α⋉h. Finally, the functional relation in (3.22) and the estimates on Fα⋉h in Lemma 3.12
may be used to prove the proposition at points ξ ∈ Dom Lα⋉h with Im ξ ≥ −2. In the same
fashion, the latter part of the proposition follows from the latter part of Lemma 3.18. �

The quasi-conformal change of coordinate H1
α⋉h allows us to analyze the behavior of Lα⋉h

near the left hand side of Φα⋉h(Pα⋉h). For example, it shall allow us to study the spiraling
behavior of Φ−1

α⋉h(x + iy), as y tends to +∞ or to −∞, for small positive values of x. On
the other hand, we do not a priori know the size of Φα⋉h(Pα⋉h), say, its vertical width
in terms of 1/α. We also need to understand the behavior of Lα⋉h near the right side of
Φα⋉h(Pα⋉h). However, a large number of iterates of Fα⋉h, (about Re(1/α) near +i∞),

on the image of H1
α⋉h are needed to cover P̂α⋉h. For this reason, it is not possible to use

the functional equation (3.22) and the uniform estimates on Fα⋉h in Lemma 3.12 to derive
estimates on Lα⋉h near the right hand side of Φα⋉h(Pα⋉h). For this purpose we need to
define an alternative quasi-conformal change of coordinate for the right-hand side. But, the
issue here is that there is no reference point similar to vα⋉h near the right hand side of P̂α⋉h.
However, as Fα⋉h commutes with the translation by 1/α, we expect that the behavior of
Lα⋉h near the left hand side and the right hand side of Φα⋉h(Pα⋉h) should be similar in
nature. This is investigated through the quasi-conformal change of coordinate

H2
α⋉h : {ζ ∈ C | Re ζ ∈ [0, 1]} → Θα(D5) ⊆ Dom Fα⋉h

defined below.
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Figure 6. Schematic presentation of the quasi-conformal change of coor-
dinates H2

α⋉h. It is defined as interpolations of some analytic and quasi-
conformal mappings.

Recall that H1
α⋉h(0) = vα⋉h and |vα⋉h| is uniformly bounded from above. Since Fα⋉h is

uniformly close to the translation by one, and G1
α⋉h is quasi-conformal with a uniform bound

on its dilatation, independent of α and h, there is a constant t0 > 0 and a positive integer i
such that

∀ξ ∈ {t0i, 1 + t0i,−t0i, 1− t0i},ReF−i
α⋉h(Lα⋉h(ξ)) ∈ [−Re(1/α) +D5,−D5],

and for all ξ with Re ξ ∈ [0, 1] and | Im ξ| ≥ t0, F
−i
α⋉h(Lα⋉h(ξ)) is defined. Indeed, by making

t0 large enough, the four points F−i
α⋉h(Lα⋉h(t0i)), F

−i
α⋉h(Lα⋉h(t0i + 1)), F−i

α⋉h(Lα⋉h(−t0i)),
and F−i

α⋉h(Lα⋉h(−t0i+ 1)) become arbitrarily close to the vertices of a parallelogram whose
two sides converge to two horizontal segments of length one.
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Let us define the curves (see Figure 6)

γ1(t) = (
t0 − t

2t0
)F−i
α⋉h(Lα⋉h(−t0i)) + (

t0 + t

2t0
)F−i
α⋉h(Lα⋉h(t0i)), for t ∈ [−t0, t0];

γ2(t) = (1− t)F−i
α⋉h(Lα⋉h(t0i)) + tF−i

α⋉h(Lα⋉h((t0 + 1)i)), for t ∈ [0, 1]

γ3(t) = (1− t)F−i
α⋉h(Lα⋉h(−t0i)) + tF−i

α⋉h(Lα⋉h((−t0 − 1)i)), for t ∈ [0, 1]

γ4(s) = F−i
α⋉h(Lα⋉h(s+ (t0 + 1)i)), for s ∈ [0, 1];

γ5(s) = F−i
α⋉h(Lα⋉h(s+ (−t0 − 1)i)), for s ∈ [0, 1];

γ6(s) = (1− s)F−i
α⋉h(Lα⋉h(t0i)) + sF−i

α⋉h(Lα⋉h(1 + (t0 + 1)i)), for s ∈ [0, 1];

γ7(s) = (1− s)F−i
α⋉h(Lα⋉h(−t0i)) + sF−i

α⋉h(Lα⋉h(1 + (−t0 − 1)i)), for s ∈ [0, 1].

For t0 large enough, independent of α and h, the curves γ4, γ5, F
−i
α⋉h(Lα⋉h([0, 1] + t0i)) and

F−i
α⋉h(Lα⋉h([0, 1]−t0i)) are nearly horizontal. The curve γ6 has slope close to 1, and the curve
γ7 has slope close to −1. In particular, for large enough t0, the curves γ4 and γ6 intersect only
at their end points F−i

α⋉h(Lα⋉h(1+ (t0 +1)i)), wile the curves γ5 and γ7 intersect only at the

point F−i
α⋉h(Lα⋉h(1 − (t0 + 1)i)). The curves γ6 and F−i

α⋉h(Lα⋉h([0, 1] + t0i)) only intersect

at their staring points, and similarly the curves γ7 and F−i
α⋉h(Lα⋉h([0, 1]− t0i)) intersect only

at their starting points.
Define the map H2

α⋉h(s+ ti), for s ∈ [0, 1] and t ∈ R, as follows:






































F−i
α⋉h(Lα⋉h(s+ ti)), if |t| ≥ t0 + 1

(1− s)γ1(t) + sFα⋉h(γ1(t)), if |t| ≤ t0

( t−t0−s1−s )γ4(s) +
t0−t+1
1−s γ6(s), if s ∈ [0, 1], t ∈ [t0 + s, t0 + 1]

( s−1
t−t0−1 )γ6(t− t0) +

t−t0−s
t−t0−1Fα⋉h(γ2(t)), if t ∈ [t0, t0 + 1], s ∈ [t− t0, 1]

(−t−t0−s1−s )γ5(s) +
t0+t+1
1−s γ7(s), if s ∈ [0, 1], t ∈ [−t0 − s,−t0 − 1]

( s−1
t−t0−1 )γ7(t− t0) +

t−t0−s
t−t0−1Fα⋉h(γ3(t)), if t ∈ [−t0,−t0 − 1], s ∈ [t− t0, 1].

It follows from the above definition that

H2
α⋉h(1 + ti) = Fα⋉h(H

2
α⋉h(ti)), ∀t ∈ R.

Moreover, from the construction, one can see that the following lemma holds.

Lemma 3.20. The map H2
α⋉h is quasi-conformal on the strip Re ζ ∈ [0, 1] and the size of its

dilatation |∂ζH2
α⋉h/∂ζH

2
α⋉h| is uniformly bounded from above at almost every point on this

strip. Moreover, there is a constant D12 such that for all α, β in A(r′3), all h in F0 ∪ {Qα},
and all ζ with Re ζ ∈ [0, 1] we have

∣

∣H2
α⋉h(ζ)−H2

β,h(ζ)
∣

∣ ≤ D12|α− β|.

For c ∈ C, we denote the translation by c on the complex plane with

Tc(w) = w + c.

Since Fα⋉h is periodic of period 1/α, the quasi-conformal mapping T1/α◦H2
α⋉h also conjugates

the translation by one to the action of Fα⋉h. We shall compare the map Lα⋉h to this
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coordinate by studying the map

G2
α⋉h = T−1/α ◦ L−1

α⋉h ◦ T1/α ◦H2
α⋉h : {ζ ∈ C | Re ζ ∈ [0, 1]} → C.

By the periodicity of Fα⋉h and the functional equations for Lα⋉h and H2
α⋉h, we must have

G2
α⋉h(ζ + 1) = G2

α⋉h(ζ) + 1, whenever Re ζ = 0. We shall use this map to analyze the
conformal change of coordinate Lα⋉h near the right hand side of its domain of definition.
By the definition of this map, G2

α⋉h is quasi-conformal with |∂ζG2
α⋉h/∂ζG

2
α⋉h| uniformly

bounded from above. Moreover, it is normalised by making

(3.34) lim
Im ζ→+∞

| Im(G2
α⋉h(ζ) − ζ)| = 0.

The above normalisation, and the uniform bound on the dilatation of the map allows us to
prove a uniform bound on the dependence of this map on α.

Lemma 3.21. For every D′
13 > 0 there is a constant D13 such that for all α, β in A(r′3) and

all ζ with Re ζ ∈ [0, 1] and | Im ζ| ≤ D′
13 we have

a)

|G1
α⋉h ◦ (G1

β,h)
−1(ξ)− ξ| ≤ D13|α− β|.

b)

|G2
α⋉h ◦ (G2

β,h)
−1(ξ)− ξ| ≤ D13|α− β|.

Proof. Part a) Let µα⋉h denote the complex dilatation of the map G1
α⋉h. By Lemma 3.17,

|µα⋉h| is uniformly bounded from above, independent of α and h, by a constant < 1. The
complex dilation of the composition G1

α⋉h ◦ (G1
β,h)

−1 at ζ is given by the formula

µα⋉h − µβ,h
1− µβ,hµα⋉h

( ∂ζG
1
β,h(ζ)

|∂ζG1
β,h(ζ)|

)2

.

On the other hand, as G1
α⋉h = L−1

α⋉h ◦H1
α⋉h and Lα⋉h is holomorphic, by the chain rule, the

complex dilation of G1
α⋉h is equal to the complex dilatation of H1

α⋉h. Combining with the
above equation, and the formulas in Equation (3.24), we conclude that the size of the complex
dilation of G1

α⋉h ◦ (G1
β,h)

−1 is bounded from above by a uniform constant times |α− β|.
Recall that G1

α⋉h(0) = iα⋉h, and iα⋉h is locally constant. Thus, for α and β sufficiently

close, G1
α⋉h ◦ (G1

β,h)
−1(iα⋉h) = iα⋉h. By the classical results on the dependence of the

solution of the Beltrami equation on the Beltrami coefficient, see [AB60, Section 5.1], |G1
α⋉h ◦

(G1
β,h)

−1(ξ)− ξ|, for ξ in a compact set, is bounded from above by a uniform constant times

|α− β|. This finishes the proof of the first part.

Part b) The proof is similar to the one given for Part a, except that we use the normalisation
of the maps at infinity instead; Equation (3.34). �

3.6. Dependence of the Fatou coordinate on the linearity.

Proposition 3.22. For all D′
14 > 0 there exists a constant D14, independent of α and h,

such that

a) for all ξ in Dom Lα⋉h ∩B(0, D′
14)

| ∂
∂α

Lα⋉h(ξ)| ≤ D14,
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b) for all w in Dom L−1
α⋉h ∩B(0, D′

14),

| ∂
∂α

L−1
α⋉h(w)| ≤ D14.

c) for all ξ in (Dom (Lα⋉h)− 1/α) ∩B(0, D′
14),

| ∂
∂α

(T−1/α ◦ Lα⋉h ◦ T1/α)(ξ)| ≤ D14.

Proof. Part a) We have

|Lα⋉h(ξ)− Lβ,h(ξ)| ≤ |H1
α⋉h ◦ (G1

α⋉h)
−1(ξ)−H1

α⋉h ◦ (G1
β,h)

−1(ξ)|
+ |H1

α⋉h ◦ (G1
β,h)

−1(ξ) −H1
β,h ◦ (G1

β,h)
−1(ξ)|

≤ sup
z

|DH1
α⋉h| sup

ξ
|D(G1

α⋉h)
−1(ξ)||ξ −G1

α⋉h(G
1
β,h)

−1(ξ)|

+ |H1
α⋉h(z)−H1

β,h(z)|
≤ C|α− β|.

In the last line of the above equation we have used the uniform bound in Lemma 3.21, and
a uniform bound on the dependence of H1

α⋉h on α. The latter bound is obtained from the

definition of the map H1
α⋉h and the uniform bound on the dependence of the map Fα⋉h and

the point vα⋉h on α obtained in Lemmas 3.13 and 3.14.

Part b) With w = Lβ,h(ξ), we have

|L−1
α⋉h(w) − L−1

β,h(w)| = |L−1
α⋉h(Lβ,h(ξ))− L−1

α⋉h(Lα⋉h(ξ))|
≤ sup

w
|(L−1

α⋉h)
′(w)||Lα⋉h(ξ)− Lβ,h(ξ)|

≤ C′C|α− β|.
In the above inequalities, the uniform bound on |(L−1

α⋉h)
′(w)|, when w is restricted toB(0, D′

14),
may be obtained from the pre-compactness of the class of maps F0, and the continuous de-
pendence of Lα⋉h on α and h. The constant C is the one introduced in the proof of Part
a).

Part c) The argument here is similar to the one in part a) withe difference that we use the
maps H2

α⋉h and G2
α⋉h. That is, with w = H2

α⋉h(ζ), we have

|(T−1/α ◦ Lα⋉h ◦ T1/α)(ξ)− (T−1/β ◦ Lβ,h ◦ T1/β)(ξ)|
= |H2

α⋉h ◦ (G2
α⋉h)

−1(ξ)−H2
β,h ◦ (G2

β,h)
−1(ξ)|

≤ |H2
α⋉h ◦ (G2

α⋉h)
−1(ξ)−H2

α⋉h ◦ (G2
β,h)

−1(ξ)|
+ |H2

α⋉h ◦ (G2
β,h)

−1(ξ) −H2
β,h ◦ (G2

β,h)
−1(ξ)|

≤ sup
z

|DH2
α⋉h| sup

ξ
|D(G2

α⋉h)
−1(ξ)||ξ −G2

α⋉h(G
2
β,h)

−1(ξ)|

+ |H2
α⋉h(z)−H2

β,h(z)|
≤ C|α− β|,

for some constant C, independent of α and h. In the last line of the above inequalities we
have used the uniform bounds in Lemmas 3.15, 3.21. �
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3.7. Geometry of the petals.

Proof of Proposition 2.3. Let r3 be the constant r′3 introduced in Lemma 3.12. We shall
continue to use the notation α ⋉ h for the maps f in the class A+(r′3) ⋉ F0, introduced in
Equation (2.1). Recall the covering map τα⋉h defined in (3.12), the lift Fα⋉h of α⋉h defined
in Equation (3.14), and the univalent map Lα⋉h which conjugates the translation by one with
Fα⋉h. Then, Φ

−1
α⋉h is the same as the composition τα⋉h ◦ Lα⋉h.

Let us define xα⋉h as the supremum of the set of x ≥ 0 such that Lα⋉h has a univalent

extension onto the set (0, x) + iR, and Lα⋉h maps this infinite strip into Σ2 ∪ P̂α⋉h, where
Σ2 is defined before Lemma 3.15 and P̂α⋉h is the lift of Pα⋉h separating 0 from 1/α. By
Proposition 2.2, xα⋉h ≥ 2. Also, Lα⋉h(xα⋉h + iR) intersects the right hand side boundary
of Σ2 at some point whose imaginary part is uniformly close to Im(1/α).

Consider the sets

B1 = {ξ ∈ C | Re ξ ∈ [0, 1]}, B2 = {ξ ∈ C | Re ξ ∈ [xα⋉h − 1, xα⋉h]}.
We aim to show that the curve Lα⋉h(xα⋉h+ iR) is within a uniformly bounded distance from
a translation of the curve Lα⋉h(iR). Next we show that the translation constant is Re(1/α).
As Fα⋉h tends to the translation by one near +i∞, the functional equation (3.22) implies
that xα⋉h is uniformly close to Re(1/α).

There is a constant η > 0 such that every ξ ∈ B1 with |ξ| ≥ η, Lα⋉h(ξ) belongs to Σ2−1/α.
Indeed, by the pre-compactness of the class F0, η may be chosen independent of α and h.

The uniform estimate in Lemma 3.12 also hold on Σ2 − 1/α, since Fα⋉h is periodic of
period 1/α. This implies that for every Lα⋉h(ξ) with | Im ξ| ≥ η and Re ξ ∈ [0, 1], there is

jξ ∈ Z with F
◦jξ
α⋉h(Lα⋉h(ξ)) ∈ Lα⋉h(B2)− 1/α. For ξ ∈ B1 with |ξ| ≥ η, define the map

H(ξ) = L−1
α⋉h ◦ T1/α ◦ F ◦jξ

α⋉h ◦ Lα⋉h(ξ).
The map H may have discontinuities on its domain of definition, but since it commutes with
the translation by one, it induces a continuous map from the top and bottom ends of the
cylinder B1/Z to the cylinder B2/Z. By the pre-compactness of the class of maps Fα⋉h,
applied on a compact neighbourhood of 0, the map H may be extended to a quasi-conform
mapping from B1/Z to B2/Z, whose complex dilatation is uniformly bounded away from the
unit circle. Comparing the asymptotic expansions of the maps, near the top end ImH is
asymptotic to the translation by Im(1/α). Note that since H is conformal near the two ends
of the cylinder, it maps every vertical line in B1/Z to a curve in B2/Z, going from one end
to the other, and spirals around the cylinder by a uniformly bounded amount. This implies
that the lift of H to a map from C to C is uniformly close to a translation.

By the above paragraph, the map T1/α ◦F ◦jξ
α⋉h is uniformly close to a translation, as a map

from Lα⋉h(B1) to Lα⋉h(B2). Thus, F
◦jξ
α⋉h from Lα⋉h(B1) to T−1/α ◦Lα⋉h(B2) must be close

to a translation. However, since |jξ| is uniformly bounded form above for when Im ξ = η, and

each iterate of Fα⋉h is uniformly close to the translation by one, F
◦jξ
α⋉h must be uniformly

close to the identity map. This implies that, Lα⋉h(B2) is uniformly close to T1/α ◦Lα⋉h(B1).
By Proposition 3.19, the sets Lα⋉h(B1) to Lα⋉h(B2) are asymptotically vertical, and also

Fα⋉h tends to the translation by one near +i∞. Thus, the number iterates by Fα⋉h required
to go from Lα⋉h(B1) to Lα⋉h(B2) must be uniformly close to Re(1/α). By the functional
equation (3.22), xα⋉h is uniformly close to Re(1/α).
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Recall that τα⋉h is periodic of period 1/α. Finally, since Lα⋉h(xα⋉h+iR) is uniformly close
the Lα⋉h(iR)+Re(1/α), by subtracting a uniformly bounded number from xα⋉h, if necessary,
we may assume that τα⋉h is univalent on Lα⋉h((0, xα⋉h)+iR). Thus, the composition τα⋉h◦
Lα⋉h is univalent on the set (0, xα⋉h) + iR). This finishes the proof of the proposition. �

Proof of Proposition 2.4 – Part a). We continue to use the notation α⋉ h for the maps f in
A+(r′3) ⋉ F0. Recall that r3 is the constant r′3 obtained in Lemma 3.12. We shall use the
decomposition of Φ−1

α⋉h as τα⋉h ◦ Lα⋉h.
Let ξ = ξ1 + iξ2, and w = w1 + iw2 = Lα⋉h(ξ), with ξ1, ξ2, w1, and w2 in R. By

Proposition 3.19, for a fixed ξ1 ∈ (0,Re 1
α − k), as ξ2 tends to +∞, w1 tends to a finite

constant say w′
1, and ξ2 − w2 tends to a finite constant say w′

2. Indeed, we have

(3.35) |ξ1 − w′
1| ≤ D11(1 − log |α|), |w′

2| ≤ D11(1− log |α|),
where D11 is independent of α and h.

When ξ2 → +∞, |e−2πiαLα⋉h(ξ)| → +∞. Hence, e−2πiαLα⋉h(ξ) and −1 + e−2πiαLα⋉h(ξ)

have the same argument modulo 2π as ξ2 → +∞. Therefore,

lim
ξ2→+∞

(

arg(τα⋉h ◦ Lα⋉h(ξ)) + 2πξ2 Imα
)

= argσα⋉h + lim
ξ2→+∞

(

arg
1

1− e−2πiαLα⋉h(ξ)
+ 2πw2 Imα

)

+ lim
ξ2→+∞

2π(ξ2 − w2) Imα

= argσα⋉h + lim
ξ2→+∞

(

π − 2πw2 Imα+ 2πw1 Reα+ 2πw2 Imα
)

+ 2πw′
2 Imα

= argσα⋉h + π + 2πw′
1 Reα+ 2πw′

2 Imα

= argσα⋉h + 2πξ1 Reα+ π + 2π(w′
1 − ξ1)Reα+ 2πw′

2 Imα.

We define cα⋉h as π + 2π(w′
1 − ξ1)Reα + 2πw′

2 Imα. Since Reα ∈ (0, 1/2) and Imα ∈
[−

√
2/4,

√
2/4], by Equation (3.35), |cα⋉h| is bounded from above by a uniform constant

times (1− log |α|). �

Proof of Proposition 2.8– Part a). Recall the set Stα⋉h defined in Section 2.4. By the defini-

tion, Φα⋉h(S
t
α⋉h) is contained in the set {ξ ∈ C | Re ξ ∈ (0,Re 1

α−k)}. First we note that the
projection of this set onto the real line must have uniformly bounded diameter, independent
of α and h. That is because, by Theorem 2.9 and the Koebe distortion theorem, the set of
maps RNP-t(α ⋉ h), over all α ∈ A+(r3) and h ∈ F0 ∪ {Q0}, forms a compact class of map.
In particular, the pre-image of a straight ray landing at 0 under any of these maps, spirals at
most a uniformly bounded number of times about 0. Lifting this property by Expt, we con-
clude that Φα⋉h(S

t
α⋉h) must have a uniformly bounded horizontal width. As ktα⋉h is chosen

as the smallest positive integer satisfying Proposition 2.6, Φα⋉h(S
t
α⋉h) must be contained in

the set

{ξ ∈ C | Re ξ ∈ (Re
1

α
− k− δ,Re

1

α
− k)},

for some δ independent of α and h.
On the other hand, ktα⋉h is the number of iterates by Fα⋉h required to go from Lα⋉h ◦

Φα⋉h(S
t
α⋉h) to Lα⋉h({ξ ∈ C | Re ξ ∈ [1/2, 3/2]}) + 1/α. By Proposition 3.19, Lα⋉h ◦

Φα⋉h(Pα⋉h) is bounded by two curves that are asymptotically vertical near the top end.
Sine L′

α⋉h tends to +1 near the top, see Lemma 3.15, the width of the top end of Lα⋉h ◦
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Φα⋉h(Pα⋉h) tends to Re 1
α −k. By the same lemma, Lα⋉h(Φα⋉h(S

t
α⋉h)) is contained within

uniformly bounded distance from the left side of Lα⋉h ◦ Φα⋉h(Pα⋉h). The lift Fα⋉h is
uniformly close to the translation by one. Thus, the number of iterates by Fα⋉h required to
go from Lα⋉h ◦Φα⋉h(Sα⋉h) to Lα⋉h({ξ ∈ C | Re ξ ∈ [1/2, 3/2]})+1/α is uniformly bounded
from above. That is, ktα⋉h is uniformly bounded from above, independent of α and h. �

We shall prove the other half of the proposition, the uniform bound on kbf at the end of
Section 3.9.

3.8. Ecalle map and its dependence on α. Recall the notation hα = α⋉h, as well as let
Stα⋉h and Sbα⋉h denote the sectors Sthα

and Sbhα
, respectively, defined in Section 2.4. Similarly,

let ktα⋉h denote the positive integer introduced in Propositions 2.6, for the map f = hα. The
map

Etα⋉h = Φα⋉h ◦ h
◦ktα⋉h
α ◦ Φ−1

α⋉h : Φα⋉h(S
t
α⋉h) → Φα⋉h(Pα⋉h),

induces, via the projection Expt(ξ) = (−4/27)e2πiξ, the renormalisation RNP-t(α⋉h). Recall
the domains V ⋐ U introduced in Section 2. By Theorem 2.9, RNP-t(α⋉ h) has a restriction
to a domain that belongs to the class {−1/α} ⋉ F0. With the notations in Equation (3.4),
this implies that

e2πi/αψ̂α⋉h(V ) ⊆ Expt(Φα⋉h(S
t
α⋉h)).

By Theorem 2.9, ψ̂α⋉h has univalent extension onto U . Let V ′ be an arbitrary Jordan
neighbourhood of 0, cf. Proposition 3.8, such that

(3.36) V ⋐ V ′
⋐ U.

The set e2πi/αψ̂α⋉h(V
′) may, or may not, contain Expt(Φα⋉h(S

t
α⋉h)).

By the above paragraph, there is a connected set Xα⋉h ⊂ Φα⋉h(Pα⋉h), that is equal to the
set Φα⋉h(S

t
α⋉h) above some horizontal line, and projects under Expt onto V ′\{0}. Moreover,

the map Etα⋉h has holomorphic extension onto Xα⋉h with Eα⋉h(Xα⋉h) ⊂ Φα⋉h(Pα⋉h).
In the pre-Fatou coordinate, Eα⋉h : Xα⋉h → C corresponds to the map

Itα⋉h = Lα⋉h ◦ Etα⋉h ◦ L−1
α⋉h : Lα⋉h(Xα⋉h) → Dom Fα⋉h.

A key point here is that Iα⋉h is given by a uniformly bounded number of iterates of Fα⋉h
plus a translation. This is stated in the next lemma.

Lemma 3.23. There exists a constant D15 > 0 such that for all α ∈ A+(r′3) and all h ∈
F0 ∪ {Q0}, we have the following:

a) for all w ∈ Lα⋉h(Xα⋉h),

Itα⋉h(w) = F
◦ktα⋉h

α⋉h (w)− 1

α
.

b) for all w ∈ Lα⋉h(Xα⋉h),

∣

∣

∣

∂F
◦ktα⋉h

α⋉h

∂α
(w)
∣

∣

∣
≤ D15.
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Proof. Recall the covering map τα⋉h = Φ−1
α⋉h ◦ L−1

α⋉h. For all w ∈ Lα⋉h(Xα⋉h), we have

τα⋉h ◦ Itα⋉h(w) = h
◦ktα⋉h
α ◦ Φ−1

α⋉h ◦ L−1
α⋉h(w)

= h
◦ktα⋉h
α ◦ τα⋉h(w)

= τα⋉h ◦ F
◦ktα⋉h

α⋉h (w).

Since τα⋉h is 1/α-periodic, the above equality implies that the difference between Itα⋉h(w)

and F
◦ktα⋉h

α⋉h (w) is equal to a constant in Z/α, and the value of the constant is independent
of w. However, since Fα⋉h is asymptotically equal to the translation by one near +i∞,

F
◦ktα⋉h

α⋉h (w) belongs to P̂α⋉h + 1/α. Thus, the difference is equal to 1/α. This finishes the
proof of the first part of the lemma.

The positive integer ktα⋉h is uniformly bounded from above independent of α and h. This
part of the Proposition 2.8 is proved earlier. On the other hand, by Lemma 3.13, ∂αFα⋉h is
uniformly bounded from above on Dom Fα⋉h, and by Lemma 3.12, |∂wFα⋉h| is also uniformly
bounded from above on Lα⋉h(Xα⋉h). This implies the second part of the lemma. �

Proof of Proposition 3.8- Part a. Let V ′ be a Jordan neighbourhood of 0 satisfying (3.36)
and assume Xα⋉h is the lift of V ′ defined in the paragraph after Equation (3.36).

For w in Xα⋉h − 1/α we have

Etα⋉h ◦ T1/α = L−1
α⋉h ◦ Itα⋉h ◦ Lα⋉h ◦ T1/α

= L−1
α⋉h ◦ T−1/α ◦ F k

t
α⋉h

α⋉h ◦ Lα⋉h ◦ T1/α
= L−1

α⋉h ◦ F
ktα⋉h

α⋉h ◦ T−1/α ◦ Lα⋉h ◦ T1/α.

Let us fix a constant C > 0 large enough such that Expt{w ∈ Xα⋉h | | Imw| ≤ C} contains
the annulus V ′ \ V . The existence of a uniform C, independent of α and h, is guaranteed

by the Koebe distortion Theorem applied to the map ψ̂α⋉h : U → C. Now, assume that
w belongs to Xα⋉h − 1/α, and | Im(w − 1/α)| ≤ C. Then, by Proposition 3.22, there is a
constant D14, depending only on C, such that |∂(T−1/α ◦ Lα⋉h ◦ T1/α)(w)/∂α| is uniformly

bounded from above. By Lemma 3.23, |∂F k
t
α⋉h

α⋉h /∂α| is uniformly bounded from above. Also,

since ktα⋉h is uniformly bounded from above, see Proposition 2.8, the iterates F
ktα⋉h

α⋉h displace a
point by a uniformly bounded amount. Thus, we may apply Proposition 3.22, with a constant
D′

14 depending only on C and the uniform bound on ktα⋉h, to conclude that |∂L−1
α⋉h/∂α| is

uniformly bounded from above at F
ktα⋉h

α⋉h ◦T−1/α◦Lα⋉h◦T1/α(w). Combining these argument
we conclude that for every w in Xα⋉h with | Imw| ≤ C,

∣

∣

∣

∂

∂α
(Etα⋉h ◦ Tα⋉h(w))

∣

∣

∣

is uniformly bounded from above. The map Eα⋉h ◦T1/α projects via Expt to the map ψ̂α⋉h.

Therefore, |∂ψ̂α⋉h/∂α| must be uniformly bounded from above on V ′ \ V . By the maximum
principle, this it must be uniformly bounded from above on V ′. �
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3.9. Analysis of the bottom NP-renormalisation. For h ∈ F0 ∪ {Q0} and α ∈ A+(r3),
we continue to use the notation (α ⋉ h) for the map hα defined as hα(z) = h(e2πiαz).
By Proposition 2.2, there is a Jordan domain, Pα⋉h and a conformal change of coordinate
Φα⋉h : Pα → C conjugating the dynamics of hα on Pα⋉h to the translation by one. Let σα⋉h
denote the non-zero fixed point of hα obtained in Proposition 2.1. Recall that the complex
rotation of hα at σα⋉h is denoted by β = β(α⋉ h), that is, h′α(σα⋉h) = e2πiβ .

Consider the covering

τ̌α⋉h(w) =
σα⋉h

1− e−2πiβw
.

This is periodic of period 1/β, where +i∞ corresponds to 0 and −i∞ corresponds to σα⋉h.
The petal Pα⋉h lifts under τ̌α⋉h to a periodic set, one of its connected components separates

0 from −1/β. Note that when α ∈ A+(r3), by Formula (2.2), Re(−1/β) ≥ 0. We denote this
component by P̌α⋉h. The map hα on Pα⋉h lifts under τ̌α⋉h to a univalent map F̌α⋉h defined
on τ̌−1

α⋉h(Pα⋉h). This lift satisfies,

hα ◦ τ̌α⋉h(w) = τ̌α⋉h ◦ F̌α⋉h(w), F̌α⋉h(w + 1/β) = F̌α⋉h(w) + 1/β, w ∈ τ̌−1
α⋉h(Pα⋉h),

and is given by the formula,

F̌α⋉h(w) = w +
1

2πiβ
log
(

1− σα⋉huα⋉h(z)

1 + zuα⋉h(z)

)

,with z = τ̌α⋉h(w).

As in the previous case, we work with the branch of log with Im log(·) ⊆ (−π,+π). With this
choice, F̌α⋉h is asymptotic to a translation by +1 near the lower end,

lim
Im(βw)→+∞

|F̌α⋉h(w)− (w + 1)| = 0.

Note that Im(βw) → +∞ corresponds to tending to the lower end of P̌α⋉h, due to the sign
of β.

The unique critical point of hα lifts under τ̌α⋉h to a 1/β-periodic set of points, one of
which lies on P̌α⋉h and is denoted by čpα⋉h.

One may repeat all the constructions and arguments in Sections 3.4 to 3.8, replacing α by
−β. That is, the analysis is now carried out near the lower end of the domain P̌α⋉h. This
provides us with a proof for part b of Proposition 3.8, and a proof for part b of Proposi-
tion 2.8. Note that by the holomorphic index formula, and the pre-compactness of the class
F0, |1/α+ 1/β| is uniformly bounded from above, see Lemma 3.24. We give a proof of part
b of Proposition 2.4, where there is a slight difference between the calculations.

Proof of Proposition 2.4– Part b). Let Ľα⋉h be the univalent map (analogue of Lα⋉h) that
conjugates the translation by one to the map F̌α⋉h, which is normalised by mapping 0 to
čpα⋉h. We use the decomposition of the map Φ−1

α⋉h as τ̌α⋉h ◦ Ľα⋉h. where τ̌α⋉h is the
covering map defined above.

Let ξ = ξ1 + iξ2, and w = w1 + iw2 = Ľα⋉h(ξ), where w1, w2, ξ1, and ξ2 are real numbers.
As ξ2 tends to −∞, w2 tends to −∞. Let w′

1 denote the limit of w1 as ξ2 tends to −∞, and
let w′

2 denote the limit of ξ2 − w2, as ξ2 tends to −∞. By the analogue of Lemma 3.19 for
Ľα⋉h near the bottom end, we have

|w′
2| ≤ D11(1− log |α|), |ξ1 − w′

1| ≤ D11(1− log |α|).
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When ξ2 → −∞, 1− e−2πiβĽα⋉h(ξ) → 1. Then, the limit in part b of the proposition may be
calculates as,

lim
ξ2→−∞

(

arg(τ̌α⋉h ◦ Ľα⋉h(ξ)− σα⋉h)− 2πξ2 Imβ
)

= argσα⋉h + lim
ξ2→−∞

(

arg
e−2πiβĽα⋉h(ξ)

1− e−2πiβĽα⋉h(ξ)
− 2πw2 Imβ

)

+ lim
ξ2→−∞

2π(w2 − ξ2) Imβ

= argσα⋉h + lim
ξ2→−∞

(

2πw2 Imβ − 2πw1 Reβ − 2πw2 Imβ
)

− 2πw′
2 Imβ

= argσα⋉h − 2πw′
1 Reβ − 2πw′

2 Imβ

= argσα⋉h − 2πξ1 Re β + 2π(ξ1 − w′
1)Re β − 2πw′

2 Imβ.

�

3.10. Pairs of complex rotations. For h ∈ F0 ∪ {Q0} and α ∈ A(r1), the map α⋉ h has
a non-zero fixed point in W denoted by σ(α ⋉ h); see Proposition 2.1. This fixed point has
holomorphic dependence on h and α. Moreover, when α ∈ A(r3), α⋉ h is renormalisable. It
follows from the definition of renormalisation that arg(α⋉ h)′(σ(α ⋉ h)) 6= 0.

Hence, there is a choice of β(α⋉ h), with Reβ(α⋉ h) ∈ (−1, 0) and β(α⋉ h) holomorphic
in h and α, such that (α⋉h)′(σ(α⋉h)) = e2πiβ(α⋉h). Moreover, as α tends to zero in A(r3),
β(α ⋉ h) tends to 0 in a sector. See Lemma 3.25 for further details.

The function

I(α⋉ h) =
1

2πi

∫

∂W

1

z − (α⋉ h)(z)
dz, α ∈ A(r1), h ∈ F0 ∪ {Q0},

is holomorphic in h and α.

Lemma 3.24. There exist positive constants B1, B2, B3 such that for all h1, h2 ∈ F0 and α
in A(r1) we have

a) |I(α⋉ h1)| ≤ B1;
b) | ∂∂αI(α⋉ h1)| ≤ B2;
c) |I(α⋉ h1)− I(α⋉ h2)| ≤ B3 dTeich(h1, h2).

Proof. Part a) By Proposition 2.1, hα has no fixed point on ∂W . Thus, by the pre-compactness
of the class of maps F0, there is δ > 0 such that for all z ∈ ∂W , |z − hα(z)| ≥ δ. Hence,
|I(α⋉ h)(z)| ≤ ℓ(W )/(2πδ), where ℓ(W ) denotes the circumference of W .

Part b) First note that by the Koebe distortion Theorem, |h′| is uniformly bounded from
above on e2πiαW . Thus,

| ∂
∂α

I(α⋉ h)| ≤ 1

2π

∫

∂W

| ∂∂αhα(z)|
|z − hα(z)|2

dz

≤ ℓ(W )

2πδ2
sup
z∈W

(

|h′(e2πiαz)|2π|e2πiα||z|
)

.

Part c) For this part of the lemma we use the majorant principle. Fix h1 and h2 in F0 and
let R = dTeich(h1, h2). For i = 1, 2, let hi = P ◦ψ−1

i , where ψi : V → C is a univalent map with
ψi(0) = 0, ψ′

i(0) = 1, and ψi has a quasi-conformal extension onto C. Then, by the definition
of dTeich, and the compactness of the class of normalised quasi-conformal mappings with
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dilatation bounded from above by a constant, there is a quasi-conformal mapping ψ : C → C,
which is identical to ψ1 ◦ ψ−1

2 on ψ2(V ), and logDil(ψ) = R.
Let us define the dilatation quotient µ(z) = ∂zψ/∂zψ, and let r = ‖µ‖∞ < 1. Then, we

have (1 + r)/(1 − r) = eR. For each λ ∈ B(0, 1/r), let ψλ : C → C denote the unique quasi-
conformal mapping with dilatation quotient λµ normalised with ψλ(0) = 0 and (ψλ)′(0) = 1.
That is, ψλ is the unique solution of the Beltrami equation ∂zψ

λ = (λµ)∂zψ
λ with the

normalisation at 0. By the classical results on Beltrami equation, see for example [AB60],
the map ψλ has holomorphic dependence on λ. For λ = 1, we have ψ1 = ψ1 ◦ ψ−1

2 .
Define the holomorphic map hλ = P ◦ ψ−1

1 ◦ ψλ. By definition, h0 = h1 and h1 = h2, and
hλ has holomorphic dependence on λ. Now consider the holomorphic map

G(λ) = I(α⋉ h1)− I(α⋉ hλ), λ ∈ B(0, 1/r).

We have G(0) = 0, and by part a of the lemma, |G| ≤ 2B1, on B(0, 1/r). Then, by the
Schwarz lemma, |G(1)| ≤ 2B1r.

When dTeich(h1, h2) ≥ 2B1, the left hand side of the inequality in Part c is bounded by
2B1. So, the inequality holds for B3 = 1. On the other hand, when dTeich(h1, h2) = R ≤ 2B1,
by the relation (1 + r)/(1− r) = eR, R and r are comparable. This finishes the proof of part
c). �

Lemma 3.25. There exist positive constants B4, B5, B6 such that for all h1, h2 ∈ F0 and α
in A(r3) we have

1) B−1
4 |α| ≤ |β(α ⋉ h1)| ≤ B4|α|

2) B−1
5 ≤ | ∂β∂α (α⋉ h1)| ≤ B5

3) |β(α× h1)− β(α ⋉ h2)| ≤ B6|α|2 dTeich(h1, h2)

Proof. Part 1) For α ∈ A(r3), |e2πiα| is uniformly bounded from above and away from 0.
By the Koebe distortion theorem, for any univalent map ϕ : V → C, with ϕ(0) = 0 and
ϕ′(0) = 1, |ϕ′| is uniformly bounded from above and away from 0 on W . Combining the two
statements we conclude that |e2πiβ(α⋉h)| must be uniformly bounded from above and away
from 0. In particular, Imβ(α⋉ h) is uniformly bounded from above and below.

Let us define the holomorphic map G according to G(z)z = 1 − e2πiz , for z ∈ C. By the
above paragraph, |G(β(α ⋉ h))| and |G(α)| are uniformly bounded from above and below.
Then, the holomorphic index formula may be written as

αG(α) + β(α⋉ h)G(β(α ⋉ h)) = αβ(α ⋉ h)G(α)G(β(α ⋉ h))I(α⋉ h).

By the uniform bound in Lemma 3.24-a, we conclude the two estimates in the first part.

Part 2) We differentiate the index formula in Equation (2.2) with respect to α to obtain

e2πiα

(1− e2πiα)2
+

e2πiβ(α⋉h)

(1− e2πiβ(α⋉h))2
∂

∂α
β(α ⋉ h) =

1

2πi

∂

∂α
I(α⋉ h).

Using the formula sin z = (eiz − e−iz)/(2i), this reduces to

1

sin2(πα)
+

1

sin2(πβ(α ⋉ h))

∂

∂α
β(α⋉ h) = − 2

πi

∂

∂α
I(α ⋉ h).
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Thus,

∂

∂α
β(α ⋉ h) =

− sin2(πβ(α ⋉ h))

sin2(πα)
− 2

πi
sin2(πβ(α ⋉ h))

∂

∂α
I(α ⋉ h)

The upper bound in part 2 follows from the upper bound in Lemma 3.24-2 and the uniform
bounds in the previous part. To obtain the lower bound, we need to restrict α to a smaller
region. First note that by the bounds in part 1, the first ration on the right-hand side of the
above formula is compactly contained in C \ {0}. The, by restricting α ∈ A(r4), for some
r4 ∈ (0,+∞), we guarantee that the second ration is small enough. This implies the for
α ∈ A(r4), | ∂∂αβ(α ⋉ h)| is uniformly bounded away from 0.

Part 3) We subtract the holomorphic index formula for the maps (α ⋉ h1) and (α ⋉ h2)
to get

1

β(α⋉ h1)G(β(α ⋉ h1))
− 1

β(α⋉ h2)G(β(α ⋉ h2))
= I(α⋉ h1)− I(α⋉ h2),

which provides us with

β(α ⋉ h2)G(β(α ⋉ h2))− β(α ⋉ h1)G(β(α ⋉ h1)) =

β(α ⋉ h1)β(α⋉ h2)G(β(α ⋉ h1))G(β(α ⋉ h2))
(

I(α⋉ h1)− I(α⋉ h2)
)

.

Since β(α⋉h) is uniformly bounded, |G(β(α⋉h1))−G(β(α⋉h2))| = O(|β(α⋉h1)−β(α⋉h2)|).
Also, by the estimates in part 1, |β(α⋉h1)| and |β(α⋉h2)| are bounded by B4|α|. Combining
these with the above formula, one obtains the desired inequality using the bound in part 3 of
Lemma 3.24. �

Proof of proposition 3.3. This mainly follows from Theorem 2.9. For each fixed α ∈ A(r3),

the maps h 7→ ĥ(α⋉h) and h 7→ ȟ(α⋉h) induce holomorphic mappings from the Teichmuler
space of C \ V to the Teichmuller space of C \ V . By the Royden-Gardiner theorem, any
holomorphic map of Teichmuller spaces does not expand distances.

Indeed, by the holomorphic extension property in Theorem 2.9 the image of this map is
a compact subset of the Teichmuller space of C \ V . It follows that this map is uniformly
contracting, that is, c2,2 < 1, but we do not need this feature in this paper. �

Remark 3.26. By Theorem 2.9, the maps ĥ(α ⋉ h) and ȟ(α ⋉ h) extend onto holomorphic
maps on the strictly larger domain U , which contains the closure of V . This may be used to
prove the existence of a constant c2,2 which is strictly less than 1. However, we do not need
this uniform contraction in this paper.

Proof of proposition 3.4. Recall the relation α̌(α⋉ h) = −1/β(α⋉ h). From the estimates in
Lemma 3.25, we have

|∂α̌
∂α

(α⋉ h)| = | 1

β(α⋉ h)
|2|∂β
∂α

(α⋉ h)| ≥ 1

B2
4 |α|2

B−1
5 .

�
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Proof of Proposition 3.5. Here we use the estimates in Lemma 3.25.

|α̌(α⋉ h1)− α̌(α⋉ h2)| = | −1

β(α⋉ h1)
+

1

β(α⋉ h2)
|

≤ B2
4

|α|2 |β(α ⋉ h1)− β(α⋉ h2)|

≤ B2
4

|α|2B6|α2| dTeich(h1, h2) = B2
4B6 dTeich(h1, h2).

�

4. Polynomial-like renormalisations and their combinatorics

In this section we outline the basic properties of the dynamics of quadratic polynomials
that we refer to in this paper. One may consult [Mil06] and [Bea91] for basic notions in
complex dynamics. The material on the polynomial-like renormalisation presented here is
mainly following the foundational work of Douady and Hubbard presented in [DH84, DH85].
One may also refer to [Mil00] [Sch04] for detailed discussions on the combinatorial aspects of
the topic.

In this section, we assume that all quadratic polynomials are normalised so that they are
monic and their critical points are at 0. That is, they are of the form Pc(z) = z2 + c.

4.1. Combinatorial rotation of the dividing fixed point. The filled Julia set K(Pc)
and the Julia set J(Pc) of the quadratic polynomial Pc are defined as

K(Pc) = {z ∈ C | supn∈N|P ◦n
c (z)| < +∞}, J(Pc) = ∂K(Pc).

These are compact subsets of C. Each set K(Pc) is connected if and only if the critical point
0 belongs to K(Pc). In this paper we only work with quadratics with connected Julia sets.

By the maximum principle, K(Pc) is full, i.e. its complement has no bounded connected
component. The Böttcher coordinate of Pc is the conformal isomorphism

ϕc : C \K(Pc) → C \ D, where D = {w ∈ C | |w| < 1},
that is tangent to the identity near infinity. It conjugates Pc on C\K(Pc) to w 7→ w2 on C\D.
By means of this isomorphism, the external ray of angle θ ∈ [0, 2π) and equipotential of
radius r ∈ (1,+∞) are defined as

Rθc = {ϕ−1
c (reiθ) | r ∈ (1,+∞)}, Erc = {ϕ−1

c (reiθ) | θ ∈ [0, 2π]}.
The map Pc send E

r
c to Er

2

c and send Rθc to R
2θ
c . An external ray Rθc is called periodic under

Pc, if there is n ∈ N with P ◦n
c (Rθc) = Rθc . Equivalently, this occurs if 2

nθ = θ mod 2πZ. An
external ray Rθc is said to land at a point, if the limit of ϕ−1

c (reiθ), as r → 1, exists in C.
The landing point of a periodic ray Rθc is necessarily a periodic point of Pc.

Let f : U ⊆ C → C be a holomorphic map with a periodic point z ∈ U . The multiplier

of z is defined as (f◦n)′(z), where n is the smallest positive integer with f◦n(z) = z. The
periodic point is called parabolic, if its multiplier is a root of unity.

We recall the Douady’s theorem on the landing property of repelling and parabolic periodic
points. One may refer to [DH84] for a proof of this result, and also [EL89, Mil06, Pet93,
Pom86] for alternative proofs and generalizations of this result.
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Proposition 4.1 (Douady, 1987). Let Pc be a quadratic polynomial with connected K(Pc).
Every repelling or parabolic periodic point of Pc is the landing point of at least one, but at
most a finite number of, external rays.

Let a0 denote the landing point of the unique fixed ray of Pc; R
0
c . When Pc has only one

fixed point, a0 must be parabolic with multiplier 1. This occurs for c = 1/4. For c 6= 1/4, a0
is repelling. The other fixed point of Pc, denoted by ac, is attracting in a region called the
main hyperbolic component of the Mandelbrot set. This is the large cardioid visible in
the center of the Mandelbrot set.

For c outside the closure of the main hyperbolic component of M , ac is repelling. By the
above proposition there are at least one, but a finite number of, external rays landing on ac.
By a simple topological argument (since the map has only one critical point) the set of rays
landing at ac is formed of the orbit of a single periodic ray. Let θj ∈ [0, 2π), for 1 ≤ j ≤ q
and q ≥ 2, denote the angles of the external rays landing at ac, labeled in increasing order.

There is a non-zero integer p ∈ (−q/2, q/2], with (|p|, q) = 1, such that Pc(R
θj
c ) = R

θj′
c

where j′ = j + p (mod q). The rational number p/q is called the combinatorial rotation

number of Pc at ac. The fixed point ac, when it is repelling or parabolic, is referred to as
the dividing fixed point of Pc. It follows that for any rational number p/q ∈ (−1/2, 1/2],
there are parameters c in the Mandelbrot set where ac has combinatorial rotation number
p/q at ac. We shall come back to this in a moment.

4.2. Polynomial-like renormalisation. Assume that the fixed point ac is repelling. The
closure of the q rays landing at ac cut the complex plane into q (open) connected components
which we denote by Yj , for 0 ≤ j ≤ q− 1. By a simple topological consideration, Pc on these
pieces has a simple covering property. One of these components, which we denote by Y0,
contains both critical point 0 and the pre-fixed point −ac, while its image under Pc covers
all Yj , for 0 ≤ j ≤ q − 1. We may relabel the other components so that Pc(Yj) = Yj+1, for
1 ≤ j ≤ q − 2, and Pc(Yq−1) = Y0. Thus, the critical point is mapped into Y1 in one iterate
of Pc, and is mapped back into Y0 under q iterates of Pc.

Fix r > 1. The equipotential Erc divides each piece Yj , for 0 ≤ j ≤ q − 1, into two
connected components. We denote by Y 1

j , for 0 ≤ j ≤ q − 1, the closure of the bounded
connected component of Yj \ Erc . These are called puzzle pieces of level 1. The closure of
the connected components of P−i

c (int Y 1
j ), for i ∈ N and 0 ≤ j ≤ q − 1, are called puzzle

pieces of level i + 1. They form nests of pieces breaking the Julia set into components. As
Pc(Y0) covers ∪qj=0 − 1 int Y 1

j , the connected components of P−1
c (int Y 1

j ) contained in Y0
divide Y0 into q pieces. We denote the one containing 0 by Z2

0 and the remaining ones by Z2
j ,

for 1 ≤ j ≤ q − 1.
For c in the Mandelbrot set with ac repelling and q rays landing at ac, Pc is called

polynomial-like renormalisable of satellite type, if P
◦(jq)
c (0) ∈ Z2

0 , for all j ∈ N. Using

|P ′
c(ac)| > 1, one builds a simply connected domain Z̃2

0 containing the closure of Z2
0 such that

P ◦q
c (Z̃2

0 ) contains the closure of Z̃2
0 and P ◦q

c : Z̃q0 → P ◦q
c (Z̃2

0 ) is a proper branched covering

of degree two. We denote this map by R̃PL(Pc), and note that the orbit of 0 under R̃PL(Pc)

remains in Z̃2
0 .

For c as in the above paragraph, if Pc is not polynomial-like renormalisable of satellite

type, there is the smallest n ∈ N such that P
◦(nq)
c (0) ∈ Z2

j , for some 1 ≤ j ≤ q − 1.
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Then, let V 1 denote the closure of the connected component of P−nq
c (int Z2

j ) containing

0 that is obtained by pulling back along the orbit 0, Pc(0), . . . , P
◦nq
c (0). If the orbit of 0

under Pc never enters int V 1, then Pc is not polynomial-like renormalisable. Otherwise, let
j1 ∈ N be the smallest integer with P ◦j1

c (0) ∈ int V 1, and denote by V 2 the closure of the
component of P−j1

c (int V 1) that is obtained by pulling back along 0, Pc(0), . . . , P
◦j1
c (0). Here,

P ◦j1
c : int V 2 → int V 1 is a proper branched covering of degree two. Inductively, we define

domains V 1 ⊃ V 2 ⊃ V 3 ⊃ . . . , and positive integers j1, j2, j3, . . . such that each jm is the
smallest positive integer with P ◦jm

c (0) ∈ int V m and V m+1 is the closure of the pull-back of
int V m along the orbit 0, Pc(0), . . . , P

◦jm
c (0). For all m, V m+1 is compactly contained in the

interior of V m, and P ◦jm
c : V m+1 → V m is a proper branched covering of degree two. The

quadratic Pc is polynomial-like renormalisable of primitive type, if there is m ∈ N such
that the orbit of 0 under P ◦jm

c : V m+1 → V m remains in V m+1. Note that if this occurs,
the sequence jm is eventually constant. For the smallest positive integer m satisfying this
property, we denoted P ◦jm

c : V m+1 → V m by R̃PL(Pc). If there is no m with this property,
then Pc is not polynomial-like renormalisable.

A quadratic map is called polynomial-like renormalisable, if it is polynomial-like renor-
malisable of either satellite or primitive type.

A polynomial-like mapping of degree d is a proper branched covering holomorphic map
f : U → V of degree d, where U and V are simply connected domains with U compactly
contained in V . For example, the restriction of any polynomial P to P−1(B(0, R)), for
sufficiently large R, is a polynomial-like map. The successive renormalisations obtained above
are non-trivial examples of polynomial-like maps of degree two. One may define the filled

Julia set and the Julia set of a polynomial-like map in the same fashion;

K(f) = {z ∈ U | f◦j(z) ∈ U, ∀j ∈ N}, J(f) = ∂K(f).

Similarly, K(f) and J(f) are connected if and only if the orbits of all branched points of f
remain in U .

Two polynomial-like mappings f : U → V and g : U ′ → V ′ are quasi-conformally

conjugate if there is a quasi-conformal map h : V → V ′ such that g ◦ h = h ◦ f on U . They
are called hybrid conjugate if they are quasi-conformally conjugate and the quasi-conformal
conjugacy h between them may be chosen so that ∂h = 0 on K(f). A remarkable result
of Douady and Hubbard is that the dynamics of a polynomial-like map is the same as the
dynamics of some polynomial.

Theorem 4.2 (Straightening [DH85]). Let f : U → V be a polynomial-like map of degree
d with connected Julia set. Then, f is hybrid conjugate to an appropriate restriction of a
polynomial of degree d. Moreover, the polynomial is unique up to an affine conjugacy.

In the normalised quadratic family z 7→ z2 + c, c ∈ C, each affine conjugacy class contains
only one element. Thus, every polynomial-like map of degree two is hybrid conjugate to a
unique element of this family. Also, although the hybrid conjugacy h in the above theorem
is not unique, h is uniquely determined on J(f) upto affine conjugacy.

Recall the polynomial-like renormalisation of satellite type R̃PL(Pc) = P ◦q
c : Z̃2

0 → P ◦q
c (Z̃2

0 )
obtained above. Let M(p/q) denote the set of all c ∈M such that the dividing fixed point ac
of Pc has combinatorial rotation p/q and P ◦jq

c (0) ∈ Z2
0 , for all j ∈ N. By the straightening

theorem, for all c ∈M(p/q), except at c where P ′
c(ac) = e2πip/q, R̃PL(Pc) is hybrid conjugate
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PcPc

Pc Pc

P◦4
c

b

Figure 7. A PL-renormalisation of satellite type, P ◦4
c : U → V . In this

example, the combinatorial type of PL-renormalisation is 1/4.

to some quadratic polynomial denoted by RPL(Pc). Indeed, through straightening theorem,
Douady and Hubbard obtain a homeomorphism4

Φp/q :M(p/q) →M.

The set M(p/q) is called the p/q-satellite copy of the Mandelbrot set.

Similarly, for polynomial-like renormalisation of primitive type R̃PL(Pc) = P ◦jm
c : V m+1 →

V m, one may consider the connected component containing c of all parameters c where the
isotopy type of V m+1 remains constant and the Julia set of R̃PL(Pc) : V m+1 → V m is
connected. Through straightening theorem, this gives rise to a homeomorphic copy of M
within M , called a primitive copy of the Mandelbrot set.

The satellite and primitive copies ofM obtained above are maximal in the sense that they
are not contained in any other homeomorphic copy of M , except M itself. In this paper we
will only work with the satellite copies of the Mandelbrot set.

The main hyperbolic component of M is the set of c where |P ′
c(ac)| < 1. For all rational

numbers p/q ∈ [−1/2, 1/2] with (p, q) = 1, there is c on the boundary of this component
where P ′

c(ac) = e2πip/q. There are q rays landing at ac with combinatorial rotation p/q,
and the parameter c gives rise to the satellite copy M(p/q) attached to the main hyperbolic
component of M at c.

4.3. Combinatorics of the PL-renormalisation. Assume that Pc is polynomial-like renor-
malisable of satellite type M(p1/q1), for some p1/q1 ∈ (−1/2, 1/2] ∩ Q. If the quadratic
polynomial RPL(Pc) is also polynomial-like renormalisable of satellite type, the correspond-
ing parameter, RPL(Pc)(0), belongs to M(p2/q2), for some p2/q2 ∈ (−1/2, 1/2]∩Q. We have

the return map R̃PL(RPL(Pc)) that is hybrid conjugate to R◦2
PL
(Pc). The parameter c belongs

to the homeomorphic copy

M(p1/q1, p2/q2) = Φ−1
p1/q1

(M(p2/q2))

of M contained in M(p1/q1). Similarly, for an infinitely polynomial-like renormalisable of
satellite type quadratic map we obtain a sequence of maximal satellite copies M(pj/qj), for

4The homeomorphism sends the parameter c with P ′

c(ac) = e2πip/q to the point 1/4 ∈ M .



SATELLITE RENORMALISATION OF QUADRATIC POLYNOMIALS 49

j = 1, 2, . . . , where M(pj/qj) determining the type of renormalisation at level j − 1. Then,
we define the nest of Mandelbrot copies

M(p1/q1) ⊃M(p1/q1, p2/q2) ⊃M(p1/q1, p2/q2, p3/q3) ⊃ . . . ,

where, for n ≥ 3,

M(p1/q1, p2/q2, . . . , pn/qn) = Φ−1
p1/q1

◦ Φ−1
p2/q2

◦ · · · ◦ Φ−1
pn−1/qn−1

(M(pn/qn)).

For the simplicity of the notation we set

M1(c) =M(p1/q1),M2(c) =M(p1/q1, p2/q2), . . . ,

Mn(c) =M(p1/q1, p2/q2, . . . , pn/qn).

The root points of these copies are defined as

c0 = 1/4, c1 = Φ−1
p1/q1

(1/4) ∈M1(c), c2 = Φ−1
p1/q1

◦ Φ−1
p2/q2

(1/4) ∈M2(c),

cn = Φ−1
p1/q1

◦ Φ−1
p2/q2

◦ · · · ◦ Φ−1
pn/qn

(1/4) ∈Mn(c), n ≥ 3.

In other words, cn ∈Mn is the unique parameter with R◦n
PL
(Pcn)(z) = z2 + 1/4.

For an infinitely polynomial-like renormalisable Pc, we have the sequence of quadratic
polynomials R◦n

PL
(Pc), for n ≥ 0, and the return maps R̃PL(R◦n

PL
(Pc)). By the straightening

theorem, there are quasi-conformal maps Sn, for n ≥ 0, that hybrid conjugate R̃PL(R◦n
PL
(Pc))

toR◦(n+1)
PL (Pc). Let a(R◦n

PL
(Pc)) denote the dividing fixed point of the quadratic mapR◦n

PL
(Pc),

and set

a1 = a(Pc) = ac, a2 = S−1
0 (a(RPL(Pc))), a3 = S−1

0 ◦ S−1
1 (a(R◦2

PL
(Pc))),

an+1 = S−1
0 ◦ S−1

1 ◦ · · · ◦ S−1
n−1(a(R◦n

PL
(Pc))), for n ≥ 3.

Each an, for n ≥ 1, is a dividing periodic point of Pc of minimal period Πn−1
j=1 qj . The

multipliers of these periodic points play a significant role in the remaining of this paper.

4.4. The rigidity and MLC conjectures. The combinatorics of a quadratic polynomial
Pc is defined as an equivalence relation on the set of angles of external rays. That is, two angles
θ1 and θ2 in [0, 2π] are considered equivalent, if the external rays Rθ1c and Rθ2c land at the
same point on J(Pc). For an infinitely polynomial-like renormalisable quadratic polynomial
Pc, it turns out that the combinatorics of the map is uniquely determined by the nest of
relatively maximal Mandelbrot copies containing c.

Two quadratic polynomials are called combinatorially equivalent, if they induce the
same equivalence relation on the circle. In the case of infinitely polynomial-like renormal-
isable maps, combinatorially equivalent maps fall into the same nest of relatively maximal
Mandelbrot copies. We note that if two maps Pc and Pc′ are combinatorially equivalent and
one of them is infinitely polynomial-like renormalisation, the other one must also be infinitely
polynomial-like renormalisable.

The rigidity conjecture states that combinatorially equivalent quadratic polynomials
with all their periodic points repelling are conformally conjugate. This conjecture is equivalent
to the local connectivity of the Mandelbrot set [DH84] in its general form. However, in the
case of infinitely polynomial-like renormalisable maps, there is a simple criterion that implies
both conjectures at the corresponding parameter. If a nest of Mandelbrot copies shrinks to
a single point c, then Pc is combinatorially rigid, c lies on the boundary of the Mandelbrot



50 DAVOUD CHERAGHI AND MITSUHIRO SHISHIKURA

set, and Pc may be approximated by hyperbolic quadratic polynomials with connected Julia
sets. This is because each Mandelbrot copy in M contains a parameter c′ where Pc′ has a
periodic critical point, and a root point c′′ on ∂M where Pc′′ has a parabolic periodic point
with multiplier +1.

Proposition 4.3. If a nest of Mandelbrot copies shrinks to a single point, then the Mandelbrot
set is locally connected at the intersection.

By the result of Douady and Hubbard on the equivalence of the two conjecture, the shrink-
ing of a nest of Mandelbrot copies implies the local connectivity of the Mandelbrot set at the
intersection. However, this has never been stated in the above form, although it may be proved
following the standard techniques developed in 1980’s. Here we briefly outline a proof, which
requires some basic definitions presented below.

The definition of the Böttcher coordinate may be extended to quadratic polynomials with
disconnected Julia sets. For c ∈ C\M , there is a connected domain Uc bounded by piece-wise
analytic curves, a real number rc > 1, and a conformal bijection ϕc : Uc → {z ∈ C | |z| > rc}
that is tangent to the identity at infinity. Moreover, the critical value c belongs to Uc and
|ϕc(c)| = r2c . Douady and Hubbard proved that the mapping defined as

c 7→ ϕc(c)

provides a conformal bijection from C \ M to C \ D. Through this map, one may define
the external rays of the Mandelbrot set as the preimages of the straight rays (1,+∞)eiθ, for
θ ∈ [0, 2π].

A point c ∈ M is called a Misiurewicz parameter, if there is an integer n ≥ 2 such
that P ◦n

c (0) is a repelling periodic point of Pc. Let us also say that c ∈ M is a parabolic

parameter if Pc has a parabolic periodic point. A key result regarding the landing property
of the external rays of the Mandelbrot set is the following.

Proposition 4.4 (Douady-Hubbard [DH84]). Every parabolic parameter c ∈ M different
from 1/4 is the landing point of two distinct external rays of the Mandelbrot set. Every
Misiurewicz parameter c ∈M is the landing point of at least one, but at most a finite number
of, external rays of the Mandelbrot set.

LetM ′ be a homeomorphic copy ofM strictly contained inM . There is a unique parameter
c′ ∈ M ′ that corresponds to the point 1/4 under the homeomorphism mapping M ′ to M .
The map Pc′ has a parabolic periodic point with multiplier +1. This is the root point of
the copy M ′ defined above, and since M ′ 6= M , c′ 6= 1/4. By the above proposition, there
are two external rays of M landing at c′. The union of these rays and their landing point c′

divide the complex plane into two connected components. We let W (M ′) denote the closure
of the connected component containing M ′ \ {c′}. In the literature, the interior of W (M ′)
(sometimes with the root point c′ added to it) is called the parabolic wake containing the
copy M ′. Note that as the set M is connected, W (M ′) ∩M must be connected.

If there are more than one external ray landing at a Misiurewicz parameter m ∈ M ,
the union of these rays and their landing point m divides the complex plane into a finite
number of regions. One of these regions contains 0 in its interior. The remaining connected
components are called Misiurewicz wakes at m. A Misiurewicz wake of the Mandelbrot set
is, by definition, a Misiurewicz wake at some Misiurewicz parameter m ∈M , and is assumed
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to be an open subsets of the plane. It follows that the intersection of any Misiurewicz wake
with the Mandelbrot set is a connected subset of C, and also the Mandelbrot set M minus
any Misiurewicz wake is a connected subset of C.

Proposition 4.5 ([Mil00]). Let M ′ be a homeomorphic copy of the Mandelbrot set strictly
contained in M . Then the set M ′ is obtained from removing a countable number of Misi-
urewicz wakes from the set W (M ′) ∩M .

Now we are ready to prove the result we need.

Proof of Proposition 4.3. Assume that M ⊃ M1 ⊃ M2 ⊃ . . . is a nest of Mandelbrot copies
shrinking to a single point c ∈M . Then, Pc is infinitely polynomial-like renormalisable, and
in particular, c is not the root point of any of the copies Mi, i ≥ 1.

Fix ε > 0 and choose n ∈ N such that the diameter of Mn is less than ε/2. By Proposi-
tion 4.5, Mn is equal to W (Mn) ∩M minus a countable number of Misiurewicz wakes.

Let U be a ball of diameter ε containingMn. The set (C\U)∩M is a compact subset ofM .
Thus, by the above paragraph, there are a finite number of Misiurewicz wakes L1, L2, . . . Ln
such that (C \U)∩M in contained in the union of these wakes. The set U minus the closure
of ∪ni=1Li, is an open subset of C, and has a connected intersection with M . This set has
diameter at most ε.

As ε was chosen arbitrary, this implies that there is a basis of neighbourhoods Ui containing
c, i ≥ 1, such that each M ∩ Ui is a connected set. �

4.5. Bounds on multipliers. We need a relation between the combinatorial rotation num-
ber of a repelling period cycle and the (analytic) multiplier of that cycle. A formula of this
type is given by the so called Pommerenke-Levin-Yoccoz inequality, see [Hub93], [Pom86],
[Lev91], [Pet93]. Indeed, the general form of the inequality applies to repelling periodic
points of arbitrary degree polynomials, but here we only state the version for the quadratic
polynomials.

Theorem 4.6 (PLY inequality). Let Pc be a polynomial with a connected Julia set. Suppose
that ζ is a repelling periodic point of Pc such that

a) the minimal period of ζ is k;
b) there are q, 0 < q < +∞, external rays landing at ζ;
c) the external rays landing at ζ are cyclically permuted with combinatorial rotation

number p/q.

Then, for a suitable branch of log, the multiplier of ζ, denoted by ρ, satisfies
∣

∣

∣
log ρ−

(

2π i
p

q
+
k

q
log 2

)

∣

∣

∣
≤ k

q
log 2.

Let 〈pi/qi〉∞i=1 be a sequence of rational numbers in [−1/2, 1/2] and n be a positive integer.
For c ∈M(〈pi/qi〉ni=1), Pc has dividing periodic points a1, . . . , an, where each aj has period
kj given by the formula

(4.1) k1 = 1, kj =

j−1
∏

i=1

qi, for 2 ≤ j ≤ n.
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Moreover, the combinatorial rotation number of an is pn/qn and there are qn external rays
landing at an. By the above theorem, there is a branch of log such that the multiplier ρn of
the n-th dividing periodic point an of Pc satisfies

(4.2)
∣

∣

∣

1

2πi
log ρn −

(pn
qn

− i
kn
qn

log 2

2π

)

∣

∣

∣
≤ kn
qn

log 2

2π
.

See Figure 8. We have 1
2π log 2 = 0.110....

0−
1
2

1
2

Figure 8. The black circles denote the locus of 1
2πi log ρ1 for combinatorial

rotations ±1/i, 2 ≤ i ≤ 20. The red circles denote the locus of this quan-
tity for combinatorial rotations 〈(2,+1), (i,+1)〉), for 2 ≤ i ≤ 7, as well as
〈(2,−1), (i,+1)〉), for 2 ≤ i ≤ 7.

5. Infinitely near-parabolic renormalisable maps

By Theorem 2.9 and Definition 2.11, for f ∈ A(r3)⋉ F0 and f = Qα with α ∈ A(r3), the
top and bottom near-parabolic renormalisations RNP-t(f) and RNP-b(f) are defined. If either
of these maps belongs to A(r3)⋉F0, which depends on whether α(RNP-t(f)) and α(RNP-b(f))
belong to A(r3), we may define the top and bottom near-parabolic renormalisation of that
map in order to obtain the second near-parabolic renormalisation of f . This successive near-
parabolic renormalisation process may be carried out infinitely often for some maps f . One
may associate a one sided infinite sequence of t’s and b’s to determine the type of the successive
near-parabolic renormalisations, where “t” stands for “top” and “b” stands for “bottom”. In
other words, for any κ in the set

(5.1) T = {t, b}N = {(κ1, κ2, κ3, . . . ) | ∀i ≥ 1, κi ∈ {t, b}},
we say that a map f ∈ A(r3)⋉F0, or f = Qα with α ∈ A(r3), is infinitely near-parabolic

renormalisable of type κ if the following infinite sequence of maps is defined

f1 = f, fn+1 =

{

RNP-t(fn), if κn = t,

RNP-b(fn), if κn = b.
(5.2)

Then, there are αn, βn ∈ C, for n ≥ 1, such that

f ′
n(0) = e2πiαn ,Reαn ∈ (−1/2, 1/2]

f ′
n(σn) = e2πiβn ,Reβn ∈ (−1/2, 1/2].
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We shall use the notations

αn = α(fn) ∈ A(r3), βn = β(fn), σn = σ(fn),

throughout the rest of this paper.
The rotation numbers αn and βn, for n ≥ 1, are related by the formulas

(5.3)
1

1− e2πiαn
+

1

1− e2πiβn
=

1

2πi

∫

∂W

1

z − fn(z)
dz,

and

(5.4) αn+1 =

{

−1/αn − [Re(−1/αn)] if κn = t,

−1/βn − [Re(−1/βn)] if κn = b,

where [·] denotes the closest integer function. We proved in Lemma 3.24 that the absolute
value of the right-hand side of Equation (5.3) is uniformly bounded from above. This implies
that when some αn is small (and non-zero), then βn is small and the sign of Re βn is equal
to the sign of Reαn times −1.

We say that a map is infinitely near-parabolic renormalisable if there is κ ∈ T such
that the map is infinitely near-parabolic renormalisable of type κ. By a continuity argument
one may see that for any κ ∈ T , the set of infinitely near-parabolic renormalisable maps of
type κ is non-empty. See Figure 9.

Figure 9. This is a schematic presentation of the values of the complex
rotation α where one and two iterates of the top and bottom near-parabolic
renormalisations are defined. The light gray region shows the set A(r3). The
darker gray region is where R◦2

NP-t
and RNP-b ◦RNP-t are defined. On the black

region the iterates R◦2
NP-b

and RNP-t ◦RNP-b are defined.

When a map is infinitely near-parabolic renormalisable, one may obtain fine scale under-
standing of the dynamics of that map. For example, for κ of constant type κi = t for all
i ≥ 1, this has lead to important properties of the dynamics of quadratic polynomials Qα,
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with irrational α of high type, in [BC12], [Che19], [Che13], [AC18], and [CC15]. Thus, it is
a significant problem to understand when a map is infinitely near-parabolic renormalisable.
By virtue of Theorem 2.9, the covering structure of the top and bottom renormalisations of
a one time renormalisable map are determined. Thus, the answer to this question relies on
controlling the multipliers of the successive renormalisations of the map at the origin.

5.1. Cantor structure in the bifurcation loci. Let κ = (κ1, κ2, κ3, . . . ) ∈ T , and r ∈
(0, r3], where r3 is the constant obtained in Proposition 2.6. Define Λr(κ1) = A(r). By
Theorem 2.9, for every f ∈ F0 and α ∈ A(r), RNP-t(α⋉ f) and RNP-b(α⋉ f) are defined. For
integers n ≥ 1, we consider

(5.5) Λr(〈κi〉ni=1) =
{

α⋉ f
∣

∣

∣

RNP-κn
◦ · · · ◦ RNP-κ1

(α⋉ f) is defined
and ∀i with 1 ≤ i ≤ n, αi ∈ A(r).

}

.

We recall that in the above definition, αi is the rotation number of the map RNP-κi-1
◦ · · · ◦

RNP-κ1
(α⋉ f) at 0. In other words, Λr(κ1, . . . , κn) is the set of maps α⋉ f that are n times

near parabolic renormalisable of type κ1, . . . , κn with the rotation number of all the successive
renormalisations in the set A(r). Given κ ∈ T , one naturally defines

Λr(κ) =

∞
⋂

n=1

Λr(〈κi〉ni=1).

The main result of this paper is stated in the following theorem. We recall that k1 and r4
are the constant obtained in Proposition 3.1.

Theorem 5.1. For all k1-horizontal family of maps Υ : A(r4) → A(r4)⋉ F0 and all κ ∈ T ,
every connected component of the set Λr4(κ) ∩Υ(A(r4)) is a single point.

In particular, for all f ∈ F0 ∪ {Q0}, and all κ ∈ T , every connected component of the set
Λr4(κ) ∩ (A(r4)⋉ f) is a single point.

Proof. Let A1 be a connected component of Λr4(κ)∩Υ(A(r4)). By definition, for every n ≥ 1,
every point in A1 is near parabolic renormalisable of type 〈κi〉ni=1. Inductively define the sets
An+1 = RNP-κn

(An), for n ≥ 1. By Proposition 3.1, each Ai, i ≥ 1, is a k1-horizontal curve.
Let us define the numbers ϑi as the diameter of the projection of the set Ai onto the α

coordinate. Then, since the diameter of each component of A(r4) is equal to
√
2r4, we have

ϑi ≤
√
2r4. On the other hand, by Proposition 3.4, RNP-t and RNP-b are strictly expanding

in the horizontal direction. We must have ϑi = 0, for all i ≥ 1. It follows from the definition
of k1- horizontal curves that the diameter of each Ai must be zero. Indeed, the uniform
contraction implies that there are constants C and µ ∈ (0, 1) such that for all k1-horizontal
family of maps Υ : A(r4) → A(r4)⋉ F0 and all κ ∈ T

diam
(

Λr4(〈κi〉ni=1) ∩Υ(A(r4))
)

≤ Cµn.

The latter part of the theorem follows from the first part as the family Υ(α) = (α ⋉ f)
may be thought of a 0-horizontal family. �

The quadratic polynomial Pc, with c ∈ C, is conformally conjugate to some Qα(c), with
Reα(c) ∈ (−1/2, 1/2]. Indeed, there are two choices for α(c) with this property. The choice
does not make any difference for the sake of the next statement, although we will make one of
these choices in the next section for our convenience. An immediate corollary of Theorem 5.1
applied to the quadratic family is formulated in the next corollary.
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It follows from the proof of the above theorem that the set Λr4(κ)∩Υ(A(r4)) is isomorphic
to a F0-bundle over a Cantor set. This is, formulated in the next corollary.

Corollary 5.2. For all κ ∈ T the restriction of the map α ⋉ h 7→ h to each connected
component of the set Λr4(κ) ∩Υ(A(r4)) is one-to-one and onto whose image is equal to F0.

The operators RNP-t and RNP-b map the F0-fibers of the set ∪κ∈T Λr4(κ) ∩ Υ(A(r4)) to
the fibers. Combining with the uniform contraction in Theorem 2.9, we obtain the uniform
contraction of the operators RNP-t and RNP-b on the co-dimension one fibers.

Corollary 5.3. Let 〈pi/qi〉∞i=1 be a sequence of rational numbers in (−1/2, 1/2] and κ ∈ T
be a type such that for all c ∈M(〈pi/qi〉∞i=1), Qα(c) is infinitely near parabolic renormalisable
of type κ and for every i ≥ 1 the rotation number αi of the i-th renormalisation of Qα(c)
belongs to A(r4). Then, the nest of Mandelbrot copies M(〈pi/qi〉ni=1) shrinks (geometrically)
to a single point as n tends to infinity.

Although in the above corollary the sequence of rational numbers and the type κ are not
related a priori, in Section 6.3 we associate a canonic type κ to any given sequence of rational
numbers in (−1/2, 1/2].

6. Application to the complex quadratic polynomials

6.1. Modified continued fractions. We work with a modified notion of continued fractions
that is more suitable in the study of the near-parabolic renormalisation.

For x ∈ R, let [x] denote the closest integer to x, where we use the convention

x ∈ ([x] − 1/2, [x] + 1/2], for x > 0,

x ∈ [[x] − 1/2, [x] + 1/2), for x < 0.

We have adapted the above convention to obtain a x 7→ −x symmetry in the continued
fraction expansion introduced below.

Let x ∈ [−1/2, 1/2] \ {0} be a rational number and set x1 = x. There is a positive integer
n such that the numbers

(6.1) xi+1 =
−1

xi
−
[−1

xi

]

, 1 ≤ i ≤ n,

are defined and xn+1 = 0. For 1 ≤ i ≤ n, we define the signs ε′i = +1 if xi > 0 and ε′i = −1
if xi < 0, and then define the integers bi ≥ 2 according to

bi =

{

[−1
xi

]

if ε′i = −1,
[

1
xi

]

if ε′i = +1.

It follows that [−1/xi] = −ε′ibi, and hence x−1
i = ε′ibi − xi+1. Now let us define the signs

ε1 = ε′1, and εi = (−1)ε′i−1ε
′
i, for 2 ≤ i ≤ n. Then, one can see that x is given by the finite

continued fraction

x = x1 = 1/(ε′1b1 − x2) = ε1/(b1 − ε′1x2),

=
ε1

b1 − ε′1
1

ε′2b2 − x3

=
ε1

b1 +
− 1ε′1ε

′
2

b2 − ε′2x3

=
ε1

b1 +
ε2

b2 − ε′2x3

.
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Inductively, repeating the above process until xn+1 = 0, we obtain

x =
ε1

b1 +
ε2

. . . +
εn

bn

.

Remark 6.1. The above continued fraction expansion is slightly different from the usual
notion of modified (closest integer) continued fraction expansion in the literature, where we
use x − [x] instead of d(x,Z) and allow xi to be negative as well as positive. However, the
only difference between the two expansions is in the signs εi. The reason for adapting to the
above algorithm is that we shall later extend the map x 7→ x− [x] to a holomorphic map on a
neighbourhood of the interval [−1/2, 1/2]. This allows us to study the maps α 7→ RNP-t(α⋉f)
and α 7→ RNP-b(α⋉ f) as holomorphic maps of α rather than anti-holomorphic maps of α.

Given n ≥ 1 and a sequence of pairs 〈bi : εi〉ni=1, where each bi ≥ 2 is an integer and
εi ∈ {+1,−1}, we use the notation [〈bi : εi〉ni=1] to denote the rational number generated by
this sequence of pairs. That is,

[b1 : ε1] =
ε1
b1
, [(b1 : ε1), (b2 : ε2)] =

ε1

b1 +
ε2

b2

,

and for n ≥ 3,

[〈bi : εi〉ni=1] =
ε1

b1 +
ε2

. . . +
εn

bn

.

However, note that a rational number of the above form is not necessarily in the interval
[−1/2, 1/2]. But, it is fairly close. The only condition we need to impose to obtain a rational
number in the interval [−1/2, 1/2] is that when b1 = 2 we must have ε1ε2 = +1.

6.2. Sequences of rational numbers. Let n ≥ 1 be an integer, and let mi ≥ 1 and bi,j ≥ 2
be integers, and εi,j ∈ {+1,−1}, for 1 ≤ i ≤ n and 1 ≤ j ≤ mi. We define the notation

〈mi : bi,j : εi,j〉ni=1

to represent the finite sequence of rational numbers

〈[bi,j : εi,j ]mi

j=1〉ni=1

For each i and l with 1 ≤ i ≤ n and 1 ≤ l ≤ mi we let
pi,l
qi,l

= [〈bi,j : εi,j〉lj=1].

Thus,

〈mi : bi,j : εi,j〉ni=1 = 〈pi,mi

qi,mi

〉ni=1.

Although we may remove the second subscript mi from the numerator and denominator
of the above sequence to get the simpler notation pi/qi = pi,mi

/qi,mi
, these have been put

there to avoid possible future confusions that the sequence pi/qi forms the fractions of a single
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number. That is, a priori there is no relation between these fractions. When we are interested
in infinite sequences of rational numbers, we shortened the notation 〈mi : bi,j : εi,j〉∞i=1 to
〈mi : bi,j : εi,j〉.

By setting the initial data pi,−1 = qi,0 = 1 and pi,0 = qi,−1 = 0, we have the usual recursive
formulas for the continued fractions pi,l/qi,l, 0 ≤ l ≤ mi

qi,l+1 = bi,l+1qi,l + εi,l+1qi,l−1, pi,l+1 = bi,l+1pi,l + εi,l+1pi,l−1,

By an inductive process, the above formulas imply that for all i ≥ 1, 0 ≤ l ≤ mi − 1, we have

(6.2) qi,l+1 > qi,l.

Moreover, for every i ≥ 1,

(6.3)
1

qi,mi

=
∣

∣

∣

mi
∏

k=1

[〈bi,j : εi,j〉mi

j=k]
∣

∣

∣
.

6.3. Pairs of multipliers vs pairs of complex rotations. Let κ = (κ1, κ2, κ3, . . . ) be in
T , where the set of types T is defined in Equation (5.1). In analogy with the set Λr(κ1, . . . , κn)
defined in Equation (5.5), we consider the sets

Λ1
r(〈κi〉ni=1) =

{

α ∈ A(r3)
∣

∣

∣

RNP-κn
◦ · · · ◦ RNP-κ1

(Qα) is defined
and ∀i with 1 ≤ i ≤ n, αi ∈ A(r).

}

For example, by Theorem 2.9, RNP-t(Qα) and RNP-b(Qα) are defined for α ∈ Λ1
r3(κ1).

Each Qα with α ∈ C is conformally conjugate to some quadratic polynomial Pc with a
unique c ∈ C. The connectedness locus of the family Qα, that is, the set of α such that the
Julia set of Qα is connected, is Z-periodic in α. However, this connectedness locus modulo
Z forms a double cover of the Mandelbrot set, branched over c = 1/4 (which is only covered
once). Here α = 0 is mapped to c = 1/4. For each c ∈ C \ {1/4} there are two distinct
parameters w1 and w2 in C such that for all α in w1 + Z and w2 + Z, Qα is conformally
conjugate to Pc. See Figure 10.

For α in the upper half plane, 0 is an attracting fixed point of Qα, while for α in R

the multiplier of Qα at 0 belongs to the unit circle. In analogy to the Mandelbrot set,
the connectedness locus of Qα minus R consists of the upper half plane and the connected
components attached to the real line at rational values of α. There is a unique connected
component attached to the real line at 0. We denote the closure of this component by Mα.
Then, there is a one-to-one correspondence between the Mandelbrot set and Mα such that
the corresponding quadratic polynomials are conformally conjugate. Let c 7→ α(c), from M
to Mα, denote this bijection. We define the sets

Mα(
〈pi
qi

〉n

i=1
) =

{

α(c) | c ∈M(
〈pi
qi

〉n

i=1
)
}

.

As in Section 4, the notions of dividing periodic points and their combinatorial rotation
numbers are defined on the above components.

Let Qα be an infinitely polynomial-like renormalisable. We denote the sequence of the
dividing periodic points of Qα by νi, i ≥ 1. In other words, νi in the periodic point of Qα
that is mapped to ai by the conformal map conjugating Qα(c) to Pc, for each i ≥ 1. We recall
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Figure 10. The connectedness locus of the family Qα and a zoom into a
neighbourhood of 0 on the right hand side. Need to produce better figures.

that ν1 is a fixed point. Note that νi is not an arbitrary element in the cycle of νi. Rather, it
is a particular point in this cycle. Let us denote the multiplier of νi by ρi, for i ≥ 1. That is,

ρ1 = Q′
α(ν1), ρ2 = (Q◦q1

α )′(ν2), ρn = (Q◦(q1...qn−1)
α )′(νn), n ≥ 3.

For α ∈Mα \ {0}, 0 is a repelling fixed point of Qα while σ(Qα) may be either attracting
or repelling, depending on Im(β(Qα)). For α ∈ Mα \ {0}, ν1 = σ1 = σ(Qα) is the non-zero
fixed point of Qα, and we have

(6.4) β1 =
1

2πi
log ρ1.

Let pi/qi be a sequence of non-zero rational numbers in (−1/2, 1/2]. By the previous
section, there is 〈mi : bi,j : εi,j〉∞i=1, with integers mi ≥ 1, bi,j ≥ 2, and signs εi,j for i ≥ 1 and
1 ≤ j ≤ mi, such that pi/qi = pi,mi

/qi,mi
= [〈bi,j : εi,j〉mi

j=1], for i ≥ 1. Then, we consider the
integers

(6.5) l1 = 0, lk =

k−1
∑

i=1

mi, k ≥ 2.

Then, we define the map

(6.6) κ :
(

Q ∩
(

(−1/2, 0) ∪ (0, 1/2]
))N → T ,

as follows. Given 〈mi : bi,j : εi,j〉 in
(

Q ∩
(

(−1/2, 0) ∪ (0, 1/2]
))N

and n ≥ 1, the n-th entry
of κ(〈mi : bi,j : εi,j〉), denoted by κn(〈mi : bi,j : εi,j〉), is defined as

κn(〈mi : bi,j : εi,j〉) =
{

b if n ∈ {lk + 1 | k ≥ 1}
t otherwise.
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In other words, the first m1 entries of κ are given by one “b” followed by m1 − 1 times “t”,
the next m2 entries of κ are given by one “b” followed by m2 − 1 times “t”, and so on. The
map κ only depends on the sequence mi (the lengths of the rational numbers) rather than
the entries in each rational number. The individual entries come into play later.

In the following proposition r3 denotes the constant introduced in Proposition 2.6.

Proposition 6.2. Let 〈pi/qi〉∞i=1 = 〈mi : bi,j : εi,j〉 be a sequence of non-zero rational numbers
in (−1/2, 1/2] and consider the type κ = κ(〈mi : bi,j : εi,j〉) ∈ T . For every integer k ≥ 1 and
every α in the intersection of Mα(〈pi/qi〉ki=1) and Λ1

r3(κ1, . . . , κlk), if αlk+1 ∈ A(r3) then

βlk+1 =
1

2π i
log ρk.

Proof. Since α ∈ Mα(p1/q1, . . . , pk/qk), for every integer j with 1 ≤ j ≤ k the dividing
periodic point νj of Qα is defined. In particular, the right hand side of the equality in the
proposition is defined. On the other hand, as α ∈ Λ1

r3(κ1, . . . , κlk), for every integer j with
2 ≤ j ≤ lk, fj+1 = RNP-κj

◦ · · · ◦ RNP-κ1
(Qα) is defined. Moreover, by the definition of

Λ1
r3(κ1, . . . , κlk) and the assumption in the proposition for every 1 ≤ j ≤ lk +1, αj is defined

and belongs to A(r3). By Proposition 2.1, this implies that each fj has a unique non-zero
fixed point σj in the (fixed) neighbourhood W of 0. In particular, βlk+1 in the left-hand side
of the equation in the proposition is defined. It remains to relate these quantities.

Recall that for α ∈Mα(p1/q1, . . . , pk/qk), ν1 is a fixed point, and in general for j with 2 ≤
j ≤ k, νj is a periodic point of period

∏j−1
i=1 qi. Moreover, as α varies inMα(p1/q1, . . . , pj/qj),

νj has holomorphic dependence on α. On the other hand, by the definition of the near-
parabolic renormalisations, each σlj+1, for 1 ≤ j ≤ k, lifts to a periodic cycle of Qα, which
we denote by Olj+1. We claim that for each j with 1 ≤ j ≤ k, Olj+1 is equal to the cycle of
νj . We prove this below by induction on j.

For j = 1, l1 = 0 and O1 is equal to σ1 = σ(Qα) = ν1. Assume that Olj−1+1 is equal to the
cycle of νj−1 for j− 1 < l+1 and we want to prove that Olj+1 is equal to the cycle of νj . By
the definition of the types, κlj−1+1 = b and for all integers i with lj−1 + 1 < i ≤ lj, we have
κi = t. This implies that the zero fixed point of flj+1 lifts to σlj−1+1 on the dynamic plane
of flj−1+1 (in all the intermediate levels i it lifts to 0). Thus, by the induction hypothesis,
the zero fixed point of flj+1 lifts to the cycle of νj−1. On the other hand, as αlj+1 tends to 0
in A(r3), σlj+1 tends to 0 and σlj+1 is the only fixed point of flj+1 within W -neighbourhood
of 0. This implies that the lift of this fixed point, which is the cycle Olj+1, tends to the
cycle of νj−1. However, as α ∈ Mα(p1/q1, . . . , pj/qj), νj is the only periodic point of Qα
that bifurcates from νj−1. That is, for sufficiently small αlj+1 (equivalently, for α sufficiently
close to the root point of Mα(p1/q1, . . . , pj/qj)), Olj+1 is equal to the cycle of νj . By the
holomorphic dependence of the cycles of νj and Olj+1 on α, we conclude that these cycles

are equal on the connected components of Λ1
r3(κ1, . . . , κlj ).

By the above argument, σlk+1 lifts to the orbit of νk through the changes of the coordi-
nates in the near-parabolic renormalisations. In particular, these cycles must have the same
multipliers, as in the equation in the proposition. �

Corollary 6.3. Let 〈mi : bi,j : εi,j〉 be a sequence of non-zero rational numbers in (−1/2, 1/2].
For every α in the intersection of Mα(〈mi : bi,j : εi,j〉) and Λ1

r3(κ(〈mi : bi,j : εi,j〉)), and every
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k ≥ 1 we have

βlk+1 =
1

2π i
log ρk.

6.4. The quadratic growth condition and the complex rotations. Here, our goal is to
find a combinatorial condition, in terms of the combinatorial rotation numbers of the dividing
periodic points, that guarantees an infinitely polynomial-like renormalisable map under that
condition is infinitely near-parabolic renormalisable.

The algorithm defining the modified continued fraction expansion in Section 6.1 has a
natural extension onto the complex plane which plays a crucial role in this section. It is
defined as follows. Recall from Section 6.1 the closest integer function [·] defined on R. We
consider the map inv(z) = −1/z, for z ∈ C \ {0}, and the map saw(z) = z − [Re(z)], for
z ∈ C. We shall work with the composition of these two maps denote by

G(z) = saw ◦ inv(z), ∀z ∈ C \ {0}.

Then, G maps the interval [−1/2, 0) ∪ (0, 1/2] to [−1/2, 1/2], and for a non-zero rational
number x1 in [−1/2, 1/2],

xi = G◦i−1(x1), 1 ≤ i ≤ n.

where the numbers xi are defined in Equation (6.1). In particular,

G([〈bj : εj〉nj=i]) = −εi · [〈bj : εj〉nj=i+1].

That is, applying G to a continued fraction removes the first pair from the expansion, and
then only modifies the first sign in the remaining expansion. In particular,

(6.7) G◦n−1([〈bj : εj〉nj=1]) = ±1/bn, G
◦n([〈bj : εj〉nj=1]) = 0.

For each integer b1 ≥ 2 and ε1 ∈ {+1,−1}, the image of the round ball of radius 1/2 centred
at −ε1b1, B(−ε1b1, 1/2), under the map inv is a round ball containing ε1/b1. Note that this
ball is not centred at ε1/b1. Let F1 denote the collection of all these balls for integers b1 ≥ 2
and ε1 ∈ {+1,−1}. If we care to determine a specific ball in this collection, we use the notation
F1(〈b1 : ε1〉) to denote the one containing ε1/b1. It follows that G : F1(〈b1 : ε1〉) → B(0, 1/2)
is a holomorphic bijection.

Similarly, for integers n ≥ 2, we may define the collection Fn of round balls that are
mapped onto B(0, 1/2) by the iterate G◦n. The element of Fn containing [〈b1 : ε1〉ni=1] is
denoted by Fn(〈bi : εi〉ni=1) and we note that each such element is a disk that is symmetric
with respect to the real line. Moreover,

G◦n : Fn([〈bi : εi〉ni=1]) → B(0, 1/2), n ≥ 1,

is a holomorphic bijection given by a Möbius transformation that maps the real slice of the
domain to the real slice of the image.

Lemma 6.4. For every n ≥ 1, every [〈bj : εj〉nj=1] ∈ Q, every z ∈ Fn([〈bj : εj〉nj=1]), and
every k with 0 ≤ k ≤ n− 1, we have

4

5
· 1

bk+1
≤ |G◦k(z)| ≤ 4

3
· 1

bk+1
, argG◦k(z) ∈

{

[−π4 ,
π
4 ] if Re(G◦k(z)) > 0

[ 3π4 ,
5π
4 ] if Re(G◦k(z)) < 0

.
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Proof. First note that

G◦k(Fn([〈bj : εj〉nj=1])) = Fn−k(G◦k([〈bj : εj〉nj=1])) ⊆ F1(G
◦k([〈bj : εj〉nj=1])).

and the first pair in the expansion of G◦k([〈bj : εj〉nj=1] has the form (bk+1,±1). Hence,

G◦k(z) belongs to either F1(1/bk+1) or F1(−1/bk+1). Each of these sets is a round ball
symmetric with respect to the real line passing through the pair of points 1/(bk+1+1/2) and
1/(bk+1 − 1/2) or the pair of points −1/(bk+1 + 1/2) and −1/(bk+1 − 1/2), respectively. In
particular, for G◦k(z) ∈ F1(±1/bk+1),

4

5
· 1

bk+1
≤ 1

bk+1 + 1/2
≤ |z| ≤ 1

(bk+1 − 1/2)
≤ 4

3
· 1

bk+1
.

On the other hand, each of F1(1/bk+1) and F1(−1/bk+1) is a round disk of diameter

1

bk+1 − 1/2
− 1

bk+1 + 1/2
≤ 1√

2bk+1

.

Hence, F1(±1/bk+1) is contained in the round ball of radius 1/(
√
2bk+1) about ±1/bk+1. This

implies the bounds on arg(G◦k(z)). �

Lemma 6.5. There is a constant C0 satisfying the following. Let x = [〈bj : εj〉nj=1] ∈ Q, for

some n ≥ 1, and assume that bj+1 ≥ b2j , for 1 ≤ j ≤ n− 1. Define the numbers

x0 = 1, xi = G◦(i−1)(x), 1 ≤ i ≤ n.

Then,

|xn|
|x1|

≤ C0 ·
n−1
∏

i=0

|xi|.

Proof. For each 1 ≤ j ≤ n we have

(

1 +
1

2bj + 1

) 1

bj
=

1

bj + 1/2
≤ |xj | ≤

1

bj − 1/2
=

1

bj
·
(

1 +
1

2bj − 1

)

.

Then, since bj+1 ≥ b2j , by the above equation we have

|xj+1| ≤
1

bj+1

(

1 +
1

2bj+1 − 1

)

≤ 1

b2j

(

1 +
1

2bj+1 − 1

)

≤ |xj |2
(

1 +
1

2bj+1 − 1

)(

1− 1

2bj + 2

)2

≤ |xj |2(1 +
C

bj
),

for some uniform constant C. Then,

|xn|
∏n−1
i=0 |xi|

=

n−1
∏

i=0

( |xi+1|
|xi|2

)

≤ |x1|
(

n−1
∏

i=1

(1 +
C

bi
)
)

≤ |x1| exp(
∞
∑

i=1

C

bi
) ≤ |x1|eC .

�
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Lemma 6.6. There exists C1 > 0 such that for every n ≥ 1 and every disk Bn in Fn, the
distortion of the map G◦n : Bn → B(0, 1/2) is bounded by C1, that is,

∀z, w ∈ Bn,
1

C1
≤
∣

∣

∣

(G◦n)′(z)

(G◦n)′(w)

∣

∣

∣
≤ C1.

Proof. Assume that B and B′ are round disks that are symmetric with respect to the real line
(invariant under complex conjugation), and g : B → B′ be a Möbius map that sends B∩R to
B′ ∩R. Then, the distortion of g on B is realized at the two end points of the interval B ∩R.
This implies that the distortion of the map G◦n on Bn is equal to its distortion on Bn ∩ R.
Indeed, the latter statement is a classical result that follows from direct calculations. �

Let N ≥ 2 be an integer and define the class of sequences of rational numbers5

(6.8) QGN =
{

〈pi,mi

qi,mi

〉∞
i=1

= 〈mi : bi,j : εi,j〉
∣

∣

∣

b1,1 ≥ N ; ∀i ≥ 1, bi+1,1 ≥ q2i,mi

∀i ≥ 1, 1 ≤ j ≤ mi − 1, bi,j+1 ≥ b2i,j .

}

.

For example, if we let mi = 1 for all i ≥ 1, then a sequence 〈pi,1/qi,1〉∞i=1 belongs to QGN
if and only if q1 ≥ N and for all i ≥ 1, pi ∈ {+1,−1} and qi+1 ≥ q2i . However, choosing
larger values of mi at different stages allows us to cover more rational number at stage i.
This imposes a stronger condition on the size of the next denominator through qi+1 ≥ b2i,mi

.

Proposition 6.7. For every r ∈ (0, 1/2) there is a constant N > 0 satisfying the following
property. Let 〈pi/qi〉∞i=1 belong to QGN and define the integers

k1 = 1, kn =

n−1
∏

i=1

qi,mi
, ∀n ≥ 2.

Then, for every i ≥ 1 and every z ∈ C satisfying

∣

∣

∣
z −

(pi
qi

− i
ki
qi

log 2

2π

)

∣

∣

∣
≤ log 2

2π

ki
qi
,

we have the following two properties.

a) For every ni with 0 ≤ ni ≤ mi − 2,

|G◦ni(z)| ≤ r, and arg(G◦ni(z)) ∈
{

[−π
4 ,

π
4 ] if Re(G◦ni(z)) > 0

[ 3π4 ,
5π
4 ] if Re(G◦ni(z)) < 0

;

b)

|G◦(mi−1)(z)| ≤ r.

Proof. Let us choose 〈mi : bi,j : εi,j〉 so that

pi
qi

=
pi,mi

qi,mi

= [〈bi,j : εi,j〉mi

j=1].

5QG stands for quadratic growth.
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Recall the constants C0 and C1 introduced in Lemmas 6.5 and 6.6. Then, choose N ≥ 2 such
that the following inequalities hold.

1

N

4

3
≤ r

3
,(6.9)

1

N
C1 ≤ 1

C1
·
√
C1 − 1√
C1 + 1

· r
3
,(6.10)

1

N
C1

4

3

log 2

2π
C1C0 ≤ 1

C1
·
√
C1 − 1√
C1 + 1

· r
3

(6.11)

We break the proof into several steps.

Step 1. For 〈mi : bi,j : εi,j〉 ∈ QGN , by Lemma 6.4, for every i ≥ 1 and every ni with
0 ≤ ni ≤ mi − 1, by Equation (6.9), we have

(6.12)
∣

∣G◦ni
(

[〈bi,j : εi,j〉mi

j=1]
)∣

∣ ≤ 4

3
· 1

bi,ni+1
≤ 4

3
· 1

bi,1
≤ 4

3
· 1

b1,1
≤ 4

3
· 1

N
≤ r

3
.

Step 2. By the definition of the class QGN and Equation (6.2), for every i ≥ 1,

(6.13) qi+1,mi+1
≥ qi+1,1 = bi+1,1 ≥ q2i,mi

.

For i = 1, by Equation (6.9), we have

(6.14)
log 2

2π
· k1
q1,m1

=
log 2

2π
· 1

q1,m1

≤ log 2

2π
· 1

b1,1
≤ log 2

2π
· 1

N
≤ r

3
.

Recall that qi,0 = 1, for i ≥ 1. This is for the simplicity of the formulas in the following. For
i ≥ 2,

(6.15)

log 2

2π
· ki
qi,mi

=
log 2

2π
·
(

i−1
∏

l=1

ql,ml

)

· 1

qi,mi

=
log 2

2π

i−1
∏

l=0

( q2l,ml

ql+1,ml+1

)

≤ log 2

2π
· 1

q1,1
≤ log 2

2π
· 1

b1,1
(Eq. (6.13))

≤ log 2

2π
· 1

N
≤ r

2
.

Step 3. Assume that mi = 1 for some i ≥ 1. For every z satisfying the hypothesis of the
proposition, by Equations (6.12), (6.14), and (6.15), z belongs to a disk of radius bounded
from above by r/3 attached to the real line at pi,mi

/qi,mi
with |pi,mi

/qi,mi
| ≤ r/3. Hence,

|z| ≤ r/3+2r/3 = r. This implies the inequality in part b), and there is nothing to prove for
part a).

Let us fix an i ≥ 1. From now on we assume that mi > 1.

Step 4. Recall that

G◦(mi−1) : Fmi−1([〈bi,j : εi,j〉mi−1
j=1 ]) → B(0, 1/2)
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is a bijection. Let us define the set

(6.16) Bri ⊆ Fmi−1([〈bi,j : εi,j〉mi−1
j=1 ])

as the pre-images of B(0, r) under the above restriction of G◦(mi−1). Then, Bri is a round

ball containing the point [〈bi,j : εi,j〉mi−1
j=1 ].

Define the numbers xi,l, for i ≥ 1, as

xi,0 = 1,

as well as the numbers xi,l, for i ≥ 1 and 1 ≤ l ≤ mi − 1, as

xi,l =
l
∏

k=1

∣

∣

∣
[〈bi,j : εi,j〉mi−1

j=k ]
∣

∣

∣
=

l−1
∏

k=0

∣

∣G◦k([〈bi,j : εi,j〉mi−1
j=1 ])

∣

∣.

For every l with 0 ≤ l ≤ mi − 1 we have

(6.17)
∣

∣(G◦l)′([〈bi,j : εi,j〉mi−1
j=1 ])

∣

∣ = (xi,l)
−2.

Hence, by the uniform bound on the distortion of G◦mi−1 in Lemma 6.6, we have

(6.18) r
1

C1
x2i,mi−1 ≤ diam (Bri ) ≤ rC1x

2
i,mi−1.

Although the ball Bri is not centred at [〈bi,j : εi,j〉mi−1
j=1 ], the uniform bound on the distor-

tion of G◦mi−1 implies that the center of Bri is not too far from [〈bi,j : εi,j〉mi−1
j=1 ]. One can

verify that if h is a Möbius map of the unit disk with 1/C1 ≤ |h′(x)|/|h′(y)| ≤ C1 for all x
and y in the unit disk, then |h(0)| ≤ (

√
C1 − 1)/(

√
C1 + 1). By virtue of Lemma 6.6,

(6.19) B
(

[〈bi,j : εi,j〉mi−1
j=1 ],

1

C1

√
C1 − 1√
C1 + 1

x2i,mi−1r
)

⊆ Bri .

That is, Bri contains a round ball of size comparable to rx2i,mi−1 about [〈bi,j : εi,j〉mi−1
j=1 ]. Let

us define the constant

C2 =
1

C1

√
C1 − 1√
C1 + 1

.

Step 5. Define the numbers yi,l as

yi,0 = 1, i ≥ 1,

and

(6.20) yi,l =

l
∏

k=1

∣

∣

∣
[〈bi,j : εi,j〉mi

j=k]
∣

∣

∣
=

l−1
∏

k=0

∣

∣G◦k([〈bi,j : εi,j〉mi

j=1])
∣

∣, i ≥ 1 and 1 ≤ l ≤ mi.

By Equation (6.3), we have
1

qi,mi

= yi,mi
.

By Lemma 6.6, we have
1

C1
xi,mi−1 ≤ yi,mi−1 ≤ C1xi,mi−1,
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which implies

(6.21)
1

C1
xi,mi−1

1

bi,mi

≤ 1

qi,mi

= yi,mi
≤ C1xi,mi−1

1

bi,mi

.

Step 6. Recall from Equation (6.7) thatG◦mi−1(pi,mi
/qi,mi

) = ±1/bi,mi
andG◦mi−1([〈bi,j :

εi,j〉mi−1
j=1 ]) = 0. By the uniform bound on the distortion of G◦mi−1 in Lemma 6.6 and the

explicit value of its derivative at [〈bi,j : εi,j〉mi−1
j=1 ] in Equation (6.17), we obtain

(6.22)
∣

∣

∣

pi,mi

qi,mi

− [〈bi,j : εi,j〉mi−1
j=1 ]

∣

∣

∣
≤ C1x

2
i,mi−1 ·

1

bi,mi

≤ C1x
2
i,mi−1 ·

1

bi,1
≤ C1x

2
i,mi−1 ·

1

b1,1

≤ C1x
2
i,mi−1 ·

1

N
≤ r

3
· C2 · x2i,mi−1.

In the last line of the above equation we have used Equations (6.10).

Step 7. We have,

ki
qi,mi

· 1

x2i,mi−1

≤ C1
ki
1

· xi,mi−1

bi,mi
x2i,mi−1

(Eq. (6.21))

= C1
ki
bi,1

· bi,1
bi,mi

xi,mi−1

≤ C1
ki
q2i−1

· bi,1
bi,mi

xi,mi−1
(Eq. (6.13))

≤ C1
ki
q2i−1

· 4
3

1

yi,1bi,mi
xi,mi−1

(Lemma 6.4 with k = 0)

≤ C1
1

N
· 4
3
C1

1

yi,1b2i,mi
yi,mi

(Eq. (6.15),Eq. (6.21))

= C1
1

N
· 4
3
C1

1

yi,1yi,mi−1
· 1

bi,mi

(Eq. (6.20))

≤ C1
1

N
· 4
3
C1C0 (Lem. 6.5)

In particular, by Equation (6.11), the above inequalities imply that

(6.23)
log 2

2π
· ki
qi,mi

≤ r

3
C2x

2
i,mi−1.

Step 8. Let z ∈ C be a point satisfying the hypothesis of the proposition. By Equa-
tion (6.23), z belongs to a ball of radius at most r

3C2x
2
i,mi−1 that is tangent to the real line at

pi,mi
/qi,mi

. On the other hand, by Equation (6.22), pi,mi
/qi,mi

is within r
3C2x

2
i,mi−1 distance

from [〈bi,j : εi,j〉mi−1
j=1 ]. Hence, |z − [〈bi,j : εi,j〉mi−1

j=1 ]| ≤ rC2x
2
i,mi−1. By Equations (6.19) and

(6.16), the above inequality implies that

z ∈ Bri ⊆ Fmi−1([〈bi,j : εi,j〉mi−1
j=1 ]).

This finishes the proof of the proposition, by virtue of Lemma 6.4. �
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6.5. Rigidity of complex quadratic polynomials. Recall the constant r1 introduced in
Proposition 2.1.

Lemma 6.8. There is a constant r5 > 0 satisfying the following. Let f ∈ A(r1) ⋉ F0 or
f ∈ A(r3)⋉ {Q0}, with |f ′(0)| ≥ 1. If β(f) ∈ A(r5) then α(f) ∈ A(r3).

Proof. Recall the domain W from Lemma 2.1 and the constant B4 from Lemma 3.24 such
that for every f ∈ A(r3)⋉ F0 or f ∈ A(r3)⋉ {Q0} we have

1

2π

∣

∣

∣

∫

∂W

1

z − f(z)
dz
∣

∣

∣
≤ B4.

By the holomorphic index formula (2.2), this implies that

∣

∣

1

1− e2πiα(f)
+

1

1− e2πiβ(f)

∣

∣

∣
≤ B4,

On the other hand, since |f ′(0)| ≥ 1 and |f ′(σ(f))| ≥ 1, we must have Imα(f) ≤ 0 and
Imβ(f) ≤ 0. By an elementary calculation one can verify that there is r5 > 0 such that if
β(f) ∈ A(r5) then α(f) ∈ A(r3). �

Remark 6.9. Indeed, the proof of the above lemma implies an stronger remarkable property
on the relation between α(f) and β(f). That is, the set of α(f) such that β(f) is real and
belongs to (−r5, r5), is tangent to the real line at 0 with the order of the tangency being
quadratic. One may use the pre-compactness of the F0 to prove stronger bounds on the
location of this curve, which in turn may be used to give estimates on the location of the
multipliers of the dividing periodic points of corresponding Qα.

The following proposition is the main statement of this section. Recall the integers lk
introduced in Equation (6.5) and the map κ introduced in Equation (6.6).

Proposition 6.10. Given r3 > 0 as in Theorem 2.9 there is an integer N > 0 such that for
every sequence of rational numbers 〈mi : bi,j : εi,j〉 ∈ QGN in the interval (−1/2, 1/2] and

every integer k ≥ 1, Mα(〈mi : bi,j : εi,j〉ki=1) is contained in Λ1
r3(〈κi〉

lk
i=1), where κ = κ(〈mi :

bi,j : εi,j〉).

The above proposition combined with Theorem 2.9 provides us with a constant N such
that for every 〈mi : bi,j : εi,j〉 ∈ QGN and every α ∈ Mα(〈mi : bi,j : εi,j〉), Qα is infinitely
near-parabolic renormalisable of type κ(〈mi : bi,j : εi,j〉).

Proof. Let r5 be the constant obtained in Lemma 6.8. Let N1 be the constant obtained in
Proposition 6.7 with r = min{r5, r3}, and choose N ≥ N1 such that

log 2

2π
· 1

N
≤ r3

2
,
4

3
· 1

N
≤ r3

2
.

Fix 〈mi : bi,j : εi,j〉 in QGN , k ≥ 1, and α ∈ Mα(〈mi : bi,j : εi,j〉ki=1). Define the type
κ = κ(〈mi : bi,j : εi,j〉). We need to show that starting with f1 = Qα, the sequence of maps
fi, for 1 ≤ i ≤ lk, in equation (5.2) is defined, and each αi ∈ A(r3). We prove this by an
inductive argument.
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Recall that β1 = 1
2πi log ρ1, Equation (6.4). By the PLY inequality (4.2), and the above

condition on N , α is contained in a disk of radius bounded by r3/2 attached to the real line
at [〈b1,j : ε1,j〉m1

j=1]. Moreover, by Equation (6.12),

∣

∣[〈b1,j : ε1,j〉m1

j=1]
∣

∣ ≤ 4

3
· 1

N
≤ r3

2
.

Hence, α is contained in A(r3). Therefore, by Theorem 2.9 and Definition 2.11, f1 is near-
parabolic renormalisable of type κ1 = b. That is, RNP-b(Qα) is defined.

By the definitions, l2 = m1 and α2 = −1/β1. Also, for all i with 2 ≤ i ≤ l2 (if there is
any), we have κi = t. Thus, for all such i, we have αi+1 = −1/αi. Proposition 6.7, combined
with the PLY inequality, implies that, for every i with 2 ≤ i ≤ l2, αi ∈ A(r3). In particular,
this implies that for every i with 2 ≤ i ≤ l2+1, fi is defined. But we still don’t know whether
αl2+1 belongs to A(r3) or not.

Let j be an integer with 1 ≤ j ≤ k − 1. For α ∈ Mα(〈mi : bi,j : εi,j〉ki=1), we want to

show that if α ∈ Λ1
r3(〈κi〉

lj
i=1) then α ∈ Λ1

r3(〈κi〉
lj+1

i=1 ). Since α ∈ Λ1
r3(〈κi〉

lj
i=1), by definition,

αlj belongs to A(r3) and hence, flj+1 is defined. However, since α belongs to Mα(〈mi :

bi,j : εi,j〉j+1
i=1 ), PLY inequality, Corollary 6.3, and Proposition 6.7 with nj = 0, imply that

βlj+1 = 1
2πi log ρj belongs to A(r5). Then, by Lemma 6.8, αlj+1 belongs to A(r3), and

therefore, RNP-b(flj+1) is defined. Note the choice of N and N1 at the beginning of the proof.
By the definition, κlj+1 = b and for all l with lj + 2 ≤ l ≤ lj+1 (if there is any) κl = t.
That is, αlj+2 = −1/βlj+1 and αl+1 = −1/αl for all l with lj + 2 ≤ l ≤ lj+1. Now we use
Proposition 6.7 to conclude that for every l with lj ≤ l ≤ lj+1, αl ∈ A(r3) and fl+1 is defined.

By an inductive argument, the proposition follows from the above paragraphs. �

Proposition 6.11. Let pi/qi, i ≥ 1, be a sequence of non-zero rational numbers in (−1/2, 1/2]
such that for every c in M(〈pi/qi〉∞i=1), Qα(c) is infinitely near parabolic renormalisable and
for every n ≥ 1 the rotation αn belongs to A(r3). Then, the nest of Mandelbrot copies
M(〈pi/qi〉ni=1) shrinks to a single point.

Proof. By the hypothesis, Mα(p1/q1, p2/q2, . . . ) is contained in Λ1
r3(κ), where

κ = κ(〈pi/qi〉∞i=1)

is defined in Equation (6.6). By Theorem 5.1, the connected set Mα(〈pi/qi〉∞i=1) must be a
single point. �

We will not use the following proposition in this paper, but it is stated for future purposes.

Proposition 6.12. For every sequence of rational numbers 〈mi : ai,j : εi,j〉 with ai,j ≥ N ,
there is α ∈ Mα(〈mi : ai,j : εi,j〉) such that Qα is infinitely near-parabolic renormalisable of
type κ(〈mi : ai,j : εi,j〉).

Proof. By the continuity of the relations between αn and βn as well as αn−1 in terms of αn or
βn, there is α ∈ A(r3) such that Qα is infinitely near parabolic renormalisation of type κ. On
the other hand, if Qα is infinitely near-parabolic renormalisable, then the orbit of the critical
point remains uniformly bounded in C. This implies that α belongs to Mα. It is not difficult
to see that Qα has the correct combinatorial rotations of the dividing periodic points. More
details shall be added later. �
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[Fat20] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 33–94.
[Fei78] Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J.

Statist. Phys. 19 (1978), no. 1, 25–52. MR 0501179 (58 #18601)
[GdM17] Pablo Guarino and Welington de Melo, Rigidity of smooth critical circle maps, J. Eur. Math.

Soc. (JEMS) 19 (2017), no. 6, 1729–1783. MR 3646874
[GL00] Frederick P. Gardiner and Nikola Lakic, Quasiconformal Teichmüller theory, Mathematical

Surveys and Monographs, vol. 76, American Mathematical Society, Providence, RI, 2000.
MR 1730906 (2001d:32016)
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