
COMBINATORIAL RIGIDITY FOR SOME INFINITELY

RENORMALIZABLE UNICRITICAL POLYNOMIALS

DAVOUD CHERAGHI

Abstract. Here we prove that infinitely renormalizable unicritical polyno-
mials Pc : z 7→ z

d + c, with c ∈ C, satisfying a priori bounds and a certain
“combinatorial” condition are combinatorially rigid. This implies the local
connectivity of the connectedness loci (the Mandelbrot set when d = 2) at the
corresponding parameters.

1. Introduction

The Multibrot set Md, or the connectedness locus of the unicritical polynomials,
is the set of parameter values c in C for which the Julia set of Pc : z 7→ zd + c is
connected. The set M2 is the well-known Mandelbrot set.

There is a way of defining graded partitions (puzzle pieces) of the Multibrot set
such that the dynamics of the maps Pc in each piece have some special combinato-
rial property. All maps in a given piece of a partition of a certain level are called
combinatorially equivalent up to that level. Conjecturally, combinatorially equiva-
lent (up to all levels) non-hyperbolic maps in this family are conformally conjugate.
As stated in [DH85a] for d = 2, this rigidity conjecture is equivalent to the local
connectivity of the Mandelbrot set, and it naturally extends to degree d unicriti-
cal polynomials. In the quadratic case, this conjecture is formulated as MLC by
Douady and Hubbard. They also proved there that MLC implies the density of
hyperbolic polynomials in the space of quadratic polynomials. These discussions
have been extended to degree d unicritical polynomials by Schleicher in [Sch04].

In the 1990’s, Yoccoz proved that M2 is locally connected at all non-hyperbolic
parameter values which are at most finitely renormalizable. He also proved the
local connectivity of the Julia sets of these maps with all periodic points repelling
(see [Hub93]). The degree two assumption was essential in his proof.

In [Lyu97], Lyubich proved the combinatorial rigidity conjecture for a class of
infinitely renormalizable quadratic polynomials. These are quadratic polynomials
satisfying a secondary limbs condition, denoted by SL, with sufficiently high return
times. The proof in this case also relies on the degree two assumption.

The local connectivity of the Julia sets of degree d unicritical polynomials which
are at most finitely renormalizable and with all periodic points repelling has been
shown in [KL09a]. Their proof is based on “controlling” the geometry of a modified
principal nest. The same controlling technique has been used to settle the rigidity
problem for these parameters in [AKLS09].

Recently, the a priori bounds property, a type of compactness on renormaliza-
tion levels, has been established for more parameters. In [Kah06], it is proved for
infinitely primitively renormalizable maps of bounded type. In [KL08], it is proved
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for parameters satisfying a decorations condition and in [KL09b], under a mole-
cule condition. Here we prove that the a priori bounds property, under the SL
condition, implies the combinatorial rigidity conjecture for infinitely renormalizable
maps. The SL class includes all parameters for which a priori bounds is known to
us.

Theorem (Rigidity). Let Pc be an infinitely renormalizable degree d unicritical
polynomial satisfying the a priori bounds and SL conditions. Then Pc is combina-
torially rigid.

This result was proved in part II of [Lyu97] for quadratic polynomials. That
proof as well as the one presented here are based on the Sullivan-Thurston pullback
argument. However, the one in [Lyu97] uses linear growth of certain moduli along
the principal nest which does not hold for arbitrary degree unicritical polynomials.
It turns out that the definite modulus of certain annuli in a modified principal
nest introduced in [AKLS09] helps us to easily “pass” over the principal nest. This
makes the whole construction simpler and more general so that we can include
unicritical polynomials of arbitrary degree. Combining the above theorem with
[KL08] and [KL09b] we obtain the following:

Corollary. Assume that P and P̃ are combinatorially equivalent infinitely renor-
malizable unicritical polynomials with one of the following conditions:

– P and P̃ are quadratic and satisfy the molecule condition,
or,

– P and P̃ have arbitrary degree and satisfy the decoration condition.

Then, P and P̃ are conformally equivalent.

The rigidity problem for a separate combinatorial class of quadratics is treated
by a wholly different approach in [Lev09] which does not involve the a priori bounds
property.

The rigidity conjecture for real polynomials has been fully established over the
last twenty years. The quadratic case was accomplished, independently, in [Lyu97]

and [GŚ98]. The real multi-critical case was treated in [LvS98]. One may refer to
these for further references. Our result can be applied to real unicritical polynomials
as well. Therefore, combining with [Sul92], it gives a new proof of the density of
hyperbolicity in the family x → x2k + c, k = 1, 2, . . . , which was proved earlier in
[KSvS07].

The structure of the paper is as follows. In §2 we introduce the basics of holomor-
phic dynamics required for our work. In §3, Yoccoz puzzle pieces are defined, the
modified principal nest is introduced, and combinatorics of unicritical polynomials
is discussed. The proof of the main theorem, presented in Section 4, is reduced
to the existence of a Thurston conjugacy by the pullback method. To build such
a conjugacy, we start with a topological conjugacy on the whole complex plane
and then step by step, on finer and finer scales, replace this homeomorphism by
quasi-conformal maps while sacrificing the equivariance property but staying in the
“right” homotopy class. At the end one obtains a quasi conformal map on the
complex plane homotopic to a topological conjugacy relative the post-critical set,
that is, a Thurston conjugacy.

Acknowledgment. I am indebted to M. Lyubich for suggesting the problem; this
paper would have never been finished without his great patience. Further thanks
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are due to R. Pérez for our very useful discussions on the combinatorics of the
Mandelbrot set. Finally, many heartfelt thanks to the referee for many valuable
comments to improve the writing of this work.

2. Polynomials and the connectedness loci

2.1. External rays and Equipotentials. One can read more about the following
basics of holomorphic dynamics in [Mil06] and [Bra94].

Let f : C → C be a monic polynomial of degree d: f(z) = zd+a1z
d−1+ · · ·+ad.

Infinity is a super attracting fixed point of f whose basin of attraction is defined as

Df(∞) := {z ∈ C : fn(z) :=

n times︷ ︸︸ ︷
f ◦ f ◦ · · · ◦ f(z) → ∞ as n→ ∞}.

The complement of Df(∞) is called the filled Julia set: K(f) := C \Df (∞). The
Julia set, J(f), is defined as the boundary of K(f). It is well-known that the Julia
set and the filled Julia set of a polynomial are connected if and only if the orbit of
all critical points stay bounded under iteration.

With f as above, there exists a conformal change of coordinate Bf , the Böttcher
coordinate, which conjugates f to the d-th power map z 7→ zd throughout some
neighborhood of infinity Uf . That is,

(2.1) Bf : Uf → {z ∈ C : |z| > rf ≥ 1}

with Bf (f(z)) = (Bf (z))
d, and Bf (z) ∼ z as z → ∞.

In particular, if the filled Julia set is connected, Bf coincides with the Riemann
mapping of Df (∞) onto the complement of the closed unit disk normalized to be
tangent to the identity map at infinity.

The external ray (or ray for short) of angle θ is defined as

Rθ = Rθ
f := B−1

f {reiθ : rf < r <∞}.

The equipotential of level r > rf is defined as

Er = Er
f := B−1

f {reiθ : 0 ≤ θ ≤ 2π}.

The equivariance property of the map Bf , i.e. Bf (f(z)) = (Bf (z))
d, implies that

f(Rθ) = Rdθ, and f(Er) = Erd .
A ray Rθ is called periodic of period p if fp(Rθ) = Rθ. A ray is fixed (has period

1) if and only if θ is a rational number of the form 2πj/(d − 1). By definition, a
ray Rθ lands at a well defined point z in J(f), if the limiting value of the ray Rθ

(as r → 1) exists and is equal to z. Such a point z in J(f) is called the landing
point of the ray Rθ. The following theorem characterizes the landing points of the
periodic rays. See [DH85a] for further discussions.

Theorem 2.1. Let f be a polynomial of degree d ≥ 2 with connected Julia set.
Every periodic ray lands at a well defined periodic point which is either repelling or
parabolic. Vice versa, every repelling or parabolic periodic point is the landing point
of at least one, and at most finitely many periodic rays with the same ray period.

In particular, this theorem implies that the external rays landing at a periodic
point are organized in several cycles. Suppose a = {ak}

p−1
k=0 is a repelling or para-

bolic cycle of f . Let R(ak) denote the union of all the external rays landing at ak.
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The configuration

R(a) =

p−1⋃

k=0

R(ak),

with the rays labeled by their external angles, is called the periodic point portrait
of f associated to the cycle a.

2.2. Unicritical family and the connectedness locus. Any degree d polyno-
mial with only one critical point is conformally conjugate to some Pc(z) = zd + c,
with c ∈ C. A case of special interest is the following fixed point portrait. The
d− 1 fixed rays R2πj/(d−1) land at d− 1 (distinct) fixed points called βj . Moreover,
these are the only rays that land at βj ’s. Therefore, these fixed points are non-
dividing, that is, K(Pc) \ βj is connected for any j. If the other fixed point called
α is also repelling, there are at least two rays that land at it. Thus, the α-fixed
point is dividing and by Theorem 2.1, the rays landing at α are permuted under
the dynamics. The following statement has been shown in [Mil00b] for quadratic
polynomials. The same ideas apply to prove it for degree d unicritical polynomials.

Proposition 2.2. If at least two rays land at the α fixed point of Pc, we have:

– the component of C \ P−1
c (R(α)) containing the critical value is a sector

bounded by two external rays;
– the component of C \ P−1

c (R(α)) containing the critical point is a region
bounded by 2d external rays landing in pairs at the points e2πj/dα, for j =
0, 1, . . . , d− 1.

The connectedness locus Md, or the Multibrot set of degree d, is defined as the
set of parameters c in C for which J(Pc) is connected. In particular, M2 is the
well-known Mandelbrot set. See Figures 1 and 2.

Figure 1. The Mandelbrot set. The gray regions show the interior
of M2 and darker points show its boundary.

A well-known result due to Douady and Hubbard [DH85a] shows that these
connectedness loci are connected. Their argument is based on considering the
explicit conformal isomorphism

Bd : C \Md → {z ∈ C : |z| > 1}
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Figure 2. Figure on the left shows the connectedness locus M3.
The figure on the right is an enlargement of a primary limb in M3.
The dark regions in the right box show some of the secondary
limbs.

given by Bd(c) := Bc(c), where Bc is the Böttcher coordinate (2.1) of Pc.
By means of the conformal isomorphism Bd, parameter external rays Rθ and

equipotentials Er are defined as Bd-preimages of straight rays going to infinity and
round circles around 0, respectively.

A polynomial Pc (also the corresponding parameter c) is called hyperbolic if Pc

has an attracting periodic point. This attracting periodic point necessarily attracts
orbit of the finite critical point. The set of hyperbolic parameters in Md, which is
open by definition, is a union of some components of intMd. These components
are called the hyperbolic components.

The main hyperbolic component is defined as the set of parameter values c for
which Pc has an attracting fixed point. Outside of the closure of this set all fixed
points become repelling. Consider a parameter c in a hyperbolic component H ⊂
intMd, and suppose that bc denotes the corresponding attracting cycle with period
k > 1. On the boundary of H this cycle becomes neutral, and there are d − 1
parameters ci ∈ ∂H where Pci has a parabolic cycle with multiplier equal to one.
One of these parameters, which is called the root of H and is denoted by croot,
divides the connectedness locus into two pieces. Indeed, any hyperbolic component
has one root and d−2 co-roots. The root is the landing point of two parameter rays,
while every co-root is the landing point of a single parameter ray. See Figure 3. For
a proof of these statements one may consult [DH85a], for the quadratic polynomials,
and [Sch04] for arbitrary degree unicritical polynomials.

If c belongs to a hyperbolic component H which is not the main hyperbolic
component of the connectedness locus, the basin of attraction of its attracting
cycle b̄c, denoted by Ac, is defined as the set of points z ∈ C with 〈Pn

c (z)〉
∞
n=0

converges to the cycle bc. The boundary of the component of Ac containing c is
a Jordan curve which we denote it by Dc. The map P k

c on Dc is topologically
conjugate to θ 7→ dθ on the unit circle. Therefore, there are d − 1 fixed points of
P k
c on this Jordan curve which are repelling periodic points of Pc of period dividing

the period of b̄c (its period can be strictly less than the period of b̄c). Among all
rays landing at these repelling periodic points, let θ1 and θ2 be the angles of the
external rays bounding the sector containing the critical value of Pc (See Figure 3).
The following theorem makes a connection between external rays Rθ1, Rθ2 and the
parameter external rays Rθ1 , Rθ2 . See [DH85a] and [Sch04] for further details.
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Rθ1

Rθ2

Rθ3
-ray landing at the co-root

Rθ2
-ray landing at the root

Rθ1
-ray landing

at the root

Figure 3. The figure on the left shows a primitively renormaliz-
able Julia set, as well as the external rays Rθ1 and Rθ2 landing at
the corresponding repelling periodic point. The figure on the right
is the corresponding primitive little Multibrot copy. It also shows
the parameter external rays Rθ1 and Rθ2 landing at the root point.

Theorem 2.3. The parameter external rays Rθ1 and Rθ2 land at the root of H .
Moreover, these are the only rays that land at this point.

The closure of Rθ1 and Rθ2 cut the parameter plane into two components. The
one containing H with the root point attached to it is called the wake WH . So a
wake is an open set with a point attached to its boundary. Given a wakeWH and an
equipotentialEη, the truncated wake WH (η) is the bounded component ofWH \Eη.
The part of the connectedness locus contained in WH is called the limb LH of
the connectedness locus originating at H . In other words, LH =WH ∩Md. By
definition, every limb is a closed set.

The wakes attached to the main hyperbolic component of Md are called primary
wakes. A limb associated to such a primary wake is called a primary limb. If H is
a hyperbolic component attached to the main hyperbolic component, all the wakes
attached to H (except WH itself) are called secondary wakes. Similarly, the limb
associated to a secondary wake is called a secondary limb. A truncated limb is
obtained from a limb by removing a neighborhood of its root. Some secondary
limbs are shown in Figure 2.

Given a parameter c in a hyperbolic component H , we have the attracting cycle
bc as above, and the associated repelling cycle ac that is the landing point of the
external rays Rθ1 and Rθ2 . The following result gives the dynamical meaning of
the parameter values in the wake WH bounded by parameter external rays Rθ1

and Rθ2 (See [Sch04] for further details).
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Theorem 2.4. For parameters c in WH \{root}, the cycle ac stays repelling and,
moreover, the isotopy type of the ray portrait R(ac) is fixed throughout WH .

2.3. Polynomial-like mappings. A polynomial-like map is a holomorphic proper
branched covering of degree d, f : U ′ → U , where U and U ′ are simply connected
domains with U ′ compactly contained in U . For example, every polynomial can be
viewed as a polynomial-like mapping once restricted to an appropriate neighbor-
hood of its filled Julia set. This notion was introduced in [DH85b] to explain the
presence of homeomorphic copies of the Mandelbrot set within the Mandelbrot set.

The filled Julia set K(f) of a polynomial-like mapping f : U ′ → U is naturally
defined as

K(f) := {z ∈ C : fn(z) ∈ U ′, for n = 0, 1, 2, . . .}.

The Julia set J(f) is defined as the boundary of K(f). These sets are connected if
and only if K(f) contains all critical points of f .

Two polynomial-like mappings f and g with Julia sets J(f) and J(g), respec-
tively, are called topologically conjugate if there are choices of domains U , U ′, V , and
V ′ as well as a homeomorphism h : U → V such that f : U ′ → U and g : V ′ → V
are polynomial-like, with the same Julia sets J(f) and J(g), and h ◦ f = g ◦ h on
U ′. They are called quasi-conformally (conformally, or affinely) conjugate if h can
be chosen quasi-conformal (conformal, or affine, respectively). The notation Dil (h)
is used for the quasi-conformal dilatation of a given quasi-conformal mapping h.

Two polynomial-like mappings f and g are hybrid or internally equivalent if
there exists a quasi-conformal conjugacy h (q.c. conjugacy for short) between f

and g such that ∂h = 0 on K(f). The following remarkable rigidity type theorem
due to Douady and Hubbard [DH85b] states that the dynamics of a polynomial-like
mapping is essentially the same as the one of a polynomial.

Theorem 2.5 (Straightening). Every polynomial-like mapping f is hybrid equiva-
lent to (a suitable restriction of) a polynomial P of the same degree. Moreover, P
is unique up to affine conjugacy when K(f) is connected.

From now on we only consider polynomial-like mappings with only one branched
point of degree d, assumed to be at zero by normalization, and refer to them
as unicritical polynomial-like mappings. By the above theorem, any unicritical
polynomial-like mapping with connected Julia set corresponds to a unique (up to
affine conjugacy) unicritical polynomial z 7→ zd+ c, with c in Md. Note that z

d+ c
and zd + c/λ are conjugate via z 7→ λz for every (d− 1)-th root of unity λ.

Given a polynomial-like mapping f : U ′ → U , we can consider the fundamental
annulus A = U \ U ′. It is not canonical because any choice of V ′ ⋐ V such
that f : V ′ → V is a polynomial-like mapping with the same Julia set gives a
different annulus. However, we can associate a real number, the modulus of f , to
any polynomial-like mapping f as follows:

mod(f) = supmod(A),

where the supremum is taken over all possible fundamental annuli A of f .
It is easy to see that the hybrid conjugacy obtained in the straightening theorem

is not unique. However, given a polynomial-like mapping, one can build a hybrid
conjugacy as in the straightening Theorem with a uniform bound on its dilatation
in terms of the modulus of the polynomial-like mapping. As this is essential in the
rest of this work, we formulate it in the following proposition.
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Proposition 2.6. For every η > 0, there exists a constant K > 0, such that if
f is a polynomial-like mapping with mod(f) ≥ µ, then one can choose a hybrid
conjugacy as in the straightening theorem whose dilatation is bounded by K.

3. Modified principal nest

3.1. Yoccoz puzzle pieces. Recall that for a parameter c ∈ Md outside of the
main hyperbolic component, Pc has a unique dividing fixed point αc. The q ≥ 2
external rays landing at αc together with an arbitrary equipotential Er cut the
domain inside Er into q closed topological disks (i.e. simply connected domains in
C) Y 0

j , j = 0, 1, . . . , q − 1, called puzzle pieces of level zero. That is, Y 0
j ’s are the

closures of the bounded components of C \ {Er ∪ R(αc)}. The main property of
this partition is that each Pc(∂Y

0
j ) does not intersect the interior of any piece Y 0

i .
Puzzle pieces Y n

i of level or depth n are defined as the closures of the connected
components of P−n

c (int(Y 0
j )). They partition the region bounded by the equipoten-

tial P−n
c (Er) into a finite number of closed disks. By definition, all puzzle pieces

are bounded by piecewise analytic curves. The puzzle piece of level n containing
the critical point is referred to as the critical puzzle piece of level n. The label of a
puzzle piece is the set of the angles of the external rays bounding that puzzle piece.
If the critical point does not land on αc, there is a unique critical puzzle piece Y n

0

of every level n.
The family of all puzzle pieces of Pc has the following Markov property:

– Any two puzzle pieces are either disjoint or nested. In the latter case, the
puzzle piece of higher level is contained in the puzzle piece of lower level.

– Image of any puzzle piece of level n > 1 is a puzzle piece of level n − 1.
Moreover, Pc : Y

n
j → Y n−1

k is either d-to-1 branched covering, or univalent.
This depends on whether Y n

j contains the critical point or not.

On the first level, there are d(q − 1) + 1 puzzle pieces organized as follows. The
critical piece Y 1

0 ; the q − 1 (off critical) pieces attached to the fixed point αc that
are denoted by Y 1

i , for i = 1, 2, . . . , q − 1; and the symmetric ones attached to
P−1
c (αc) \ {αc} that are denoted by Z1

i , for i = 1, 2, . . . , (d− 1)(q − 1). Moreover,
Pc|Y

1
0 , d-to-1 covers Y 1

1 , Pc|Y
1
i univalently covers Y 1

i+1, for every i = 1, . . . , q − 2,

and Pc|Y
1
q−1 univalently covers Y 1

0 ∪
⋃(d−1)(q−1)

i=1 Z1
i . Thus, P q

c (Y
1
0 ) truncated by

P−1
c (Er) is equal to the union of Y 1

0 and Z1
i ’s.

From now on we assume that Pn
c (0) 6= αc, for all n. Therefore, the critical puzzle

piece of every level is uniquely determined. As it will be apparent in a moment,
this condition is always the case for the parameters we are interested in.

3.2. Favorite nest and renormalization. Given a puzzle piece V containing 0,
let RV : Dom RV ⊆ V → V denote the first return map to V . It is defined at
every point z in V for which there exists a positive integer t with P t

c (z) ∈ intV .
For every such z, RV (z) is defined as P t

c (z), where t is the smallest positive integer
with P t

c (z) ∈ intV . The Markov property of the puzzle pieces implies that any
component of Dom RV is contained in V , and moreover, the restriction of this
return map (P t

c , for some t) to such a component is either a d-to-1, or 1-to-1 proper
map onto V . The component of Dom RV containing the critical point is called the
central component of RV . If image of the critical point under the first return map
belongs to the central component, the return is called central.
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The first landing map LV to a puzzle piece V ∋ 0 is defined at all points z ∈ C

for which there exists an integer t ≥ 0 with P t
c (z) ∈ intV . It is the identity on V ,

and it univalently maps each component of Dom LV onto V .
Consider a puzzle piece Q ∋ 0. If the orbit of the critical point returns back to

Q under iterates of Pc, the central component P ⊂ Q of RQ is the pullback of Q
by Pm

c along the orbit 0, Pc(0), . . . , P
m
c (0), where m is the first moment when the

critical orbit enters intQ. Hence, Pm
c : P → Q is a proper map of degree d. This

puzzle piece P is called the first child of Q.
The favorite child Q′ of Q is constructed as follows: Let p > 0 be the first

moment when Rp
Q(0) ∈ int(Q \P ) (if it exists). Now, let q > 0 be the first moment

(if it exists) when Rp+q
Q (0) ∈ intP . In other words, p + q is the moment of the

first return back to P after the first escape of the critical point from P under
iterates of RQ. Now, Q′ is defined as the pullback of Q under Rp+q

Q containing
the critical point. The Markov property of the puzzle pieces implies that the map
Rp+q

Q = P k
c : Q′ → Q (for an appropriate k > 0) is a proper map of degree d. The

main property of the favorite child is that the image of the critical point under
P k
c : Q′ → Q belongs to the first child P .
Let Pc be a unicritical polynomial with q > 1 external rays landing at its α-fixed

point, and form the corresponding Yoccoz puzzle pieces introduced in Section 3.1.
The map Pc is called satellite renormalizable, (also called immediately renormaliz-
able by Douady and Hubbard) if

P lq
c (0) ∈ Y 1

0 , for l = 0, 1, 2, . . . .

The map P q
c : Y 1

0 → P q
c (Y

1
0 ) is a proper branched covering of degree d. However,

its domain is not compactly contained in its range. One can slightly enlarge Y 1
0 so

that it is compactly contained in its range (see [Mil00a] for a detailed argument).
Thus, P q

c can be turned into a unicritical polynomial-like mapping. Note that the
above condition on the orbit of the critical point implies that the corresponding
little Julia set is connected.

If Pc is not satellite renormalizable, then there is the first positive integer k such
that P kq

c (0) belongs to some Z1
i . Define Q1 as the pullback of this Z1

i under P kq
c

containing the critical point. By the above process we form the first child P 1 and
the favorite child Q2 of Q1. Repeating the above process we obtain a (finite or
infinite) nest of puzzle pieces

Q1 ⊃ P 1 ⊃ Q2 ⊃ P 2 ⊃ · · · ⊃ Qn ⊃ Pn ⊃ · · ·(3.1)

where P i is the first child of Qi, and Qi+1 is the favorite child of Qi.
The above nest is finite if and only if one of the following happens:

– The map Pc is combinatorially non-recurrent, that is, the critical point does
not return to some critical puzzle piece.

– The orbit of the critical point does not escape some Pn under iterates of
RQn , or equivalently, the first return maps to all the critical puzzle pieces
of level bigger than some n are central.

Combinatorial rigidity of the combinatorially non-recurrent parameters has been
taken care of in [Mil00a]. In the latter case, RQn = P k

c : Pn → Qn (for an appro-
priate k) is a unicritical polynomial-like mapping of degree d with Pn compactly
contained in Qn. The map P is called primitively renormalizable in this case. Note
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that the corresponding little Julia set is connected because all the returns of the
critical point to Qn are central by definition.

A unicritical polynomial is called renormalizable if it is satellite or primitively
renormalizable.

3.3. Complex bounds and pseudo-conjugacies. The general strategy, starting
with Yoccoz’s work on quadratics [Hub93], to prove the local connectivity of some
Julia sets and rigidity of complex unicritical polynomials has been showing that
every nest of puzzle pieces shrink to a point. To deal with non-renormalizable and
combinatorially recurrent polynomials, the following a priori bounds property has
been proved in [AKLS09].

Theorem 3.1. There exists a constant δ > 0 such that for every ε > 0 there
exists n0 > 0, with the following property. In the nest of puzzle pieces (3.1), if
mod (Q1 \ P 1) > ε, then for all n ≥ n0 we have mod (Qn \ Pn) > δ.

If Pc is combinatorially recurrent, the orbit of the critical point does not land at
α-fixed point. Therefore, puzzle pieces of all levels are well defined. Now, let Pc be
a non-renormalizable unicritical polynomial. The combinatorics of Pc up to level n
is defined as an equivalence relation on the set of labels of all puzzle pieces of level
less than or equal to n. Two such angles θ1 and θ2 are considered equivalent if Rθ1

and Rθ2 land at the same point. One can see that the combinatorics of a map up
to level n+ t determines the puzzle piece Y n

j of level n containing the critical value

P t
c (0), for all positive integers n and t. Two non-renormalizable maps are called

combinatorially equivalent if they have the same combinatorics up to an arbitrary
level n. The combinatorics of a renormalizable map will be defined in Section 3.4.

Two unicritical polynomials Pc and Pc̃ with the same combinatorics up to some
level n are called pseudo-conjugate up to level n if there exists an orientation pre-

serving homeomorphism H : (C, 0) → (C, 0), such that H(Y 0
j ) = Ỹ 0

j , for all j, and
H ◦ Pc = Pc̃ ◦H outside of the critical puzzle piece Y n

0 . Such a pseudo-conjugacy
H is said to match the Böttcher marking, if near infinity it becomes the identity
in the Böttcher coordinates for Pc and Pc̃. Thus, by the equivariance property of
a pseudo-conjugacy, it is the identity map in the Böttcher coordinates outside of
∪jY

n
j .
Let qm and pm denote the levels of the puzzle pieces Qm and Pm, respectively,

in the nest (3.1), that is, Qm = Y qm
0 , and Pm = Y pm

0 . The following theorem is
the main technical result of [AKLS09] which is frequently used in the proof of our
main theorem.

Theorem 3.2. Assume that a nest of puzzle pieces

(3.2) Q1 ⊃ P 1 ⊃ Q2 ⊃ P 2 ⊃ · · · ⊃ Qm ⊃ Pm

is obtained for Pc, and Pc̃ is combinatorially equivalent to Pc up to level qm, where
Qm = Y qm

0 . Then there exists a K-q.c. pseudo-conjugacy H up to level qm between
Pc and Pc̃ which matches the Böttcher marking.

To control the dilatation of the pseudo-conjugacy obtained in this theorem, we
show the following statement.
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Proposition 3.3. Assume that the nest of puzzle pieces in the above theorem is
defined using the equipotential of level η, then the dilatation of the q.c. pseudo-
conjugacy obtained in that theorem depends only on the hyperbolic distance between
c and c̃ in the primary wake (containing c and c̃) truncated by the parameter equipo-
tential of level η, and the modulus of the annulus Q1 \ P 1.

Proof. To prove the proposition, we need a brief sketch of the proof of the above
theorem. For more details one may refer to [AKLS09].

The combinatorial equivalence of Pc and Pc̃ up to level zero implies that c
and c̃ belong to the same truncated wake W (η) attached to the main hyper-
bolic component of Md. Inside W (η), the q external rays R(α) and Eh, for any
h > η, move holomorphically in C \ 0. That is, there exists a holomorphic motion
Φ :W (η)×{R(α)∪Eh} →W (η)×C, given by B−1

c̃ ◦Bc in the second coordinate,
such that

Φ(c,R(α) ∪ Eh) = (c̃,R(α̃) ∪ Ẽh).

Outside of the equipotential Eh, this holomorphic motion extends to the motion
holomorphic in both variables (c, z) which is obtained from the Böttcher coordinates
near ∞. By [Slo91] the map Φ(c̃, ·)◦Φ(c, ·)−1 extends to a K0-q.c. homeomorphism
G0 : (C, 0) → (C, 0), where K0 depends only on the hyperbolic distance between
c and c̃ in W (η). The map G0 conjugates Pc to Pc̃ outside of the puzzle pieces of
level zero.

By adjusting G0 inside the equipotential Eh such that it sends c to c̃, we obtain
a q.c. homeomorphism (not necessarily with the same dilatation) G′

0. By lifting G′
0

via Pc and Pc̃ we obtain a new q.c. homeomorphism G1. That is, G1 is the unique
map satisfying Pc̃ ◦G1 = G′

0 ◦ Pc.
Now, we repeat the following two processes, for i = 2, 3, . . . , n = qm,

– Adjust the q.c. homeomorphism Gi−1 inside the union of puzzle pieces of
level i so that it sends c to c̃;

– Lift the adjusted map via Pc and Pc̃ to obtain a q.c. homeomorphism Gi

(not necessarily with the same dilatation) conjugating Pc to Pc̃ outside the
union of puzzle pieces of level i.

At the end, we obtain a q.c. homeomorphism Gn which conjugates Pc to Pc̃

outside of the equipotential Eh/dn

.
The nest of puzzle pieces

Q̃1 ⊃ P̃ 1 ⊃ Q̃2 ⊃ P̃ 2 ⊃ · · · ⊃ Q̃m ⊇ P̃m

for Pc̃ is defined as the image of the nest (3.2) under Gn. The combinatorial
equivalence of Pc and Pc̃ implies that this new nest has the same properties as the

one of Pc. In other words, Q̃i+1 is the favorite child of Q̃i, and P̃ i is the first child

of Q̃i. Hence, Theorem 3.1 applies to this nest as well. By properties of these nests,
one constructs a K-q.c. homeomorphism Hn from the critical puzzle piece Qn to

Q̃n, where K depends only on the a priori bounds δ and the hyperbolic distance
between c and c̃ in W (η). The pseudo-conjugacy Hn is obtained from univalent
lifts of Hn onto other puzzle pieces. �

If Pc is renormalizable, the process of constructing the modified principal nest
stops at some level, and all the returns to the critical puzzle pieces of higher level
become central. One can see that in this situation the critical puzzle pieces do not
shrink to 0.
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3.4. Combinatorics of a map. If a map Pc0 is renormalizable, there is a unique
maximal homeomorphic copy M1

d ∋ c0 of the connectedness locus within the con-
nectedness locus satisfying the following properties (see[DH85b]): For c ∈ M1

d \
{root}, Pc : z 7→ zd + c is renormalizable, and in addition, there is a holomorphic
motion of the dividing fixed point αc and the rays landing at it on a neighborhood
of M1

d \ {root}, such that the renormalization of Pc is associated to this fixed point
and the external rays landing at it. Furthermore, all parameters in this copy have
Yoccoz puzzle pieces of all levels with the same labels. This copy is maximal in the
sense that it is not contained in any other copy except the actual connectedness
locus. The homeomorphism from the copy to Md is not unique because of the
rotational symmetry of Md. However, we make it unique by sending the sole root
point of the copy to the landing point of the parameter external ray of angle zero.
We denote this (first) renormalization of Pc by RPc.

Assume that RPc is given as P j
c : U → U ′, for some positive integer j and

topological disks U and U ′. By the straightening theorem, RPc is conjugate to
a unicritical polynomial Pc′ . The polynomial Pc′ is determined up to conformal
equivalence in this theorem. However, there are only d − 1 polynomials in each
conformal class (these are c′ · λ, for λ with λd−1 = 1). We make this parameter
unique by choosing the image of c under the unique homeomorphism from the copy
to the connectedness locus determined above.

If Pc′ is also renormalizable, Pc is called twice renormalizable. Let the positive
integer k, and topological disks V and V ′ be such that P k

c′ : V → V ′ gives the first

renormalization of Pc′ determined as above. Define the topological disks Ṽ and Ṽ ′

as χ-preimages of V and V ′, respectively, where χ is a straightening of RPc. One

can see that χ conjugates P jk
c : Ṽ → Ṽ ′ to P k

c′ : V → V ′. Therefore, P jk
c : Ṽ → Ṽ ′

is also polynomial-like. We denote this map by R2Pc.
The above process may be continued to associate a finite or an infinite sequence

Pc,RPc,R
2Pc, . . ., of polynomial-like mappings to Pc, and accordingly, call Pc at

most finitely or infinitely renormalizable. Let Pc1 , Pc2 , Pc3 , . . . denote the polyno-
mials obtained from straightening the polynomial-like mappings 〈RnPc〉n=0. We
associate the finite or infinite sequence

τ(Pc) := 〈M1
d,M

2
d, . . .〉,

of the maximal copies of the locus to Pc, where Mn
d corresponds to the renor-

malization RPcn−1 . Earlier in Section 3.3 we defined the combinatorics of a non-
renormalizable unicritical polynomial as the equivalence relation on the labels of
the Yoccoz puzzle pieces. It turns out that all the parameters in a given copy of
the connectedness locus within the parameter space have the same combinatorics
in this sense. To further refine our definition of the combinatorics, one may con-
sider the same equivalence relation, i.e. landing at the same point, on a larger set
of angles of external rays. Here, for an infinitely renormalizable Pc, the sequence
τ(Pc) is called the combinatorics of Pc. This definition, which is chosen for our
convenience, is equivalent to the above definition of the combinatorics when we
consider the equivalence relation on the set of angles of all periodic external rays.

Hence, two infinitely renormalizable maps are called combinatorially equivalent if
they have the same combinatorics, i.e., correspond to the same sequence of maximal
connectedness locus copies.
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We say that an infinitely renormalizable Pc satisfies the secondary limbs condi-
tion, if all the parameters c1, c2, . . . , obtained from straightening the polynomial-like
mappings {RnPc}

∞
n=0 belong to a finite number of truncated secondary limbs. Let

SL stand for the class of infinitely renormalizable unicritical polynomial-like map-
pings satisfying the secondary limbs condition.

An infinitely renormalizable map Pc is said to satisfy a priori bounds, if there
exists an ε > 0 with mod (RmPc) ≥ ε, for all m ≥ 1.

4. Proof of the rigidity theorem

4.1. Reductions.

Theorem 4.1. Let f and f̃ be two infinitely renormalizable unicritical polynomial-
like mappings satisfying the SL and a priori bounds conditions. If f and f̃ are
combinatorially equivalent, then they are hybrid equivalent.

Remark 4.2. In particular, if the two maps f and f̃ in the above theorem are poly-
nomials, then hybrid equivalence becomes conformal equivalence. That is because
the identity map in the Böttcher coordinates, which conformally conjugates the two
maps on the complements of their Julia sets, can be glued to the hybrid conjugacy
on the Julia set. See Proposition 6 in [DH85b] for a precise proof of this statement.

The proof of this theorem breaks into the following steps:

combinatorial equivalence

⇓

topological equivalence

⇓

q.c. equivalence

⇓

hybrid equivalence

It has been shown in [Jia00] that any unbranched infinitely renormalizable map
with a priori bounds has a locally connected Julia set. The renormalizations fnk :
Uk → Vk, for k = 1, 2, 3, . . . , are said to satisfy the unbranched property if the
domains Uk and Vk which provide the a priori bounds also satisfy

PC(f) ∩ Uk = PC(fnk : Uk → Vk), for k = 1, 2, 3, . . . .

Here, the unbranched property follows from our combinatorial and a priori bounds
conditions (see [Lyu97], Lemma 9.3). Then, the first step, topological equivalence of
combinatorially equivalent maps, follows from the local connectivity of the Julia sets
by Carathéodory’s Theorem. That is, the identity map in the Böttcher coordinates
extends onto the Julia set. Indeed, by [Dou93], there is a topological model for the
Julia sets of these maps based on their combinatorics.

The last step follows from McMullen’s rigidity Theorem ([McM94], Theorem
10.2). He has shown that an infinitely renormalizable quadratic polynomial-like
mapping with a priori bounds does not support any nontrivial invariant line fields
on its Julia set. The same proof works for unicritical polynomial-like mappings
of any degree. It follows that any q.c. conjugacy h between f and f̃ satisfies
∂h = 0 almost everywhere on the Julia set. Therefore, h is a hybrid conjugacy
between f and f̃ . However, if all infinitely renormalizable unicritical maps in a
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given combinatorial class satisfy the a priori bounds condition, there is an easier
way to show that q.c. conjugate maps are hybrid conjugate in that class. Since we
are going to apply our theorem to combinatorial classes for which a priori bounds
has been established, we will prove this in Proposition 4.17.

So assume that f and f̃ are topologically conjugate. We want to show the
following:

Theorem 4.3. Let f and f̃ be infinitely renormalizable unicritical polynomial-
like mappings satisfying the a priori bounds and SL conditions. If f and f̃ are
topologically conjugate then they are quasi-conformally conjugate.

Given sets A ⊆ B ⊆ C and Ã ⊆ B̃ ⊆ C̃, the notation h : (C,B,A) → (C̃, B̃, Ã)

means that h is a map from C to C̃ with h(B) = B̃ and h(A) = Ã.

4.2. Thurston equivalence. Suppose that two unicritical polynomial mappings

f : U2 → U1 and f̃ : Ũ2 → Ũ1 are topologically conjugate. A q.c. homeomorphism

h : (U1, U2,PC(f)) → (Ũ1, Ũ2,PC(f̃))

is called a Thurston conjugacy if it is homotopic, relative ∂U1 ∪ ∂U2 ∪ PC(f), to a
topological conjugacy

ψ : (U1, U2,PC(f)) → (Ũ1, Ũ2,PC(f̃))

between f and f̃ . Note that a Thurston conjugacy does not conjugate the two
maps. It is a conjugacy on the post-critical set, and homotopic to a conjugacy on
the complement of the post-critical set.

The following result due to Thurston and Sullivan [Sul92] originates the “pull-
back method” in holomorphic dynamics.

Lemma 4.4. Thurston conjugate unicritical polynomial-like mappings are q.c. con-
jugate.

The proof given in [Lyu97], Lemma 10.1, in the quadratic case works for the
unicritical maps without any change.

By the a priori bounds assumption in the theorem, there are topological disks
Vn,0 ⋐ Un,0 containing zero such that Rnf := f tn : Vn,0 → Un,0, for n = 1, 2, . . . ,
are unicritical degree d polynomial-like with mod (Un,0 \ Vn,0) ≥ ε, for some ε > 0.
By going several levels down, i.e., considering f tn : f−kntn(Vn) → f−kntn(Un), for

some positive integers kn, we may assume that mod (Un \Vn) and mod (Ũn \ Ṽn) are
uniformly bounded from above and are comparable. The latter means that, there
exists a constant M > 0 such that for every n ≥ 1,

(4.1)
1

M
≤

mod (Un \ Vn)

mod (Ũn \ Ṽn)
≤M.

Also by slightly shrinking the domains Un,0, if necessary, we may assume that they
have smooth boundaries. Hence, we can assume the following in the remainder of
this note.

– There exist positive constants ε and η such that for every n ≥ 1,

(4.2) ε ≤ mod (Un,0 \ Vn,0) ≤ η, and ε ≤ mod (Ũn,0 \ Ṽn,0) ≤ η;

– For every n ≥ 1, Un,0 and Ũn,0 have smooth boundaries;
– There exists a constant M > 0, for which (4.1) holds for every n ≥ 1.
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We use the following notations throughout the rest of this note.

f : V0 → U0, J0,0 = J(f),

Rnf = f tn : Vn,0 → Un,0, Jn,0 = J(Rnf), for n ≥ 1 and tn ≥ 1.

The domain Vn,i, for i = 1, 2, . . . , tn − 1, is defined as the preimage of Vn,0 un-
der f i containing the little Julia set Jn,i := f tn−i(Jn,0). Similarly, Un,i, for
i = 1, 2, . . . , tn − 1, is defined as the component of f−i(Un,0) containing Vn,i so
that f tn : Vn,i → Un,i is polynomial-like of degree d. The domain Wn,i is defined
as the preimage of Vn,i under the map f tn : Vn,i → Un,i.

Note that Rnf : Vn,i → Un,i is a polynomial-like mapping of degree d with the
Julia set Jn,i, and is conjugate to Rnf : Vn,0 → Un,0 by the conformal isomorphism
f i : Un,i → Un,0.

It has been proved in [Lyu97] (Lemma 9.2) that for the parameters satisfying
our assumptions, the little Julia sets on the primitive levels are well apart. This
means that for every n ≥ 1 with Rn−1f primitively renormalizable, one can choose
pairwise disjoint domains Un,i, for i = 1, 2, . . . , tn−1, for the renormalizations with
moduli of the annuli Un,i \ Vn,i uniformly away from zero independent of n and i.
So, we will assume that on the primitive levels, the domains Un,i are disjoint for
different values of i.

Remark on the notations 1. From now on, any notation introduced for f will be
automatically introduced for f̃ , and marked with a tilde.

To build a Thurston conjugacy, first we introduce multiply connected domains

Ωn(k),i (and Ω̃n(k),i) in C, for an appropriate subsequence n(1) < n(2) < n(3) < · · ·
of the renormalization levels and 0 ≤ i ≤ tn(k) − 1, as well as a sequence of q.c.
homeomorphisms

hn(k),i : Ωn(k),i → Ω̃n(k),i,

for k = 0, 1, 2, . . . and i = 0, 1, 2, . . . , tn(k) − 1, with uniformly bounded dilatations.
These domains will satisfy the following properties (see Figure 4):

– Every Ωn(k),j is a topological disk minus
tn(k+1)

tn(k)
number of topological disks

denoted by Dn(k+1),j+itn(k)
, for i = 0, 1, . . . ,

tn(k+1)

tn(k)
− 1;

– Every Ωn(k),i is well inside Dn(k),i, that is, the moduli of the annuli obtained
from Dn(k),i \ Ωn(k),i are uniformly bounded away from zero independent
of n(k) and i;

– Every little post-critical set Jn(k),i ∩ PC(f) is well inside Dn(k),i;

– EveryDn(k),i is the preimage of Dn(k),0 under f
i containing Jn(k),i∩PC(f).

Every Ωn(k),i is the component of f−i(Ωn(k),0) inside Dn(k),i.

Finally, we construct the Thurston conjugacy by appropriately gluing together

the maps hn(k),i : Ωn(k),i → Ω̃n(k),i on the complement of these multiply connected
domains (which is a union of annuli).

4.3. The domains Ωn,j and the maps hn,j. By straightening the polynomial-like
mappings

Rn−1f : Vn−1,0 → Un−1,0,
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Dl,0 Ωl,0 Dl+1,0 Ωl+1,0 D̃l,0 Ω̃l,0 D̃l+1,0 Ω̃l+1,0

gl

hl,0

gl+1

hl+1,0

b

b

b
b

b

b

Figure 4. The multiply connected domains and the buffers

for n = 2, 3, 4, . . . , we get K1(ε)-q.c. homeomorphisms Sn−1 as well as unicritical
polynomials fcn−1 , such that

Sn−1 : (Un−1,0, Vn−1,0, 0) → (Υ0
n−1,Υ

1
n−1, 0), and(4.3)

Sn−1 ◦ R
n−1f = fcn−1 ◦ Sn−1.

Note that fcn−1 is made unique by the argument in Section 3.4. See Figure 5.

Remark on the notations 2. To make our notations easier to follow, we drop the
second subscripts whenever they are zero and do not create any confusion. Also, all
objects on the dynamic planes of fcn−1 and fc̃n−1 (the ones after the straightenings)
will be denoted by the boldface of the notations used for the corresponding objects
on the dynamic planes of f and f̃ .

To define Ωn−1,j and hn−1,j , we need to consider the following three cases:

A . Rn−1f is primitively renormalizable;
B. Rn−1f is satellite renormalizable and Rnf is primitively renormalizable;
C . both Rn−1f and Rnf are satellite renormalizable.

We introduce Ωn−1,j and hn−1,j in each of the above cases. Then one consecu-
tively applies these cases to construct all the domains Ωn−1,j and the maps hn−1,j.
In what follows, to explain how we choose these cases consecutively, we associate
a string of cases to f , depending only on its combinatorics. More precisely, for a
string of cases A m1Bm2Cm3 . . ., with non-negative integers mj , obtained for f , we
repeat Case A , m1 times then repeat Case B, m2 times and so on.

Given fc, its renormalization on each level is of primitive or satellite type. There-
fore, we can associate the string

(4.4) P . . . PS . . . SP . . .

in P and S, where P or S in the i-th place means that the i-th renormalization of
fc is of primitive or satellite type, respectively. Corresponding to any such string,
we define a string of cases A m1Bm2Cm3 . . ., with non-negative integers mj, as
follows. Inductively, starting from the left, P is replaced by A , SP by B, and SS
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by CS. Repeating this process, we obtain the desired string of cases. This also
introduces the sequence n(k), for k = 1, 2, 3, . . . as follows. Given the string (4.4),
the sequence n(k) is obtained from the sequence of natural numbers 1, 2, 3, . . . by
removing all the integers l for which there is an S in the (l− 1)-th place and a P in
the l-th place. That is, we skip the level of any primitive renormalization occurring
after a satellite one. For example:

A string of renormalizations: PSPPSSPSSSPP . . .

Its string of cases: A BA CBC CBA . . .

Its sequence: 1, 2, 4, 5, 6, 8, 9, 10, 12, . . .

The following lemma shows that there are equipotentials of sufficiently high level

η(ε) inside Sn−1(Wn−1,0) and S̃n−1(W̃n−1,0) in the dynamic planes of the maps
fcn−1 and fc̃n−1 .

Lemma 4.5. For every ε > 0 and positive integer d, there exists η > 0 such that
if Pc : U ′ → U is a proper unicritical polynomial of degree d with connected Julia
set and mod (U \ U ′) ≥ ε, then U ′ contains equipotentials of level less than η.

Proof. The map Pc on the complement of K(Pc) is conjugate to the map P0 on the
complement of the closed unit disk D1 by the Böttcher coordinate Bc. Since levels
of the equipotentials are preserved under this map, and modulus is a conformal
invariant, it is enough to prove the lemma for P0 : V ′ → V , with V ′ compactly
contained in V and mod (V \ V ′) ≥ ε. As P0 : P−1

0 (V \ V ′) → (V \ V ′) is a
covering of degree d, the modulus of the annulus P−1

0 (V \V ′) is at least ε/d. Hence,
mod (V ′ \ D1) is at least ε/d. By the Grötzsch problem in [Ahl06] (Section A in
Chapter III) we conclude that V ′ \D1 must contain a round annulus Dη \D1. �

Case A : By considering equipotentials of level η(ε) contained in Sn−1 of Wn−1,0

and S̃n−1 of W̃n−1,0, obtained in the previous lemma, and the external rays landing
at the dividing fixed points αn−1 and α̃n−1 of the maps fcn−1 and fc̃n−1 , we form
the favorite nest of puzzle pieces (3.1) introduced in Section 3.2.

Let Qχn

n,0 := Y
qχn

n,0 and Pχn

n,0 denote the last critical puzzle pieces obtained in the

nest (3.1), i.e. χn is the smallest positive integer with f
tn/tn−1
cn−1 : Pχn

n → Qχn
n is a

unicritical polynomial-like mapping of degree d with connected Julia set. Now, let

hn−1 = hn−1,0 : C → C,

denote the K2-q.c. pseudo-conjugacy one obtains from Theorem 3.2. The distance
between the parameters cn−1 and c̃n−1 with respect to the hyperbolic metric on
the truncated primary wake containing cn−1 and c̃n−1, W (η(ε)), is bounded by
some M depending only on the combinatorial class SL. That is because cn−1

and c̃n−1 belong to a compact subset of W (η(ε)) consisting of a finite number of
truncated limbs. It has been proved in [Lyu97], Theorem I, that mod (Q1 \ P 1)
is uniformly bounded away from zero depending only on the combinatorial class
SL. The same proof, based on the continuous dependence of certain rays on the
parameter and compactness of the class SL, works for the unicritical polynomials
as well. Therefore, by Proposition 3.3, Dil (hn−1) is uniformly bounded by some
constant K2 depending only on ε and the class SL.



18 D. CHERAGHI

hn−1,0

hn−1,0

Sn−1

Rn−2f

Rn−1f

Υ
1

n−1,0

Υ0

n−1,0

fc
n−1

Un−1,0

Rn−1f̃
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Figure 5. Primitive case

For i = 0, 1, 2, . . . , tn/tn−1 − 1, denote the components of the sets f−i
cn−1

(Qχn

n,0)

and f−i
cn−1

(Pχn

n,0) containing

J1,i := f tn/tn−1−i
cn−1

(J(f tn/tn−1
cn−1

: Pχn
n → Qχn

n ),

by Qχn

n,i and P
χn

n,i , respectively. Note that tn/tn−1 is the period of the first renor-
malization of fcn−1 .

The polynomials fcn−1 and fc̃n−1 also satisfy our combinatorial and a priori
bounds assumptions. Therefore, there is a topological conjugacy ψn−1 between

them, obtained from extending B−1
c̃n−1

◦Bcn−1 onto J(fcn−1).

Now, we adjust hn−1 : Qχn
n → Q̃χn

n , using the dynamics of the maps

f tn/tn−1
cn−1

: Pχn
n → Qχn

n and f
tn/tn−1

c̃n−1
: P̃χn

n → Q̃χn
n ,

so that the equivariance property (for hn−1) holds on a larger set. Let A0
n denote the

closure of the annulus Qχn
n \Pχn

n , and Ak
n, for k = 1, 2, 3, . . . , denote the component

of f
−ktn/tn−1
cn−1 (A0

n) around Jn,0. Then, we lift hn−1 via f
tn/tn−1
cn−1 : Qχn

n → C and

f
tn/tn−1

c̃n−1
: Q̃χn

n → C to obtain a K2-q.c. homeomorphism g : A0
n → Ã0

n which is

homotopic to ψn−1 relative ∂A0
n. That is because the external rays connecting

∂Pχn
n to ∂Qχn

n , partition A0
n into several topological disks, and the two maps ψn−1

and g coincide on the boundaries of these topological disks.
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As f
ktn/tn−1
cn−1 : Ak

n → A0
n and f

ktn/tn−1

c̃n−1
: Ãk

n → Ã0
n, for every k ≥ 1, are holomor-

phic unbranched coverings, g can be lifted to a K2-q.c. homeomorphism from Ak
n

to Ãk
n. All these lifts are the identity in the Böttcher coordinates on the bound-

aries of these annuli. Hence, they glue together to form a q.c. homeomorphism
g : Qχn

n \ J1,0 → Q̃χn
n \ J̃1,0 which conjugate

f tn/tn−1
cn−1

: Pχn
n \ J1,0 → Qχn

n \ J1,0, to f
tn/tn−1

c̃n−1
: P̃χn

n \ J̃1,0 → Q̃χn
n \ J̃1,0.

Finally, we would like to extend this map (as a homeomorphism) onto J1,0. This
is a special case of a more general argument presented below.

Given a polynomial f with connected filled Julia set K(f), the rotation of angle
θ on C \ K(f) is defined as the rotation of angle θ in the Böttcher coordinate on
C\K(f), that is, B−1

c (eiθ ·Bc). By means of straightening, one can define rotations
on the complement of the filled Julia set of a polynomial-like mapping. It is not
canonical as it depends on the choice of the straightening. However, its effect on
the landing points of external rays is canonical.

Proposition 4.6. Let f : V2 → V1 be a polynomial-like mapping with connected
filled Julia set K(f). If φ : V1 \ K(f) → V1 \ K(f) is a homeomorphism which
commutes with f , then there exists a rotation of angle 2πj/(d − 1) for some j,
denoted by ρj, such that ρj ◦ φ extends onto K(f) as the identity.

A proof of this proposition is given in the Appendix.
Applying the above proposition to ψ−1

n−1 ◦ g with V1 = Qχn
n , V2 = Pχn

n , and
an external ray connecting ∂Qχn

n to J1,0, we conclude that g extends onto J1,0 as
ψn−1. Also, it follows from the proof of the above proposition that g and ψn−1 are
homotopic relative J1,0 ∪ ∂Q

χn
n . That is because the quadrilaterals obtained in the

proof cut the puzzle piece Qχn
n into infinite number of topological disks such that

g and ψn−1 are equal on the boundaries of these topological disks.
Similarly, hn−1 can be adjusted on the other puzzle pieces Qχn

n,i, for i = 1, 2, . . . ,

tn/tn−1, so that it is homotopic to ψn−1 restricted to Qχn

n,i, relative J1,i ∪ ∂Q
χn

n,i.
We denote the map obtained from extending hn−1 onto little Julia sets J1,i with
the same notation hn−1.

Finally, we need to prepare hn−1 for the next step (case) of the process. It is
stated in the following lemma.

Lemma 4.7. The K2-q.c. homeomorphism hn−1 can be adjusted on a neighbor-
hood of ∪iJ1,i, through a homotopy relative ∪iJ1,i, to a q.c. homeomorphism h′

n−1

which maps Vn,i := Sn−1(Vn,i) onto Ṽn,i := S̃n−1(Ṽn,i). Moreover, Dil (h′
n−1) is

uniformly bounded by a constant K3 depending only on ε.

Proof. The basic idea is to continuously move the domain hn−1(Vn,i) close enough

to J1,i, and then move it back to Ṽn,i (simultaneously for all i = 0, 1, . . . , tn/tn−1).

We will do this more precisely below. Let Un,i denote Sn−1(Un,i) and Ũn,i denote

S̃n−1(Ũn,i).

The annuli hn−1(Vn,i) \ J̃1,i and Ṽn,i \ J̃1,i have moduli bigger than ε/dK1K2,
where K1 := Dil (Sn−1) and K2 := Dil (hn−1). Therefore, there exist topological

disks L̃n,i ⊇ J̃1,i, with smooth boundaries, and a constant r > 0 satisfying the
following properties

– L̃n,i ⊂ hn−1(Vn,i) ∩ Ṽn,i,
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– mod (L̃n,i \ J̃1,i) ≥ r,

– mod (Ṽn,i \ L̃n,i) ≥ ε/2dK1K2, and

– mod (hn−1(Vn,i) \ L̃n,i) ≥ ε/2dK1K2.

Now, there are q.c. homeomorphisms

χi :
(
hn−1(Un,i),hn−1(Vn,i), L̃n,i,J1,i

)
→

(
D5, D3, D2, D1

)
,

with uniformly bounded dilatations. That is because the annuli

L̃n,i \ J̃1,i,hn−1(Vn,i) \ L̃n,i, and hn−1(Un,i) \ hn−1(Vn,i)

have moduli uniformly bounded from above and away from zero independent of n
and i.

The homotopy gt : Dom (hn−1) → C, for t ∈ [0, 1], is defined as
{
hn−1(z) if z /∈

⋃
iVn,i

χ−1
i

(
(−t

3 sin (|χi◦hn−1(z)|−1)π
4 + 1) · χi ◦ hn−1(z)

)
if z ∈ Vn,i.

It is straight to see that g0 = hn−1 on Dom hn−1, gt is a well defined homeomor-
phism for every fixed t, and gt depends continuously on t for every fixed z. For

every z ∈ ∂Vn,i, at time t = 1, we have g1(z) = χ−1
i (23 · χi ◦ hn−1(z)) ∈ ∂L̃n,i.

That is, g1 maps ∂Vn,i to ∂L̃n,i.
For the other part, we consider q.c. homeomorphisms

Θi :
(
Ũn,i, Ṽn,i, L̃n,i, J̃1,i

)
→

(
D5, D3, D2, D1

)
,

and define gt+1 : Dom hn−1 → C, for t ∈ [0, 1], as
{
g1(z) if z /∈ g−1

1 (
⋃

i Ũn,i)

Θ−1
i

(
( t√

2
sin (|Θi◦g1(z)|−1)π

4 + 1) ·Θi ◦ g1(z)
)

if z ∈ g−1
1 (Ũn,i).

The homotopy gt for t ∈ [0, 2] is the desired adjustment. The map g2 : Dom hn−1 →
Range hn−1, is denoted by h′

n−1. �

Let ∆n−1,0 denote the Sn−1-preimage of the domain bounded by Eη(ε) in the
dynamic plane of fcn−1 . The domain Ωn−1,0 is defined as

∆n−1,0 \

tn/tn−1⋃

i=0

Vn,itn−1 .

The domains ∆n−1,i and Ωn−1,i, for i = 1, 2, . . . , tn−1, are defined as the pullback
of ∆n−1,0 and Ωn−1,0, respectively, under f

−i along the orbit of the critical point.
Consider the map

(4.5) hn−1,0 := S̃−1
n−1 ◦ h

′
n−1 ◦ Sn−1 : ∆n−1,0 → ∆̃n−1,0,

and then,

(4.6) hn−1,i := f̃−i ◦ hn−1,0 ◦ f
i : ∆n−1,i → ∆̃n−1,i,

for the appropriate choice of the inverse branch of f i. As these maps are composi-
tions of two K1(ε)-q.c. and a K3(ε)-q.c. (and possibly some conformal maps), they
are q.c. with uniformly bounded dilatations. By our adjustment in Lemma 4.7, we

know that hn−1,i maps Ωn−1,i onto Ω̃n−1,i.
Finally, the annulus Vn−1,0 \Wn−1,0, with modulus bigger than ε/d, encloses

Ωn−1,0 and is contained in Vn−1,0. This proves that Ωn−1,0 is well inside the disk
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Dn−1,0 := Vn−1,0. Similarly, the appropriate preimage of Vn−1,0 \Wn−1,0 under the
conformal map f i introduces a definite annulus around Ωn−1,i which is contained
in Dn−1,i := Vn−1,i. In this case, Dn,i is defined as Vn,i which contains Jn,i well
inside itself.

Case B: Here fcn−1 is satellite renormalizable and its second renormalization is of
primitive type. Let αn−1 denote the dividing fixed point of fcn−1 , and αn ∈ J1,0 :=
J(Rfcn−1) denote the dividing fixed point of Rfcn−1 . By definition, the little Julia
sets J1,i, i = 1, 2, . . . , tn/tn−1, of fcn−1 touch each other at the αn−1 fixed point.

Here, J(R2fcn−1), and its forward images under iterates of fcn−1 can be arbitrarily
close to αn−1 (which is a non-dividing fixed point of Rfcn−1). Our idea is to skip
the satellite level and start with the primitive one. This essentially imposes the SL
condition on us.

Consider an equipotential Eη(ε) contained in Sn−1(Wn−1,0), the external rays
landing at αn−1, and the external rays landing at the fcn−1-orbit of αn (see Figure 6).

Let us denote f
tn/tn−1
cn−1 by g, for the simplicity of the notation, throughout this case.

Ray landing at αn−1

Qχ1
n

A0
1

C0
0

B0
1

A0
2

Ray landing at αn

fcn−1

Figure 6. The figure shows an infinitely renormalizable Julia set.
The first renormalization is of satellite type and the second one is
of primitive type. The puzzle piece Qχ1

n at the center is the first
puzzle piece in the favorite nest.

Let Y 1
0 , as before, denote the critical puzzle piece of level one bounded by Eη(ε),

the external rays landing at αn−1, and the external rays landing at the points in
f−1
cn−1

(αn−1). The external rays landing at αn and their g-preimage, cut the puzzle

piece Y 1
0 into finitely many pieces. Let us denote the one containing the critical
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point by C0
0 , the non-critical ones with αn on their boundary by B0

i , and the rest
of them by A0

j (these ones have an ωαn on their boundary, with ωd = 1 but ω 6= 1).

The g-preimage of Y 1
0 along the post-critical set is contained in itself. As all

the processes of making the modified principal nest and the pseudo-conjugacy in
Theorem 3.2 are based on pullback arguments, the same ideas, which is explained
briefly below, work here as well. The only difference is that we do not have any
equipotential for the second renormalization of fcn−1 . However, certain external

rays and part of Eη(ε) can play the role of an equipotential for R2(fcn−1).

By definition of satellite and primitive renormalizability, gn(0) belongs to Y 1
0 , for

n ≥ 0, and there is a smallest positive integer t with gt(0) ∈ A0
1 (by rearranging the

indices if required). Pulling A0
1 back under gt, along 0, g(0), . . . , gt(0), we obtain

a puzzle piece Qχ1
n ∋ 0, such that C0

0 \ Qχ1
n is a non-degenerate annulus. That is

because C0
0 is bounded by the external rays landing at αn and their g-preimage.

Therefore, if Qχ1
n intersects ∂C0

0 at some point on the rays, orbit of this intersection
under gk, for k ≥ 1, stays on the rays landing at αn. This implies that image of
Qχ1

n can never be A0
1. Also, they do not intersect at equipotentials with different

levels.
Now, let m > t be the smallest positive integer with gm(0) ∈ Qχ1

n . Pulling Qχ1
n

back under gm, along the critical orbit, we obtain Pχ1
n . The map gm is a unicritical

degree d branched covering from Pχ1
n onto Qχ1

n . This introduces the first two pieces
in the favorite nest. The rest of the process to form the whole favorite nest is the
same as in Section 3.2.

Consider the maps f
tn/tn−1
cn−1 : Y 1

0 → f
tn/tn−1
cn−1 (Y 1

0 ), and the corresponding tilde
one. One applies Theorem 3.2 to these maps, using the favorite nests introduced
in the above paragraph, to obtain a q.c. pseudo-conjugacy

hn−1 : f tn/tn−1
cn−1

(Y 1
0 ) → f

tn/tn−1

c̃n−1
(Ỹ 1

0 ),

up to level of Qχn
n . The equipotential Eη(ε), the external rays landing at αn−1,

and the external rays landing at the fcn−1-orbit of αn depend holomorphically on
the parameter within the secondary wake W (η) containing the parameter cn−1.
The hyperbolic distance between cn−1 and c̃n−1 within one of the finitely many
secondary wakes W (η) is uniformly bounded in terms of the combinatorial class
SL. Also, mod (Qχ1

n \ Pχ1
n ) is bounded away from zero for the parameters in these

secondary limbs. Thus, by Proposition 3.3, Dil (hn−1) depends only on the a priori
bounds ε and the combinatorial class SL.

As f jcn−1
: f

tn/tn−1−j
cn−1 (Y 1

0 ) → f
tn/tn−1
cn−1 (Y 1

0 ), for j = 1, 2, . . . , tn/tn−1 − 1, is univa-
lent, we can lift hn−1 onto other puzzle pieces as

hn−1 := f
−j
c̃n−1

◦ hn−1 ◦ f
j
cn−1

: f tn/tn−1−j
cn−1

(Y 1
0 ) → f

tn/tn−1−j
c̃n−1

(Ỹ 1
0 )

for these values of j. Since all these maps match the Böttcher marking, they
glue together to build a q.c. homeomorphism from a neighborhood of J(fcn−1) to
a neighborhood of J(fc̃n−1). Then, one extends this map, as the identity in the

Böttcher coordinates, to a q.c. homeomorphism from the domain bounded by Eη(ε)

to the domain bounded by Ẽη(ε).
Finally, by Proposition 4.6 and Lemma 4.7, we adjust hn−1 to obtain a q.c.

homeomorphism h′
n−1 that satisfies

h′
n−1(f

i
cn−1

(J(R2(fcn−1)))) = f ic̃n−1
(J(R2(fc̃n−1))),
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and

h′
n−1(Sn−1(Vn+1,itn−1))= S̃n−1(Ṽn+1,itn−1),

for i = 0, 1, 2, . . . , tn+1/tn−1 − 1.
Now, ∆n−1,0 is defined as Sn−1-pullback of the domain bounded by Eη(ε). The

domain Ωn−1,0 is

∆n−1,0 \

tn+1/tn−1−1⋃

i=0

Vn+1,itn−1 .

The regions ∆n−1,i and Ωn−1,i, for i = 1, 2, 3, . . . , tn−1, are the appropriate pull-
backs of ∆n−1,0 and Ωn−1,0 under f i, respectively. Like previous case, hn−1,i is
defined as in Equation 4.5 or 4.6 and satisfies

hn−1,i(Ωn−1,i) = Ω̃n−1,i, for i = 1, 2, . . . , tn−1.

For the same reason as in Case A , Ωn−1,i is well inside Dn−1,i := Vn−1,i, and Jn+1,i

is well inside Dn+1,i := Vn+1,i.

Case C : Here, J(R(fcn−1)) is denoted by J1,0, and f
tn/tn−1−i
cn−1 (J1,0), for i = 1, 2, . . . ,

tn
tn−1

− 1, is denoted by J1,i. These little Julia sets touch each other at the dividing

fixed point αn−1 of fcn−1 . Note that αn−1 is one of the non-dividing fixed points
of Rfcn−1 . The union of these little Julia sets is called the Julia bouquet and is
denoted by B1,0.

Figure 7. A twice satellite renormalizable Julia set drawn in grey.
The dark part is the Julia Bouquet B2,0.

Similarly, J(R2(fcn−1)), and its forward iterates under fcn−1 are denoted by

J2,i, for i = 0, 1, . . . , (tn+1/tn−1) − 1,(i.e. f icn−1
(J2,i) = J2,0). The connected
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components of the union of these little Julia sets are called the bouquets B2,j,
j = 0, 1, . . . , tn/tn−1 − 1, (here, f jcn−1

(B2,j) = B2,0). In other words,

B2,j :=

tn+1
tn−1

−1⋃

k=0

J2,k tn
tn−1

+j .

Each B2,j consists of tn+1/tn little Julia sets touching each other at one of their
non-dividing fixed points. As usual, B2,0 denotes the bouquet containing the critical
point. See Figure 7.

By an equipotential Eη(ε) ⊂ Sn−1(Wn−1,0), and the external rays landing at
αn−1, we form the puzzle pieces of level zero. Recall that Y 0

0 denotes the critical
puzzle piece of level zero. The following lemma shows that the bouquets are well
apart from each other. See Lemma 10.5 in [Lyu97] for a similar statement.

Lemma 4.8. For the twice satellite renormalizable parameters in a finite number
of truncated secondary limbs, mod (Y 0

0 \B2,0) is uniformly bounded from above and
away from zero.

Let X and Y be non-empty compact subsets of C. The Hausdorff distance
between X and Y is defined as

dH(X,Y ) := inf{ε ∈ R : Y ⊂ Bε(X), and X ⊂ Bε(Y )},

where Bε(X) denotes the ε neighborhood of X in the Euclidean metric. The space
of all non-empty compact subsets of C endowed with this metric is a complete
metric space.

We say that a family of simply connected domains Uλ, parametrized on a topo-
logical disk, depends continuously on λ, if there exist choices of uniformizations
ψλ : D1 → Uλ continuous in both variables. We say that a family of polynomial-
like mappings (Pλ :Vλ → Uλ, λ∈Λ), parametrized on a topological disk Λ, depends
continuously on λ, if

– Uλ is a continuous family in C, and
– for every fixed z ∈ C, the map Pλ(z), restricted to the values of λ it is
defined, depends continuously on λ.

Proposition 4.9. Let (Pλ : Vλ → Uλ, λ ∈ Λ) be a continuous family of polynomial-
like mappings with connected filled Julia sets Kλ. Then for every λ ∈ Λ and every
ε > 0, there exists η > 0 such that if |λ′ − λ| < η, then Kλ′ ⊆ Bε(Kλ).

Proof. Assume that z /∈ Bε(Kλ). If z /∈ Vλ, then by continuous dependence of Vλ
on λ, z /∈ Kλ′ for λ′ sufficiently close to λ. If z ∈ Vλ, then there exists a positive
integer l with P l

λ(z) ∈ Uλ\Vλ. As Pλ′ : Vλ′ → Uλ′ converges to Pλ : Vλ → Uλ, when

λ′ → λ, at least one of P l
λ′ (z) or P l+1

λ′ (z) belongs to Uλ′ \ Vλ′ , for λ′ sufficiently
close to λ. Therefore, z /∈ Kλ′ . �

Proof of Lemma 4.8. Let cn−1 be a twice satellite renormalizable parameter in a
given truncated secondary limb. Consider the external rays landing at the dividing
fixed point αn of Rfcn−1 and their preimages under Rfcn−1 . Let X0

0 denote the
critical puzzle piece obtained from these rays. As fcn−1 is twice satellite renormal-
izable, R2fcn−1 : X0

0 → C is a proper branched covering over its image. One can

consider a continuous thickening of X0
0 , mentioned in Section 3.2, to form a con-

tinuous family of polynomial-like mappings parametrized over this truncated limb.
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The little filled Julia set of this map is denoted by K2,0, and the filled bouquet B2,0

is the connected component of

tn+1/tn−1−1⋃

i=0

fcn−1(K2,0)

containing the critical point.
For a twice satellite renormalizable cn−1 in a finite number of truncated sec-

ondary limbs, the filled bouquet B2,0 is defined an is a union of a finite number
of little filled Julia sets. Also B2,0 is contained well inside the interior of Y 0

0 for
cn−1 in the closure of these parameter values. Therefore, by the above proposition,
mod (Y 0

0 \B2,j) is uniformly bounded away from zero.
To see that these moduli are uniformly bounded from above, one needs only to

observe that αn and 0 belong to B2,0 and are distinct for these parameters. �

By Lemma 4.8, there are simply connected domains L′
n ⊆ Ln and L̃′

n ⊆ L̃n,
with smooth boundaries, such that the moduli of the annuli

(4.7)
Y 0
0 \ Ln, Ln \ L′

n, L′
n \B2,0

Ỹ 0
0 \ L̃n, L̃n \ L̃′

n, L̃′
n \ B̃2,0

are uniformly bounded from above and away from zero by some constants depending
only on the combinatorial class SL. It follows that the ratios

mod (Y 0
0 \ Ln)

mod (Ỹ 0
0 \ L̃n)

,
mod (Ln \ L′

n)

mod (L̃n \ L̃′
n)
,

mod (L′
n \B2,0)

mod (L̃′
n \ B̃2,0)

are also uniformly bounded from above and away from zero independent of n.
Above data implies that there exists a q.c. homeomorphism

hn−1 : Y 0
0 \ Ln → Ỹ 0

0 \ L̃n,

with uniformly bounded dilatation, which matches the Böttcher marking on ∂Y 0
0

(See Lemma 4.12). Then, we lift hn−1 via f−i
cn−1

and f−i
c̃n−1

to extend hn−1 to q.c.

homeomorphisms

hn−1 : f−i
cn−1

(Y 0
0 \ Ln) → f−i

c̃n−1
(Ỹ 0

0 \ L̃n), for i = 1, 2, . . . ,
tn
tn−1

− 1.

The domain of each map above is a puzzle piece Y 0
j (with j = tn/tn−1 − i) cut off

by Eη/di

and the appropriate component of f−i
cn−1

(∂Ln). As all these maps match

the Böttcher marking on ∂Y 0
j , they can be glued together. Finally, one extends this

map onto unbounded components of C \Dom hn−1 as the identity in the Böttcher
coordinates. We denote this extended map with the same notation hn−1. As it is
lifted under and extended by holomorphic maps, there is a uniform bound on its
dilatation.

Let ∆n−1,0 be the Sn−1-preimage of the domain inside Eη(ε), and Ln,i, for i =

1, 2, . . . , tn
tn−1

− 1, be the component of S−1
n−1(f

−i
cn−1

(Ln)) containing Jn−1,i ∩PC(f).

Then, define the multiply connected regions

Ωn−1,0 := ∆n−1,0 \

tn/tn−1−1⋃

i=0

Ln,itn−1 .
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Like before, ∆n−1,i and Ωn−1,i are defined as the appropriate f i-preimage of ∆n−1,0

and Ωn−1,0 intersecting Jn−1,i, respectively.
We have

hn−1,0 := S̃−1
n−1 ◦ hn−1 ◦ Sn−1 : ∆n−1,0 → ∆̃n−1,0,

with hn−1,0(Ωn−1,0) = Ω̃n−1,0.

Also,

hn−1,i := f̃−i ◦ hn−1,0 ◦ f
i : ∆n−1,i → ∆̃n−1,i,

with hn−1,i(Ωn−1,i) = Ω̃n−1,i.

As Eη(ε) is contained in Sn−1(Wn−1,0), Ωn−1,0 is contained in Wn−1,0. Therefore,
Ωn−1,0 is well inside Dn−1,0 := Vn−1,0. The conformal invariance of modulus im-
plies that the other domains Ωn−1,i are well inside Dn−1,i := Vn−1,i as well. This
completes the construction in Case C .

To fit together the multiply connected domains Ωn(k),i and the q.c. homeomor-

phisms hn(k),i : Ωn(k),i → Ω̃n(k),i, we follow the string of cases introduced before
Lemma 4.5. In Cases A and B, we have adjusted hn−1, in Lemma 4.7, such that

it sends ∂Vn,0 to ∂Ṽn,0. Therefore, if any of the three cases follows a Case A or
B, we consider Rnf :Wn,0 → Vn,0 and straighten it with these choices of domains
(instead of considering Rnf : Vn,0 → Un,0). If the construction on some level n
follows a Case C (level n − 1 belongs to C ), the set ∆n,0 introduced on level n is
not contained in the hole Dn,0 = Ln,0 obtained on level n− 1 in Case C . Note that
here the n-th renormalization is of satellite type. The following paragraph explains
the adjustment needed here.

As the annulus ∆n,0 \ J(fcn) has definite modulus in terms of ε, the annulus
∆n,0 \ B1,0(⊃ ∆n,0 \ J(fcn)), where B1,0 := ∪∞

i=0f
i
cn(J(Rfcn)), also has definite

modulus in terms of ε. By quasi-invariance of modulus, the annulus obtained from

Sn(L
′
n,0 ∩Dom Sn) \B1,0

must have definite modulus in terms of ε. Now, let En be a topological disk
contained in

Sn(L
′
n,0 ∩Dom Sn) ∩∆n,0

with mod (En \ B1,0) bigger than a constant in terms of ε (similarly define the
corresponding tilde one). By a similar argument as in Lemma 4.7 we can adjust

hn through a homotopy to obtain a map h′
n : En → Ẽn. Now, in this situation

∆n,0 is replaced by En, ∆n,0 by S−1
n (En), and hn by S̃−1

n ◦ h′
n ◦ Sn. The annulus

Ln,0 \ L
′
n,0 provides the definite space around Ωn,0 in Ln,0.

In the following two sections, we will denote the holes of Ωn(k),i by Vn(k)+1,j .
That is, Vn(k)+1,j is Vn(k)+1,j , if step n(k) belongs to Case A or B, and Vn(k)+1,j

is S−1
n(k)(Ln(k),j) if step n(k) belongs to Case C .

4.4. The gluing maps gn(k),i. In this section we build q.c. homeomorphisms

gn(k),i : Vn(k),i \∆n(k),i → Ṽn(k),i \ ∆̃n(k),i,

with uniformly bounded dilatations, needed to glue the maps hn(k),i together. Every
gn(k),i must be identical with hn(k−1),i on ∂Vn(k),i, and with hn(k),i on ∂∆n(k),i

(which is the outer boundary of Ωn(k),i). Then, gluing all these maps gn(k),i and
hn(k),i together produces a q.c. homeomorphism denoted by H . In what follows,
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for the simplicity of the notation, we use index n instead of n(k), and assume that
n runs over the subsequence 〈n(k)〉∞k=1. So, by “for all n” we mean “for all n(k)”.

Like previous steps, first we build gn,0, for all n, and then lift them via f i and

f̃ i to obtain gn,i, for i = 1, 2, . . . , tn. Definitions of the maps hn,i as well as the
domains Vn,i and Ωn,i imply that these maps also glue together on the boundaries
of their domains of definition. Again, we drop the second subscript if it is zero, i.e.,
gn denotes the map gn,0.

To build a q.c. homeomorphism from an annulus to an annulus with given bound-
ary conditions, there are Z possible choices for the number of the “twists” one may
make. To have a uniform bound on the dilatation of such a map, not only must the
two annuli have comparable moduli uniformly bounded away from zero but also
the number of twists must be uniformly bounded as well. Note that the homotopy
class of the final map H depends on the choices of these twists.

In this section, we show that the annuli Vn,0 \∆n,0 and Ṽn,0 \ ∆̃n,0 have compa-
rable moduli. In the next section we prescribe the correct number of twists needed
to obtain a Thurston conjugacy.

Lemma 4.10. There exists a constant M ′ depending only on ε such that for every
n ≥ 1,

1

M ′ ≤
mod (Ṽn,0 \ ∆̃n,0)

mod (Vn,0 \∆n,0)
≤M ′.

Proof. If level n follows one of Cases A or B, then

mod (Vn,0 \∆n,0) ≤ mod (Vn,0 \ Jn,0) ≤ η,

by (4.2). If level n follows a Case C then

mod (Vn,0 \∆n,0) ≤ mod S−1
n (Ln,0 \B1,0) ≤M ′′,

for some constantM ′′ by the proof of Lemma 4.8 (Here B1,0 is the unique bouquet
of fcn).

Similarly, mod (Vn,0 \∆n,0) is bigger than ε, or some constant depending on ε,
depending on whether level n follows a Case A , B, or C . Hence, mod (Vn,0 \∆n,0)

and mod (Ṽn,0\∆̃n,0) are pinched between two constants depending only on ε. This
implies the lemma. �

Let A(r) denote the round annulus Dr \D1, for r > 1, and assume γ : [0, 1] →
A(r) is a curve parametrized in the polar coordinate as γ(t) = (r(t), θ(t)), for
t ∈ [0, 1], with r(t) and θ(t) continuous functions from [0, 1] to R. The wrapping
number of γ, denoted by ω(γ), is defined as θ(1)−θ(0). Given a curve γ : [0, 1] → U ,
where U is an annulus, with γ(0) on the inner boundary of U (corresponding to the
bounded component of C\U) and γ(1) on the outer boundary of U (corresponding
to the unbounded one), we define the wrapping number of γ in U as ω(γ) :=
ω(φ ◦ γ), where φ is a uniformization of U by a round annulus. Note that ω(γ) is
invariant under the automorphism group of U . So, it is independent of the choice
of the uniformization. In addition, just like winding number, it is constant over the
homotopy class of all curves with the same boundary points.

Proposition 4.11. Given fixed constants K ≥ 1 and r > 1, there exists a constant
N such that for every K-q.c. homeomorphism ψ : A(r) → A(r′), the wrapping
number of the curve ψ(t), t ∈ [1, r], belongs to the interval [−N,N ].



28 D. CHERAGHI

Proof. This follows from the compactness of the class of K-q.c. homeomorphisms
from A(r) to some A(r′). �

In the following lemma let θ be a branch of the argument defined on C minus
an straight ray from 0 to infinity.

Lemma 4.12. Fix round annuli A(r), A(r′), positive constants δ, K1 and K2, as
well as an integer k with

mod A(r′)/K1 ≤ mod A(r) ≤ K1 mod A(r′), and mod A(r) ≥ δ.

There exists a constant K depending only on K1, K2, k, and δ, such that if home-
omorphisms

h1 : ∂Dr → ∂Dr′ , and h2 : ∂D1 → ∂D1

have K2-q.c. extensions to some neighborhoods of these circles, then there exists a
K-q.c. homeomorphism h : A(r) → A(r′) with:

– for every z ∈ ∂Dr we have h(z) = h1(z), and for every z ∈ ∂D1 we have
h(z) = h2(z);

– The curve h(t), for t ∈ [1, r], has wrapping number

θ(h1(r)) − θ(h2(1)) + 2kπ.

If h1(r) or h2(1) does not belong to the domain of θ, one may compose h1 and
h2 with a small rotation. By adding a +1 or −1 to k, the statement still holds inde-
pendent of the choice of this rotation. One proves this lemma by explicitly building
such homeomorphisms for every k. Further details are given in the Appendix.

A homeomorphism h as above is called a gluing of h1 and h2 with k twists. If
the number of the twists is not concerned, we say that h is a gluing of h1 and h2.

Applying the above lemma to the uniformizations of Vn,0 \∆n,0 and Ṽn,0 \ ∆̃n,0,
with the induced maps from hn−1,0 and hn,0 on the boundaries, and an integer kn
which will be determined later, gives the K ′-q.c. homeomorphisms gn. In the next
section we prescribe some special numbers kn, which are bounded by a constant
depending only on ε, in order to make the K-q.c. homeomorphism H homotopic to
a topological conjugacy relative PC(f).

Definite moduli of the annuli Vn,i \∆n,i implies that all the nests of the domains
Vn,i shrink to points in PC(f). Therefore, H can be extended to a well defined
K-q.c. homeomorphism on PC(f). See [Str55] for a detailed proof of this statement.

4.5. Isotopy. Let ψn denote the topological conjugacy between fcn and fc̃n ob-
tained from extending the identity in the Böttcher coordinates through J(fcn).

The lift ψn,0 := S̃−1
n ◦ψn ◦Sn topologically conjugates Rnf to Rnf̃ on a neighbor-

hood of Jn,0. Note that this neighborhood contains Ωn,0. In the dynamic plane of
fcn , let U(η) denote the domain enclosed by Eη. Define

ψn,i := f−i ◦ ψn,0 ◦ f
i : ∆n,i → C,

where the inverse branch f−i is chosen so that ψn,i(∆n,i) covers a neighborhood of

PC(f) ∩ J̃n,i.

Lemma 4.13. Assume that level n belongs to Case A or B. For every i =

0, 1, 2, . . . , tn − 1 , hn,i : ∆n,i → ∆̃n,i is homotopic to ψn,i : ∆n,i → ∆̃n,i relative
the little Julia sets Jn+1,j of level n+ 1 inside ∆n,i.
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Proof. By the definition of ∆n,i, Vn,i, and hn,i, it is enough to prove the lemma for

i = 0. For the other ones, one lifts this homotopy via f i and f̃ i, or defines them in
a similar manner.

Recall that ∆n,0, ψn,0, and hn,0 are the lifts of ∆n,0, ψn, and h′
n,0 under the

straightening maps. First we introduce a homotopy between ψn and h′
n,0, relative

the Julia sets J1,i of fcn , on the dynamic planes of fcn and fc̃n . Then, we lift

this homotopy to the dynamic planes of Rnf and Rnf̃ by the straightening maps.
Recall that in the construction, h′

n,0 is an adjustment of hn,0 through a homotopy
relative the little Julia sets J1,i. Thus, to prove the lemma, we need only show that
hn,0 in homotopic to ψn relative the little Julia sets J1,i.

First assume that level n belongs to Case A . The idea of the proof, presented
below in detail, is to partition ∆n,0, by means of rays and equipotential arcs, into
several topological disks and an annulus such that ψn and hn,0 are identical on the
boundaries of these domains.

Recall the puzzle piece Qχn

n,0 (where Qχn

n,0 = Y
qχn

0 ) introduced in this case.

The equipotential f−χn
cn (Eη), and the rays bounding Qχn

n,i up to f−χn
cn (Eη), for

i = 0, 1, . . . , tn − 1, cut the domain ∆n,0 into the annulus ∆n,0 \ f
−χn(U(η)) and

several topological disks. The topological disks which do not intersect the little Ju-
lia sets J1,i, the puzzle pieces Qχn

n,i, and the remaining annulus U(η) \ f−χn(U(η))
form the appropriate partition. By Theorem 3.2, hn,0 and ψn are identical on the
boundaries of these domains. Indeed, ψn is the identity in the Böttcher coordi-
nates, and the pseudo-conjugacy hn,0 obtained in Theorem 3.2 also matches the
Böttcher marking. This proves that the two maps are homotopic outside of the
puzzle pieces Qχn

n,i relative ∪i∂Q
χn

n,i.

To define a homotopy inside Qχn

n,0, recall that we started with a q.c. homeo-

morphism g : Qχn

n,0 \ Pχn

n,0 → Q̃χn

n,0 \ P̃χn

n,0, which was homotopic to ψn relative

∂(Qχn

n,0 \ P
χn

n,0). Hence, the lift of g from Ak
n to Ãk

n, for k = 1, 2, 3, . . . , considered

in Case A , is homotopic to ψn relative ∂Ak
n. As the two maps are identical on

Jn+1,0 ⊂ Qχn

n,0, they glue together to define a homotopy between g and ψn on Qχn

n,0

relative ∂Qχn

n,0 ∪ Jn+1,0.

The same argument applies to all other domains Qχn

n,i as well.
If level n belongs to Case B, we repeat the above argument on each puzzle piece

Y 0
i , for i = 0, 1, 2, . . . , tn

tn−1
− 1.

If level n follows a Case C , one needs to restrict the above homotopies to the
smaller domains En−1 (by the argument at the end of Case C ). �

Assume that level n belongs to Case A or B, and it follows a Case A or B.
Consider the uniformizations

φ1 : A(s) → (Vn,0 \ Jn,0), φ2 : A(r) → (∆n,0 \ Jn,0)

φ̃1 : A(s̃) → (Ṽn,0 \ J̃n,0), φ̃2 : A(r̃) → (∆̃n,0 \ J̃n,0)

for some constants s > r and s̃ > r̃. The q.c. homeomorphisms hn−1,0 : Vn,0\Jn,0 →

Ṽn,0 \ J̃n,0 and hn,0 : ∆n,0 \ Jn,0 → ∆̃n,0 \ J̃n,0 lift via φi and φ̃i, i = 1, 2, to q.c.

homeomorphisms ĥn−1,0 : A(s) → A(s̃) and ĥn,0 : A(r) → A(r̃), respectively, with
the same dilatations. By composing these uniformizations with some rotations, if
necessary, we may assume that the point one is mapped to the point one under

ĥn−1,0 and ĥn,0. Denote the wrapping number of the image of the line segment
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[1, s] under ĥn−1,0 by ω1,n, and denote the wrapping number of the image of the

line segment [1, r] under ĥn,0 by ω2,n. By Proposition 4.11, the absolute values
of ω1,n and ω2,n are bounded by some constant depending only on ε. Define kn
as ω1,n − ω2,n. Let g′n : Ds \ Dr → Ds̃ \ Dr̃ be a gluing of ĥn,0 : ∂Dr → ∂Dr̃

and ĥn−1,0 : ∂Ds → ∂Ds̃ with kn twists, using Lemma 4.12. With this choice of

gluing, the curve ĥn,0[1, r] ∪ g′n[r, s] is homotopic to the curve ĥn−1,0[1, s] inside
Ds \D1 relative the boundary points on ∂(Ds \D1). Therefore, the map obtained

from gluing ĥn,0 to g′n is homotopic to ĥn−1,0 : A(s) → A(s̃) relative the boundary

conditions. Let gn denote the lift of g′n via φ1 and φ̃1. This homotopy lifts to a
homotopy between hn−1,0 and the map obtained from gluing gn to hn,0.

Before we define kn in other cases, we need the following extension.

Lemma 4.14. The q.c. homeomorphism h′
n−1 introduced in Case C admits an

extension through ∪jLn,j satisfying the following properties

– For every j, h′
n−1 : Ln,j \B2,j → L̃n,j \ B̃2,j is q.c. with uniformly bounded

dilatation depending only on ε;
– h′

n−1 = ψn−1 on ∪jB2,j;
– h′

n−1 is homotopic to ψn−1 relative ∪jB2,j.

Proof. First we extend the map through Ln,0. Consider the fundamental annuli

Sn−1(Un,0 \ Vn,0) and S̃n−1(Ũn,0 \ Ṽn,0) for Rfcn−1 and Rfc̃n−1 . Let

gn : Sn−1(Un,0 \ Vn,0) → S̃n−1(Ũn,0 \ Ṽn,0)

be a q.c. homeomorphism with Rfc̃n−1 ◦ gn = gn ◦Rfcn−1 on ∂(Sn−1(Vn,0)). Lifting
gn onto the preimages of these annuli, via Rfcn−1 and Rfc̃n−1 , we obtain a q.c.

homeomorphism, still denoted by gn, from Sn−1(Un,0)\J(R
1(fcn−1)) to S̃n−1(Ũn,0)\

J(R1(fc̃n−1)). By Lemma 4.6, gn (or some rotation of it) can be extended onto
J(Rfcn−1) = J1,0 as ψn−1. Moreover, these two maps are homotopic relative J1,0.
By a similar argument as in Lemma 4.7, we adjust gn, through a homotopy relative

B2,0, to a q.c. homeomorphism mapping L′
n to L̃′

n.
Consider the three annuli Y 0

0 \ Ln, Ln \ L′
n, and L′

n \B2,0, as well as the corre-
sponding tilde ones. We have

h′
n−1 : Y 0

0 \ Ln → Ỹ 0
0 \ L̃n, and gn : L′

n \B2,0 → L̃′
n \ B̃2,0.

To find a gluing of these two maps on the middle annulus Ln \L
′
n, we use the above

argument to find the right number of twists on this annulus. Consider a curve γ
connecting a point a ∈ B2,0 to a point d ∈ ∂Y 0

0 such that it intersects each of ∂L′
n

and ∂Ln only once at points denoted by b and c, respectively. Let us denote by γab,
γbc, and γcd each segment of this curve cut off by these four points. The wrapping
number ω(ψn−1(γ)) is uniformly bounded depending only on SL condition. That
is because ψn−1 depends continuously on c̃n−1, and c̃n−1 belongs to a compact
set of parameters. Therefore, by Proposition 4.11, ω(ψn−1(γ)) − ω(hn−1(γcd)) −
ω(gn(γab)) is uniformly bounded depending only on ε and the class SL. If we glue
hn−1 to gn by such a number of twists (Lemma 4.12), the resulting map will be
homotopic to ψn−1 relative B2,0 ∪ ∂Y

0
0 .

Similarly, one extends h′
n−1 onto the other topological disks Ln,j . �

If a Case C follows a Case A or a Case B, the number of twists kn is defined as
in the proof of the above lemma. If level n− 1 belongs to Case C and level n is any
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of the three cases, we define kn using the uniformizations of the annuli Vn,0, \Bn,0,

∆n,0 \ Bn,0, Ṽn,0 \ B̃n,0, and ∆̃n,0 \ B̃n,0 instead of the uniformizations after the
proof of Lemma 4.13.

The following elementary lemma, whose proof appears in the Appendix, is used
to put together the homotopies on different levels.

Lemma 4.15. Let U and Ũ be closed annuli with outer boundaries γ1 and γ̃1
as well as inner boundaries γ2 and γ̃2, respectively. Also, let h1 : γ1 → γ̃1 be
a homeomorphism and ht2 : γ2 → γ̃2, for t ∈ [0, 1], be a continuous family of

homeomorphisms. Any continuous gluing G0 : U → Ũ of h1 and h02 extends to a

continuous family of gluing Gt : U → Ũ of h1 and ht2, for t ∈ [0, 1].

Proposition 4.16. The q.c. homeomorphism H, obtained from gluing all the maps
gn,i and hn,k, is homotopic to the topological conjugacy Ψ between f and f̃ relative
PC(f).

Proof. Let Hn denote the homeomorphism obtained from gluing the maps gi,j and
hk,l, with i and k less than or equal to n.

First, we claim that

– the maps H1 and Ψ belong to the same homotopy class of homeomorphisms

from C \ ∪iJ1,i to C \ ∪iJ̃1,i, and
– for every n > 1, Hn−1 and Hn, belong to the same homotopy class of

homeomorphisms from C \ ∪iJn+1,i to C \ ∪iJ̃n+1,i.

By definition, H1 is equal to h1,0 which is homotopic to ψ1,0 relative ∪iJ1,i, by
Lemma 4.13 or Lemma 4.14. Therefore, H1 is homotopic to Ψ, relative ∪iJ1,i, by
Proposition 4.6.

Recall that Hn−1 and Hn are identical on the complement of ∪jVn,j . On ∆n,i,
Hn−1 and Hn are equal to hn−1,i and hn,i, respectively.

The domain Vn,0 is partitioned into Vn,0 \∆n,0 and ∆n,0. On ∆n,0, the maps
hn,0 and hn−1,0 are homotopic to ψn,0 relative ∪iJn+1,i, either by Lemma 4.13 or
4.14. Thus, there exists a homotopy htn, for t in [0, 1], which starts with hn,0, ends

with hn−1,0, and maps ∂∆n,0 to ∂∆̃n,0, for all t ∈ [0, 1]. At time zero, consider the
map hn,0 on the inner boundary of Vn,0 \ ∆n,0, hn−1,0 on the outer boundary of
this annulus, and the gluing G0

n := gn,0 on the annulus. Applying Lemma 4.15 with
hn−1,0 on the outer boundary and htn on the inner boundary, we obtain a continuous

family of gluingsGt
n : Vn,0\∆n,0 → Ṽn,0\∆̃n,0 between them. The homeomorphism

G1
n is a gluing of hn−1,0 : ∂Vn,0 → ∂Ṽn,0 and hn−1,0 : ∂∆n,0 → ∂∆̃n,0. But,

G1
n must be homotopic to hn−1,0 on Vn,0 \ ∆n,0 relative the boundaries. That is

because these two maps send a curve joining the two different boundaries to two

curves (joining the two boundaries) which are homotopic in the annulus Ṽn,0 \ ∆̃n,0

relative end points. This comes from our choice of the number of twists for the
gluing maps. This completes the proof of the claim.

Let t0 = 0 < t1 < t2 < · · · , be an increasing sequence in [0, 1] converging to 1.
Assume that Ht, for t in [t0, t1], denotes the homotopy obtained above between Ψ
and H1 relative the little Julia sets J1,i. Also, let H

t, for t ∈ [tn, tn+1], n = 1, 2, . . . ,
denote the homotopy between Hn and Hn+1 relative the little Julia sets of level
n+ 2.

It follows from the construction that for any fixed z, Ht(z) eventually stabilizes
and equals to H(z). Indeed, the a priori bounds assumption implies that the
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diameters of the topological disks Vn,i tend to zero as n → ∞. Therefore, the
supremum distance between Ht and H tends to zero as t → 1. We conclude that
Ht, for t in [0, 1], defines a homotopy between Ψ and H relative PC(f). Hence, H

is a Thurston conjugacy between f and f̃ . �

4.6. Promotion to hybrid conjugacy.

Proposition 4.17. Suppose that all infinitely renormalizable unicritical polyno-
mials in a given combinatorial class τ = {M1,M2,M3, . . . } satisfying the SL
condition, enjoy a priori bounds. Then q.c. conjugate maps in this class are hybrid
conjugate.

Proof. Assume that there are polynomials P1 and P2 in τ which are q.c. equivalent
but not hybrid equivalent. Define the set

Ω :={c ∈ C : Pc is q.c. equivalent to P1}

={c ∈ C : Pc is q.c. equivalent to P2}.

The plan is to show that Ω is both open and closed in C, which is not possible.
Theorem 4.1 implies that q.c. equivalence is the same as combinatorial equiva-

lence in the class τ . Since every combinatorial class is an intersection of a nest of
closed sets (connectedness locus copies), Ω is closed.

Consider a point P in Ω. The polynomial P is not hybrid equivalent to both of
P1 and P2 by the assumption. Assume that it is not hybrid equivalent to P1 (for
the other case just change P1 to P2). Let φ1 : C → C, be a k-q.c. homeomorphism
with φ1 ◦ P = P1 ◦ φ1. Replacing P1(z) by ω

−1P1(ωz), for some (d− 1)-th root of
unity ω, if necessary, we may further assume that φ1 is the identity in the Böttcher
coordinates. Pulling the standard complex structure µ0 on C back under φ1, we
obtain a nontrivial P -invariant complex structure µ on C with dilatation bounded
by k−1

k+1 . Consider the family of complex structures µλ := λ · µ, for λ in the disk of

radius k+1
k−1 centered at zero D(0, k+1

k−1 ) ⊆ C.

By the measurable Riemann mapping Theorem [Ahl06], there exists a unique
q.c. mapping φλ : C → C, for every λ ∈ D(0, k+1

k−1 ), with φ∗λµλ = µ0, φλ(0) = 0,

and φλ(z) = z + O(1). The map Pλ := φ−1
λ ◦ P ◦ φλ : C → C, for λ ∈ D(0, k+1

k−1 ),

preserves the standard complex structure µ0. By Weyl’s Lemma ([Ahl06], Chapter
II, Corollary 2), Pλ is holomorphic. As Pλ is conjugate to P by φλ, Pλ must be a
unicritical polynomial of degree d, and φλ must map the critical value of P to the
critical value of Pλ. At λ = 1 we obtain P , and at λ = 0 we obtain P1. By the
analytic dependence of the solution of the measurable Riemann mapping Theorem
on the complex structure, the family Pλ, for λ ∈ D(0, k+1

k−1 ), covers a neighborhood
of P in Ω. That is because the critical value of Pλ is equal to the φλ of the critical
value of P , and φλ depends analytically on λ. This shows that P is an interior
point of Ω, and, therefore, Ω is open. �

5. Dynamical description of the combinatorics

Here we give a detailed dynamical description of the combinatorial classes men-
tioned in the Introduction. Let Pc be an infinitely renormalizable unicritical poly-
nomial with renormalizations fn := Rn(Pc), n = 0, 1, 2, . . . . Each fn is hybrid
conjugate to a polynomial denoted by fcn . Let Y 1

0 (n) denote the critical puzzle
piece of level 1 of fcn . The dynamical meaning of a parameter c satisfying the
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decoration condition is that there exists a constant M such that for every n ≥ 0
there are integers tn and qn, both bounded by M , with

– fkqnn (0) ∈ Y 1
0 (n), for every positive integer k < tn, and

– f tnqnn (0) /∈ Y 1
0 (n).

In particular, this condition implies that the number of rays landing at the dividing
fixed point of fcn (denoted by qn here) is uniformly bounded independent of n.

An infinitely renormalizable parameter is of bounded type if the supremum of the
relative return times tn+1/tn, where Rn(Pc) is an appropriate restriction of P tn

c ,
is bounded. By definition, the class of maps satisfying the decoration condition
contains the infinitely primitively renormalizable parameters of bounded type.

In Section 3.4, we associated a sequence of maximal connectedness locus copies
τ(f) = M1

d,M
2
d, . . . to every infinitely renormalizable unicritical polynomial-like

map f . Let πn(τ(f)) := Mn
d . Define

τ(f, n) :=

{
c ∈ Md

∣∣∣∣∣

Pc(z) = zd + c is at least n times
renormalizable, and
πi(τ(f)) = πi(τ(Pc)), for i = 1, 2, . . . , n

}
.

Given an infinitely renormalizable map f and a sequence of integers n0 = 0 <
n1 < n2 < · · · , we define the sequence:

(τ̃ (f), 〈ni〉) := 〈M̃n1 ,M̃n2 , . . . ,M̃nk , . . .〉,

where

M̃nk := τ(Rnk−1f, nk − nk−1).

Given a sequence of integers n0 = 0 < n1 < n2 < · · · , one can see that there is a
one to one correspondence between the two sequences τ(f) and (τ̃ (f), 〈ni〉). Thus,
one may take the latter one as the definition of the combinatorics of an infinitely
renormalizable map.

Consider the main hyperbolic component of Md. There are infinitely many
hyperbolic components of Md attached to this component, called primary compo-
nents. Similarly, there are infinitely many hyperbolic components, secondary ones,
attached to these primary components, and so forth. Consider the set of all hy-
perbolic components obtained this way, i.e., the ones that can be connected to the
main hyperbolic component by a chain of hyperbolic components bifurcating one
from another. The closure of this set, plus all possible bounded components of its
complement, is called the molecule Md.

An infinitely renormalizable map f is said to satisfy the molecule condition,
if there exists a constant η > 0 and an increasing sequence of positive integers
n0 = 0 < n1 < n2 < · · · , such that for all i ≥ 1

– Rnif is a primitive renormalization of Rni−1f , and
– the Euclidean distance between M̃ni

d and Md is at least η.

Note that for a map satisfying this condition, there may be infinitely many satel-
lite renormalizable maps in the sequence 〈Rnf〉. However, the condition requires
that there are infinitely many primitive levels with the corresponding relative con-
nectedness locus copies uniformly away from Md. By a compactness argument, one
can see that the decoration condition is stronger than the molecule condition.

For every ε ≥ 0, and every hyperbolic component of Md, there are at most
finitely many limbs attached to this hyperbolic component with diameter bigger
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than ε (by the Yoccoz inequality on the size of limbs [Hub93]). This implies that
for every η > 0, all but a finite number of the secondary limbs are contained in the
η neighborhood of Md. This implies that the parameters satisfying the molecule
condition also satisfy the SL condition. Therefore, combining with [KL09b] and
[KL08] we obtain the corollary stated in the Introduction.

Appendix

Proof of Proposition 4.6. Consider an external ray R landing at a non-dividing
fixed point β0 of f . As R is invariant under f , and φ commutes with f , φ(R)
is also invariant under f . This implies that φ(R) lands at a non-dividing fixed
point βj of f . Choose ρj such that ρj(φ(R)) lands at β0. Let ψ denote the map
ρj ◦ φ, and R

′ denote the ray ρj(φ(R)). For such a rotation ρj , ψ also commutes
with f , and R′ is also invariant under f .

The external ray R cuts the annulus V1 \ V2 into a quadrilateral I0,1. The
preimage f−1(I0,1) consists of d quadrilaterals denoted by I1,1, I1,2, . . . , I1,d, or-
dered clockwise starting with R. Similarly, the f−n(I0,1) produces dn quadrilat-
erals In,1, In,2, . . . , In,dn (ordered similarly). In the same way, the external ray R′

produces quadrilaterals denoted by I ′n,j , ordered clockwise starting with R′. We

claim that the Euclidean diameter of In,j (and I ′n,j) goes to zero as n tends to
infinity.

Denote f−i(V1) by Vi+1, and let di+1 denote the hyperbolic metric on the annulus
Vi+1\K(f). As In,j ⊆ Vn, and ∩nVn = K(f), the quadrilaterals In,j converge to the
boundary of V1\K(f) as n goes to infinity. To show that the Euclidean diameters of
these quadrilaterals go to zero, it is enough to show that their hyperbolic diameters
in (V1 \ K(f), d1) stay bounded from above. Since fn−1 : (Vn \ K(f), dn) →
(V1 \K(f), d1) is an unbranched covering of degree dn−1, it is a local isometry. As
the closure of fn−1(In,j) is a compact subset of V1 \K(f), we conclude that In,j
has bounded hyperbolic diameter in (Vn \K(f), dn). Finally, the contraction of the
inclusion from (Vn \K(f), dn) into (V1 \ K(f), d1) implies that In,j has bounded
hyperbolic diameter in (V1 \K(f), d1).

By a similar argument, one can show that the hyperbolic distance between In,j
and I ′n,j in (V1 \K(f), d1) is uniformly bounded from above.

Since ψ is a conjugacy, it sends In,j to I
′
n,j . Therefore, as w converges to K(f), w

and ψ(w) belong to some In,j and I
′
n,j , respectively, with larger and larger values of

n. Combining with the above argument, we conclude that the Euclidean distance
between w and ψ(w) tends to zero as w → K(f). This implies that ψ extends
through K(f) as the identity. �

Proof of Lemma 4.12. Let Πr := {z | 0 < Im(z) < 1
2π log r}, for r > 1, denote the

covering space of A(r) with the deck transformation group generated by z → z+1.
We may assume that log r and log r′ are at least 6π. Otherwise, one may rescale
these strips by affine maps of the form (x, y) 7→ (x, ay) and continue with the
following argument.
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The homeomorphisms h1 and h2 lift to 1-periodic homeomorphisms

ĥ1 : R+
i

2π
log r → R+

i

2π
log r′, and ĥ2 : R → R,

with ĥ2(0) = 0 , and

ĥ1(
i

2π
log r) = θ(h1(r)) − θ(h2(1)) + 2πk +

i

2π
log r′.

As these maps have K2-q.c. extensions to some neighborhoods of their domains
of definition, they are quasi-symmetric with a constant M(K2) (See Theorem 1 in
[Ahl06], Page 40).

To prove the lemma, it is enough to introduce a 1-periodic q.c. mapping h :

Πr → Πr′ , matching ĥ1 and ĥ2 on the boundaries, and with uniformly bounded
dilatation in terms of K1,K2, k, and δ.

Define φ : Π∞ → Π∞ as φ(x, y) := u(x, y) + iv(x, y), where

u(x, y) :=
1

2y

∫ +y

−y

ĥ2(x+ t) dt,

v(x, y) :=
1

2y

∫ y

0

(ĥ2(x+ t)− ĥ2(x− t)) dt.

It has been proved in [Ahl06], Page 42, that φ is a q.c. mapping with dilatation
depending only on M(K2). Note that φ is 1-periodic in the first variable. It follows
from Lemma 3 on Page 41 of [Ahl06] that

v(0, 1) ≤

∫ 1

0

ĥ2(t) dt−
1

2
≤

M(K2)

M(K2) + 1
≤

1

2
∈ [0, 3].

Also,

vx(x, 1) = 0, and ux(x, 1) = 1, for −∞ < x <∞.

This implies that φ maps the horizontal line through i to a horizontal line in Πr′ as

a translation. Similarly, one extends ĥ1 to a q.c. homeomorphism ψ of {z | Im(z) ≤
1
2π log r} such that it maps the horizontal line through i

2π log r − 1 to a horizontal
line in Πr′ as a translation.

Consider the map H : {z | 1 ≤ Im(z) ≤ 1
2π log r − 1} → Πr′ defined by

(x, y) 7→ (1− y)φ(x, 1) + yψ(x,
1

2π
log r − 1).

The homeomorphism H is affine with dilatation depending only on k. The home-
omorphisms φ and ψ are q.c. with dilatations depending only on M(K2). The
homeomorphism 




φ(x, y) if 0 ≤ x ≤ 1

H(x, y) if 1 ≤ x ≤ 1
2π log r − 1

ψ(x, y) if 1
2π log r − 1 ≤ x ≤ 1

2π log r

is the desired q.c. mapping, with dilatation depending only on k,K1, δ, andM(K2).
�

Proof of Lemma 4.15. As this is a purely topological statement, we may assume

that U and Ũ are D2 \D1 whose universal covering space is Π := R× (0, 1). Lifting

h1, h
t
2, and G

0 via the projections from the closure of Π to the closures of U and Ũ ,

we obtain homeomorphisms ĥ1 : R× {0} → R× {0}, ĥt2 : R× {1} → R× {1}, and
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Ĝ0 : Π → Π, all 1-periodic in the first coordinate. Composing all the above maps

with a rotation if necessary, we may assume that ĥ1(0, 0) = (0, 0). The lift Ĝ0 is

uniquely determined by being an extension of ĥ1, and then ĥ2 is a unique extension
of Ĝ0. Define the continuous family of 1-periodic homeomorphisms T t : Π → Π,
for t ∈ [0, 1], as

T t(x, y) := (1− y) · ĥ1(x, 0) + y · ĥt2(x, 1).

By defining the 1-periodic homeomorphism H : Π → Π as (Ĝ0)−1 ◦ T 0, one can

see that T t ◦H−1 is a continuous family of gluings of ĥ1 and ĥt2 starting with Ĝ0.

This periodic family projects to a continuous family of interpolations of ĥ1 and ĥt2
on U . �
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