Equidistribution in arithmetic geometry and dynamics

JUAN RIVERA-LETELIER

U. of Rochester

Parameter Problems in Analytic Dynamics Imperial College, June 2016

The probabilistic viewpoint in arithmetic geometry

- 8 Roots of LITTLEWOOD and EINSENSTEIN polynomials;
- Discrepancy;
- equidistribution.

Roots of LITTLEWOOD polynomials

Figure : Roots of polynomials with coefficients +1 and -1, by Tiozzo.

Christensen, Derbyshire, Baez, ...

Roots of EINSENSTEIN polynomials

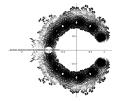
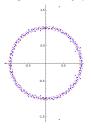


Figure : Roots of monic polynomials of degree 12 with coefficients 0 or 2.

Roots of single EINSENSTEIN polynomial



Discrepancy

Theorem (Radial discrepancy)

$$\begin{split} P(z) &= a_d z^d + a_{d-1} z^{d-1} + \dots + a_o \ \in \mathbb{C}[z], \ a_d a_o \neq o. \end{split}$$
 For every ε in (0, 1), we have

$$\begin{split} \frac{1}{d} \# & \left\{ \alpha \text{ root of } P : |\alpha| < 1 - \varepsilon \quad \text{ or } \quad |\alpha| > \frac{1}{1 - \varepsilon} \right\} \\ & \leq \frac{2}{\varepsilon} \left(\frac{1}{d} \log \left(\frac{\sum_{j=0}^{d} |a_{j}|}{\sqrt{|a_{c}, a_{d}}} \right) \right) \end{split}$$

Huches–Nikeghball, 2008; Applications: Roots of Littlewood and Einsenstein polynomials $\left(z \sim \frac{1}{\sqrt{d}}\right)$.

Discrepancy

Radial discrepancy: HUGHES-NIKEGHBALI, 2008; Angular discrepancy: ERDÖS-TURÁN, 1950: Higher dimension: D'ANDREA-GALLIGO-SOMRA, 2014.

$Discrepancy \Rightarrow Equidistribution$

Corollary (Equidistribution)

λ: Uniform probability on S^1 (HAAR measure); $(P_n)_{n=1}^{+\infty}$: LITTLEWOOD polynomials such that

$$d_n := \deg(P_n) \xrightarrow[n \to +\infty]{} +\infty.$$

For every continuous function $\varphi : \mathbb{C} \to \mathbb{R}$ with compact support,

$$\frac{1}{d_n} \sum_{\substack{\alpha \text{ root of } P_n}} \varphi(\alpha) \xrightarrow[n \to +\infty]{} \int \varphi(z) \, d\lambda(z)$$

Equivalently:

Discrepancy

Heights and equidistribution

- MAHLER measure and naive height;
- Arithmetic equidistribution;
- Dynamical heights;
- Proving equidistribution;
- Adelic heights.

Theorem (Radial discrepancy)

 $P(z) = a_d z^d + a_{d-1} z^{d-1} + \dots + a_o \in \mathbb{C}[z], a_d a_o \neq o.$

For every ε in (0, 1), we have

$$\begin{split} \frac{1}{d} \# & \left\{ a \text{ root of } P : |a| < 1 - \varepsilon \quad \text{ or } \quad |a| > \frac{1}{1 - \varepsilon} \right\} \\ & \leq \frac{2}{\varepsilon} \left(\frac{1}{d} \log \left(\frac{\sum_{j=0}^{d} |a_{j}|}{\sqrt{|a_{o}\bar{a}_{d}}|} \right) \right) \end{split}$$

Hughes-Nikegibali, 2008; Applications: Roots of Littlewood and Einsenstein polynomials $\left(z \sim \frac{1}{\sqrt{d}}\right)$.

Naive height

- a: Algebraic number;
- $P_a :=$ Minimal polynomial of α (with integer coefficients);

$$d_a := \deg(P_a);$$

 $h_W(\alpha) := \frac{1}{d_a} \log M(P_a).$

Naive or WEB. height of a:
Comparison with
$$T_{ET} = \frac{1}{d_a} \log \left(\frac{\sup_{z \in S^1} |P_a(z)|}{\sqrt{|a_0, a_d|}} \right)$$

h_W(α) measures the arithmetic complexity of α, e.g.,

$$h_W\left(\frac{p}{q}\right) = \log \max\{|p|, |q|\}$$

Exercise!

h_W(α) ≥ 0 with equality if and only if α is a root of unity.

MAHLER measure

$$\frac{1}{d} \log \left(\frac{\sum_{i=0}^{n} |a_i|}{\sqrt{|a_0 a_d|}} \right)$$
 can by replaced by:

$$T_{\mathsf{ET}}(P) := \frac{1}{d} \log \left(\frac{\sup_{z \in S^1} |P(z)|}{\sqrt{|a_0 a_d|}} \right);$$

GANELIUS, 1954; Erdős-Turán size of P.

$$p > 0, M_p(P) := \left(\int |P(z)|^p d\lambda(z) \right)^{\frac{1}{p}};$$

P measure of P.

$$\begin{split} \mathbf{M}(P) &:= \exp \biggl(\int \log |P(z)| \, \mathrm{d}\lambda(z) \biggr); \\ &= \lim_{p \to o^+} M_p(P). \end{split}$$

MAHLER measure of P ("geometric mean").

Naive height and equidistribution

Theorem (BILU, 1997)

 $(\alpha_n)_{n=1}^{+\infty}$: Algebraic numbers such that

$$h_W(\alpha_n) \xrightarrow[n \to +\infty]{} 0$$
 and $d_{\alpha_n} \xrightarrow[n \to +\infty]{} +\infty$.

We have,

$$\frac{1}{d_{\alpha_n}} \sum_{\alpha \text{ root of } P_{\alpha_n}} \delta_\alpha \xrightarrow[n \to +\infty]{} \lambda$$

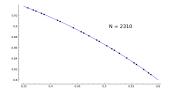
Similar to the Nέβου-ΤΑΤΕ height of an Abelian variety SZPIRO-ULLMO-ZHANG, 1997. Application: α_n primitive root of unity of order n;

Equidistribution of roots of unity

Equidistribution of roots of unity

Equidistribution of roots of unity

Equidistribution of roots of unity



Dynamical heights

 $R(z) \in \overline{\mathbb{Q}}(z)$, rational function of degree $D \ge 2$,

 $R: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}};$

Discrete time dynamical system on the Riemann sphere $\widetilde{\mathbb{C}}.$

 ρ_R : Maximal entropy measure of R.

$$h_R := \lim_{n \to +\infty} \frac{1}{D^n} h_W \circ R^n$$

Canonical height of R.

Unique "adelic" height such that h_R o R = D · h_R;

 h_R(α) ≥ 0 with equality if and only if α is a periodic point of R (a solution of Rⁿ(z) − z = 0, for some n ≥ 1).

> Comparison: Naive height / NźRON-TATE height; Roots of unity / torsion points.

Dynamical heights

Theorem

 $(\alpha_n)_{n=1}^{+\infty}$: Algebraic numbers such that

$$h_R(\alpha_n) \xrightarrow[n \to +\infty]{} 0$$
 and $d_{\alpha_n} \xrightarrow[n \to +\infty]{} +\infty$.

We have,

$$\frac{1}{d_{\alpha_n}} \sum_{a \text{ root of } P_{\alpha_n}} \delta_a \xrightarrow[n \to +\infty]{} \rho_R$$

BAKER-RUMELY, CHABERT-LOIR, FAVRE-RL, 2006; Application: Equidistribution of periodic points (LYUBICH, 1983). Dynamical heights

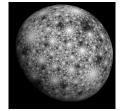


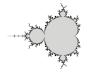
Figure : Density invariant by a rational map, by CHÉRITAT.

MANDELBROT height

 $c \in \mathbb{C},$ $\begin{aligned} & P_c : \mathbb{C} \to \mathbb{C}, P_c(z) := z^2 + c; \\ & K_c := \{z \in \mathbb{C} : (P_c^n(z))_{n \ge 1} \text{ is bounded} \}. \end{aligned}$

Filled JULIA set of Pc.

$\mathcal{M} := \{ c \in \mathbb{C} : K_c \text{ is connected} \}.$



MANDELBROT height

Definition

The Mandelbrot height $h_{\mathscr{M}} : \overline{\mathbb{Q}} \to \mathbb{R}$ is,

 $h_{(c)} := h_{P_{c}}(c).$

Comparison: Uniformization of $\overline{\mathbb{C}} \setminus \mathscr{M}$.

 h_d(c) ≥ 0 with equality if and only if P_c is post-critically finite.

 \Leftrightarrow The orbit of the critical point of P_c is finite.

Theorem

The asymptotic distribution of small points for the MANDELBROT set is given by the harmonic measure of the MANDELBROT set.

Application: Equidistribution of post-critically finite parameters, LEVIN 1980s.

Proving equidistribution

a: Algebraic number;

 P_{α} = Minimal polynomial of α (with integer coefficients);

 $\begin{array}{l} d_{\alpha} = \ \deg(P_{\alpha});\\ h_{W}(\alpha) = \ \frac{1}{d_{\alpha}}\log M(P_{\alpha}) = \frac{1}{d_{\alpha}}\int \log|P_{\alpha}(z)| \ \mathrm{d}\lambda(z). \end{array}$

When α is an algebraic integer ($\Leftrightarrow P_{\alpha}$ is monic):

$$\begin{split} \mathsf{h}_{\mathsf{W}}(\alpha) &= \frac{1}{d_{\alpha}} \int \sum_{\alpha' \in \mathcal{O}(\alpha)} \log |z - \alpha'| \, \mathsf{d}\lambda(z) \\ &= \iint \log |z - z'| \, \mathsf{d}\lambda(z) \, \mathsf{d}_{\delta(\alpha)}(z'). \end{split}$$

$$b(\alpha) := \text{Set of roots of } P_{\alpha};$$

 $\delta_{(\alpha)} := \frac{1}{d_{\alpha}} \sum_{\alpha' \in O(\alpha)} \delta_{\alpha'}.$

Proving equidistribution ρ, ρ' : (Signed) measures on the RIEMANN sphere $\widehat{\mathbb{C}}$.

$$(\rho, \rho') := - \iint_{\mathbb{C} \times \mathbb{C} \setminus \text{Diag}} \log |z - z'| \, d\rho(z) \, d\rho'(z').$$

Potential energy.

$$h_{W}(\alpha) = -(\lambda, \delta_{\langle \alpha \rangle})$$

= $\frac{1}{2} (\lambda - \delta_{\langle \alpha \rangle}, \lambda - \delta_{\langle \alpha \rangle}) + \frac{1}{d_{\alpha}^{2}} \log |\Delta(\alpha)|.$

 $\Delta(\alpha) :=$ discriminant of P_{α} (a nonzero integer).

Morally, BILU's theorem follows from:

CAUCHY-SCHWARZ inequality: ρ regular, and $\rho(\widehat{\mathbb{C}}) = \circ \Rightarrow$ $(\rho, \rho) \ge \circ$, with equality if and only if $\rho = \circ$.

> Details: Case α is not an integer (adelic formula); $\delta_{(\alpha)}$ is not regular (convolution, and error estimate).

Adelic heights

ρ: Regular probability measure on C.
h_ρ := height such that for every algebraic integer α,

 $h_{\rho}(\alpha) = \frac{1}{2} \left(\rho - \delta_{\langle \alpha \rangle}, \rho - \delta_{\langle \alpha \rangle} \right) + \frac{1}{d_{\alpha}^2} \log |\Delta(\alpha)|.$

Adelic height associated to ρ .

λ: uniform measure on S1,

 $h_{\lambda} = h_W$, the Weil height;

 $\mu_{\mathscr{M}}$: harmonic measure of the Mandelbrot set, $h_{\mu_{\mathscr{M}}}=h_{\mathscr{M}}, \text{ the Mandelbrot height}.$

 ρ_R : measure of maximal entropy of (some) $R \in \mathbb{Q}(z)$, $h_{\rho_R} = h_R$, canonical height associated to R; For R with "sood reduction at every prime".

Adelic heights

ZHANG's inequality (1995) The essential minimum of an adelic height is nonnegative.

Definition An adelic height h_{ρ} is quasi-canonical if its essential minimum is equal to 0.

Theorem (YUAN, 2008)

If h_{ρ} is quasi-canonical, then the asymptotic distribution of Small points for h_{ρ} is given by ρ .

In dimension 1: BAKER-RUMELY, CHABERT-LOIR, FAVRE-RL, 2006;

The previous equidistribution results follow by observing: The WEIL height, the dynamical heights, and the MANDELBROT height are all auasi-canonical.

Beyond quasi-canonical heights

ω: Spherical measure on the Riemann sphere $\widehat{\mathbb{C}}$; $h_ω$: Adelic height associated to ω.

Spherical height.

Theorem (Sombra, 2005) The spherical height is not quasi-canonical. In fact

essential minimul of $h_{\omega} = \frac{1}{2} \log 2$.

Theorem (Burgos-Phillipon-Sombra, 2015)

Among "toric" heights (= heights with radial symmetry), the only quasi-canonical height is the WEIL height (!!).

Toric heights

Theorem (Burgos-Philippon-RL-Sombra, arXiv 2015)

 ρ : Regular probability on $\widehat{\mathbb{C}}$ with radial symmetry.

Centered case: $supp(\rho) \supset S^1$.

Equidsitribution to λ .

Bipolar case: supp(ρ) disjoint from S¹, but intersecting both hemispheres.

Non-radial, but centered limit measures.

Totally unbalanced case: $supp(\rho)$ disjoint from S¹, contained in a hemisphere.

Non-radial and non-centered limit measures.