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The Hénon Family

The Hénon “map” was introduced by the astronomer and applied
mathematician Michel Hénon in the 1960’s. This is the
diffeomorphism of R2 given by the following formula.

Definition (Hénon Family)

fc,δ(x, y) = (c+ δy − x2,−x).

The parameter δ is the Jacobian of the map and the map is invertible
when δ 6= 0.



The Hénon family of diffeomorphisms can be written in the following
form:
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)
This diffeomorphism is the composition of three simpler maps which
squeeze, rotate and shear.
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Squeeze, rotate and shear



Expansion and contraction

This diffeomorphism expands some directions, contracts some
directions and folds.
The dynamics is easier to understand and better behaved when there
is no recurrent folding.



Hyperbolicity

Definition
We say that fc,δ is Axiom A (or hyperbolic) if f the tangent bundle
splits into a uniformly expanding and uniformly contracting
subbundles over the nonwandering set.

A nice hyperbolic example is the real horseshoe.



A Hénon horseshoe



Structural stability

Hyperbolic diffeomorphisms are structurally stable meaning that a
small change in the parameters produces a topologically conjugate
diffeomorphism.



Hénon parameters

For the particular values of the parameters suggested by Hénon the
Hénon diffeomorphism seems to exhibit a strange attractor. In
particular it demonstrates expansion, contraction and folding on
many scales.

This behaviour contrasts with that shown by the horseshoe.



The Hénon attractor



The Complex Hénon Family

In the 1980’s Hubbard suggested that it would be profitable to study
the extensions of these polynomial diffeomorphisms to C2. This is the
complex Hénon family:

fc,δ : C2 → C2.

We allow the coefficients to be real or complex. Thus the parameter
space is also C2.



When the parameters are real then R2 is an invariant submanifold
and we can think of the real dynamical system as contained in the
complex dynamical system.

When the Jacobian is zero then the map is not invertible. In this case
the dynamics reduce to that of a one dimensional complex quadratic
polynomial.

Hubbard was motivated in part by the successful theory of the
dynamics of the family z 7→ z2 + c and in part by the prominence of
the (real) Hénon family in the field of dynamical systems.



We can also think of following the model of algebraic geometry which
might suggest that dynamics over C is more regular and should be
studied first while dynamics over R might be more idiosyncratic and
should be studied after the dynamics over C is understood.

A simpler analogy is the study of roots polynomials in one variable.
The complex case is simpler and illuminates the real case.



One dimensional complex dynamics

Definition
Let K = {z ∈ C : fn(z) 9∞ as n→∞}.

Definition
Let J = ∂K.

The chaotic dynamics (expanding recurrent behaviour) is contained in
J .

Definition
The Mandelbrot is the subset of parameter space for which the Julia
set is connected.



The Mandelbrot set and Julia sets



Some themes in one variable complex dynamics

I Understanding combinatorics of Julias sets and relating that to
the combinatorics of the Mandelbrot set

I Understanding structural stability and the relation with
hyperbolicity (Structurally stable maps are those not in the
boundary of the Mandelbrot set.)

I Understanding renormalization phenomena (for example small
copies of the Mandelbrot set contained in the Mandelbrot set)

These are general themes in the field of dynamical systems. The first
two go back to the origins of the subject.
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Hoped for connections with computation

In one complex dimension there is a nice interaction between the
theoretical analysis of the dynamics and computer pictures. The
pictures help one discover phenomena that can be rigorously proved
and proofs are often well illustrated by computer pictures.

One feature which helps in drawing pictures is that the dynamics is
taking place in a (real) two dimensional space. Another feature is
that the dynamical properties are captured by the behaviour of the
iterates of critical points and this makes certain to computer pictures
easy to draw.

Hubbard put in a great deal of effort developing a computer tool for
studying complex Hénon maps.



Connection between dynamics and critical points

Connectivity of the Julia set: The Juia set is connected if the critical
point (0 in the case of the map z2 + c) has a bounded orbit.

Hyperbolicity of the map (expansion on the Julia set): The map is
hyperbolic if the critical point is attracted to a sink or to ∞.

Are there analogues of critical points for two dimensional
diffeomorphisms? Perhaps critical points in one variable are analogous
to tangencies of stable and unstable manifolds in two variables?



Hubbard’s Definitions

With the family z 7→ z2 + c in mind Hubbard defined analogs of Julia
sets and filled Julia sets for the complex Hénon family.

Definition

K± = {p ∈ C2 : fn(p) 9∞ as n→ ±∞}

Definition

J± = ∂K± and J = J+ ∩ J−

The set J contains all hyperbolic periodic points. The set J+ contains
stable manifolds of points in J . The set J− contains unstable
manifolds of points in J .



The real horseshoe illustrates some of these sets.
In the case of the horseshoe the set J is actually contained in R2 so
we are seeing all of J . We are seeing parts of J+ and J−.



Often in complex dynamics there are nice functions associated with
the sets we define. This is somewhat analogous to algebraic geometry
in which we study varieties defined by polynomial equations.

The sets we study are often limits of sets defined by polynomial
equations of increasing degree and the functions are built from the
polynomials that define them.



Rate of escape functions

Corresponding to the set K ⊂ C there is a “rate of escape” function

G(z) = lim
n→∞

1

2n
log+ |fn(z)|.

The simplest thing to do with these rate of escape functions is use
them to draw elegant color pictures of the sets we are interested in.
The Julia set pictures in that we saw used these functions.

A deeper relation is connected to potential theory and the idea that G
is the Green function of K.



There are corresponding “rate of escape functions” for complex Hénon
maps.

Definition
Let

G±(p) = lim
n→∞

1

dn
log+ ||f±n(p)||.

These functions are pluri-subharmonic which means that they are
subharmonic when restricted to complex one dimensional
submanifolds such as coordinate slices or unstable manifolds of saddle
points.



Seeing dynamics in C2

How do we draw pictures capturing the dynamics of Hénon maps in
C2?

Is it reasonable to draw one dimensional slices of the sets we are
interested in?

Do these slices capture all of the important information?

This is not such an unreasonable idea if the slices are (generic)
complex submanifolds. (If we draw K+ and we slice by a complex
submanifold we should also draw G+.)



An unstable manifold of a fixed saddle point
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An unstable manifold of a fixed saddle point



Potential theory

One way to describe the harmonic measure or equilibrium measure
(or balanced measure) on a Julia set is as follows where d is the
exterior derivative and dc is the “twisted” exterior derivative rotated
using the complex structure.

Definition

µ = ddcG



ddc and potential theory

In one complex variable we can interpret ddc as a holomorphically
invariant version of the Laplacian. The Laplacian takes real functions
to real functions but is not holomorphically invariant. ddc takes the
smooth real functions h to the two form 4h dx ∧ dy. It can be
extended to on operator taking subharmonic functions to measures.



Potential theory in two variables

The potential theory related to G± was first investigated not by
Hubbard but by Fornaess-Sibony and Bedford-S.
The operator ddc is defined in any complex manifold so it makes sense
in C2.

Definition

µ± = ddcG±

µ± are currents. We can think of them as transverse measures which
assign a measure to holomorphic transversals. They are analogous to
the Margulis transverse invariant measure in hyperbolic dynamics.



Cohomological interpretation

In the case of a variety V defined by a polynomial P the “current”
ddc log |P | represents the Poincaré dual class to the variety V . In
other words when we evaluate this current on a complex disk it counts
the number of intersection points between the disk and the variety.

From this point of view we can interpret µ± as dual classes to J±

even though these sets are fractal objects and are not manifolds.



Potential theory in two variables

Definition

µ = µ+ ∧ µ−

In the hyperbolic horseshoe case µ is the Bowen measure which is the
unique measure of maximal entropy.



Theorem (Bedford-Lyubich-S)
The measure µ is the unique measure of maximal entropy. It describes
the distribution of periodic points. The support of µ is the closure of
the set of periodic saddle points.



Definition Hubbard forgot to make

Definition
J∗ is the closure of hyperbolic periodic points. Alternatively J∗ is the
support of µ or the Shilov boundary of K.

J∗ is contained in J . In all examples we know J∗ = J but it is not
known if J∗ = J in general.



Seeing dynamics in C2

What else can you learn by slicing by (say) an unstable manifolds?

I You can detect periodic sink basins. ([BS3])

I You can tell whether the Julia set is connected. ([BS6])
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Slices

Why do holomorphic slices reveal so much about dynamical
properties?

What happens to holomorphic slices when we iterate?

Note that the situation for the real slice when the parameters are real
is very different.



Can you tell whether the diffeomorphism is hyperbolic by looking at
an unstable manifold?

Is it related to the John condition?



The John condition

Let E ⊂ C denote a path from p to ∞. For c > 0 we let

car(E, c) = {z ∈ C : |z − x| < c|x− p| for some x ∈ E}

An unstable manifold satisfies the John condition if every point
outside of K is connected to ∞ by a carrot lying outside of K.



An unstable manifold that satisfies the John condition?

unstable mfld.png



This question needs to be refined since it is not actually true in one
dimension that the John condition implies hyperbolicity. The
polynomial maps which satisfy the John condition include hyperbolic
maps but include other maps as well such as the map z 7→ z2 − 2.



Example
The Ulam-Von Neuman map z 7→ z2 − 2 can be thought of either as a
real or complex dynamical system. It demonstrates Misiurewicz
behavior in 1 dimension. It is not expanding.

The critical point 0 is pre-periodic but not periodic, it maps to the
fixed point 2. This map is expanding but not uniformly expanding
and not structurally stable.
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When viewed as a complex dynamical system the Julia set of this
map is the interval [−2, 2] ⊂ C. The complement of this interval does
satisfy the John condition.



What is the class of diffeomorphisms defined by the John condition
and how do we recognize the hyperbolic maps within this class?



The sad fact is that we cannot answer this question. In the course of
investigating the question we came up with an analogous property
which we conjecture to be equivalent to the John condition. It is this
second property that we will study.



Quasi-hyperbolicity is defined in terms of a locally bounded area
condition which is related to the amount of folding for stable and
unstable manifolds.

Let Wu
p be the unstable manifold through the point p. We say f is

quasi-expanding if there are constants C > 0 and R > 0 so that the
component of Wu

p ∩B(p,R) containing p has area bounded by C.

Quasi-contraction is defined similarly. We say that f is
quasi-hyperbolic if it is quasi-expanding and quasi-contracting.



It can also be defined in terms of the existence of an expanding (but
not always finite) metrics.



Misiurewicz type behavior



In general a quasi-hyperbolic map will have a finite invariant filtration
and a uniformly expanding metric on each piece of this filtration
which blows up on the next lower piece of the filtration.



Theorem (Bedford-S)
Suppose that f is quasi-hyperbolic. Then f is uniformly hyperbolic on
J∗ if and only if there is no tangency between Ws and Wu.



Misiurewicz type behavior for Hénon diffeomorphisms



Our proof makes use of the following result.

Theorem
(Lyubich-Peters). Let ψn : C→ C2 be a sequence of injective
holomorphic mappings of the plane which converge to a non-constant
map ψ. The set ψ(C) ⊂ C2 is a complex manifold without singular
points.



Question
Is there a natural plurisubharmonic function on parameter space
which is analogous to the rate of escape functions on dynamical space?

The answer is “yes”. In one variable this is obtained by evaluating the
function Gc on the critical value. This function can also be
interpreted as the Lyapunov exponent with respect to µ.



One variable parameter space



In two variables the larger Lyapunov exponent with respect to µ also
provides a plurisubharmonic function on parameter space which takes
its minimum value on the connectivity locus.

Applying ddc to this function gives a current which conjecturally
should be interpreted as the “bifurcation current”.



Slice of Hénon parameter space



As I mentioned earlier Hubbard seems more interested in discovering
phenomena than in proving phenomena. So if we leave proofs aside
for the moment what has he discovered?

Hubbard was very interested in the combinatorial properties of Hénon
parameter space. In particular in the monodromy of the horseshoe
locus and the natural map into the group of automorphisms of the
two-sided shift on two symbols.

His student Chris Lipa has made some very interesting conjectures in
this direction.








