On accessibility of hyperbolic components of the tricorn

Hiroyuki Inou (Joint work in progress with Sabyasachi Mukherjee)

Department of Mathematics, Kyoto University

Inperial College London Parameter Problems in Analytic Dynamics June 30, 2016

The tricorn family

- ► $f_c(z) = \overline{z}^2 + c$.
- ► $f_c^2(z) = (z^2 + \bar{c})^2 + c$: real-analytic 2-parameter family of biquadratic (quartic) polynomials.
- ▶ $K_c = \{z \in \mathbb{C}; f_c^n(z) \neq \infty\}$: filled Julia set.
- $J_c = \partial K_c$: Julia set.
- $\mathcal{M}^* = \{ c \in \mathbb{C}; K_c : \text{connected} \}$: The tricorn.
- Periodic points:
 - x: p-periodic point.
 - λ : multiplier of $x \stackrel{\text{def}}{\Leftrightarrow}$ multiplier for f_c^2 .

•
$$k: \operatorname{odd} \Rightarrow \lambda = \left(\frac{\partial f_c^k}{\partial Z}(x)\right) \overline{\left(\frac{\partial f_c^k}{\partial Z}(x)\right)} \ge 0.$$

Hyperbolic components

- ► Hyperbolic component = (bounded) connected component of the hyperbolicity locus Hyp* ⊊ int M*.
 - **Remark:** \neq component of int \mathcal{M}^* .
 - e.g., period 1 and 2 hyperbolic components are contained in the same component of int *M** (Crowe et al.).
- \mathcal{H} : hyperbolic component, *p*: period.
- $c \in \partial \mathcal{H} \Rightarrow f_c$ has an indifferent fixed point of f_c^p .
- ▶ *p*: odd $\Rightarrow \partial \mathcal{H}$ consists of 3 parabolic arcs and 3 cusps.
 - parabolic arc ⇔ ∃ simple 1-parabolic p-periodic point (1 attracting petal).
 - ► cusp $\Leftrightarrow \exists$ double 1-parabolic *p*-periodic point

(2 invariant attracting petals).

It is a "1.5-dim family"!

- ► The tricorn is connected (Nakane).
 - $\exists \Phi : \mathbb{C} \setminus \mathcal{M}^* \to \mathbb{C} \setminus \overline{\mathbb{D}}$: real-analytic diffeomorphism.
- Therefore, we can define external rays (parameter rays) and do some combinatorics with them as in the case of the Mandelbrot set.
 - Parameter rays are stretching rays.
- Even iterate is holomorphic ~> 1D phenomena.
 - discrete parabolic maps,
 - baby Mandelbrot sets.
- ► Odd iterate is anti-holomorphic ~→ 2D phenomena.
 - parabolic arcs,
 - baby tricorn-like sets,
 - wiggly features,
 - discontinuous straightening maps (baby tricorn-like sets are not homeomorphic to the tricorn).

The existence of parabolic arcs (arcs consisting parabolic parameters) induces many wiggly features:

- Non-landing umbilical cords (Hubbard-Schleicher, I, I-Mukherjee).
- Non-landing parameter rays (I-Mukherjee).
- baby tricorn-like sets are NOT (dynamically) homeomorphic to the tricorn (I-Mukherjee).

Conjecture

The existence of parabolic arcs (arcs consisting parabolic parameters) induces many wiggly features:

- Non-landing umbilical cords (Hubbard-Schleicher, I, I-Mukherjee).
- Non-landing parameter rays (I-Mukherjee).
- baby tricorn-like sets are NOT (dynamically) homeomorphic to the tricorn (I-Mukherjee).

Conjecture

The existence of parabolic arcs (arcs consisting parabolic parameters) induces many wiggly features:

- Non-landing umbilical cords (Hubbard-Schleicher, I, I-Mukherjee).
- Non-landing parameter rays (I-Mukherjee).
- baby tricorn-like sets are NOT (dynamically) homeomorphic to the tricorn (I-Mukherjee).

Conjecture

The existence of parabolic arcs (arcs consisting parabolic parameters) induces many wiggly features:

- Non-landing umbilical cords (Hubbard-Schleicher, I, I-Mukherjee).
- Non-landing parameter rays (I-Mukherjee).
- baby tricorn-like sets are NOT (dynamically) homeomorphic to the tricorn (I-Mukherjee).

Conjecture

We say a hyperbolic component \mathcal{H} is **accessible** if there is a path $\gamma : (0, 1] \rightarrow \mathbb{C} \setminus \mathcal{M}^*$ such that $\gamma(t)$ converges to a point in $\partial \mathcal{H}$ as $t \searrow 0$.

Theorem 1 (I-Mukherjee)

Any hyperbolic component of period 1 and 3 in \mathcal{M}^{\ast} are accessible.

- Seems reasonable to conjecture that "most" hyperbolic components are inaccessible.
- An attempt to find infinitely many accessible hyperbolic component converging to the Chebyshev map f₋₂ (I-Kawahira, in progress).

Accessible/inaccessible hyperbolic components

Fatou coordinates and Lavaurs maps

- \mathcal{H}_0 : a hyperbolic component in \mathcal{M}^* .
- C₀ ⊂ ∂H₀: parabolic arc of a hyperbolic component of odd period p.
- ► $c \in C_0$.
- ▶ φ_{c,*} (* = attr, rep): normalized attracting/repelling Fatou coordinate, i.e.,

$$\phi_{c,*}(f_c(z)) = \overline{\phi_{c,*}(z)} + rac{1}{2} \cdot Re \, \phi_{c, ext{attr}}(0) = 0.$$

- ▶ **Remark:** \mathbb{R} is invariant by $z \mapsto \overline{z} + \frac{1}{2}$, hence it follows that $\phi_{c,*}$ is unique up to real translation.
- Therefore, Im $\phi_{c,*}$ is well-defined (Ecalle height).
- ► Fact: C₀ is analytically parametrized by Im φ_{c,attr}(c) (the critical Ecalle height).

- $\succ T_{\tau}(z) = z + \tau.$
- ► $g_{c,\tau} = \phi_{c,\text{rep}}^{-1} \circ T_{\tau} \circ \phi_{c,\text{attr}}$: int $K_c \to \mathbb{C}$: Lavaurs map with phase τ .
- We only consider the case $\tau \in \mathbb{R}$ (reason explained later).

• Thus
$$g_{c,\tau} \circ f_c = f_c \circ g_{c,\tau}$$

- K_{c,τ} = K(f_c, g_{c,τ}) = {z ∈ C; (f_c, g_{c,τ})-orbit of z is bounded}: filled Julia-Lavaurs set.
- ► $J_{c,\tau} = J(f_c, g_{c,\tau}) = \partial K(f_c, g_{c,\tau})$: Julia-Lavaurs set.

Julia-Lavaurs set

Julia-Lavaurs set

Geometric limits and Lavaurs maps

• Let $c_n \notin \overline{\mathcal{H}_0} \to c_0 \in \mathcal{C}_0$.

▶ ϕ_{c_n} : normalized Fatou coordinate s.t. $\phi_{c_n} \rightarrow \phi_{c,rep}$.

► Assume $\exists k_n \to \infty$ s.t. $\phi_{c_n}(f_{c_n}^{2pk_n}(0)) \to \tau$.

Then we have

$$f^{2pk_n}_{c_n} o g_{c, au} \quad (n o \infty).$$

- Notice: $\tau \in \mathbb{R}!$
 - $\phi_{c_n} \alpha_n \rightarrow \phi_{c,\text{attr}}$ for some $\alpha_n \in \mathbb{R}$.
 - Therefore,

 $\tau \leftarrow \operatorname{Im} \phi_{c_n}(f_{c_n}^{2k_n}(0)) = \operatorname{Im}(\phi_{c_n}(f_{c_n}^{2k_n}(0)) - \alpha_n) \xrightarrow{} \operatorname{Im} \phi_{c,\operatorname{attr}}(0).$

Hubbard-Schleicher (implicitly proved):

$$\{c_n\} \mapsto (c_0, \tau) \in \mathcal{C}_0 imes \mathbb{R}/\mathbb{Z}$$

is surjective.

Parameter space of Julia-Lavaurs sets

Julia-Lavaurs family

normalized tricorn family

The vertical direction is a parametrization of C_0 , and the horizontal direction is (an approximation of) the phase.

Parameter space of Julia-Lavaurs sets

Parameter space of Julia-Lavaurs sets

Inaccessibility for the family of geometric limits

$\tilde{\mathcal{H}} \subset \mathcal{C}_0 \times S^1$: "primitive" hyperbolic component.

Lemma 2

- 1. The attractive basins are inaccessible from the escape region for $(c, \tau) \in \tilde{\mathcal{H}}$.
- 2. $\tilde{\mathcal{H}}$ is inaccessible from the escape locus.

Remark

- Indeed, there is no path accumulating to the boundary.
- ► The first statement still holds for the parabolic basin of $(c, \tau) \in \partial \tilde{\mathcal{H}}$.

Lemma 2

- 1. The attractive basins are inaccessible from the escape region for $(c, \tau) \in \tilde{\mathcal{H}}$.
- **2.** $\tilde{\mathcal{H}}$ is inaccessible from the escape locus.

Proof of 1.

- Assume $f_c^l \circ g_{c,\tau}^m$ has an attracting fixed point.
- A polynomial-like restriction h_{c,τ} := f^l_c ∘ g^m_{c,τ} : U^l_{c,τ} → U_{c,τ} exists.
- Let $K_n = \{z \in \text{int } K_c; g_{c,\tau}^k(z) \in \text{int } K_c \ (k = 1, \dots, n)\}.$
- $K_n \supset h_{c,\tau}^{-n}(U_{c,\tau})$ is a neighborhood of $K_{c,\tau}$.
- ∂K_n is contained in $J_{c,\tau}$.
- Therefore, the attractive basin is inaccessible from $\mathbb{C} \setminus K_n$.
- Escape region for $(f_c, g_{c,\tau}) = \bigcup (\mathbb{C} \setminus K_n).$

Lemma 2

1. The attractive basins are inaccessible from the escape region for $(c, \tau) \in \tilde{\mathcal{H}}$.

2. $\tilde{\mathcal{H}}$ is inaccessible from the escape locus.

Proof of 2.

- Assume $f_c^l \circ g_{c,\tau}^m$ has an attracting fixed point.
- ► $\exists \mathcal{U}$: nbd of $\tilde{\mathcal{H}}$ where polynomial-like restriction $h_{c,\tau} := f_c^I \circ g_{c,\tau}^m : U_{c,\tau}' \to U_{c,\tau}$ exists.
- ▶ Let $A_n = \{(c, \tau); g_{c, \tau}^k(0) \in \text{int } K_{c, \tau} \ (k = 1, ..., n)\}$ and
- ► $C_n = \{(\boldsymbol{c}, \tau) \in \mathcal{U}; \ \boldsymbol{g}_{\boldsymbol{c}, \tau}^k(\boldsymbol{0}) \in \boldsymbol{U}_{\boldsymbol{c}, \tau} \ (\boldsymbol{k} = 1, \dots, n)\}.$
- C_n is a neighborhood of $C(\tilde{\mathcal{H}}) = \bigcap_k C_k \supset \tilde{\mathcal{H}}$.
- ∂A_n is contained in the bifurcation locus.
- Therefore, $\tilde{\mathcal{H}}$ is inaccessible from $(\mathcal{C}_0 \times S^1) \setminus \mathcal{A}_n$.
- Escape locus = $\bigcup ((\mathcal{C}_0 \times S^1) \setminus \mathcal{A}_n).$

Criterion for inaccessible hyperbolic components

Let $\mathcal{H} \subset \mathsf{Hyp}^*$ be a hyperbolic component of odd period.

Lemma 3

Assume for any non-cusp $c \in \partial \mathcal{H}$ the following holds:

- ► Let $E_1, ..., E_K$ be the connected components of $K_c \cap \text{Dom}(\phi_{c,\text{rep}})$ such that the parabolic periodic point is in ∂E_k .
- ► $I_k := \operatorname{int} \operatorname{Im} \phi_{c,\operatorname{rep}}(E_k) \subset \mathbb{R}$ (Im $\phi_{c,\operatorname{rep}}$: Ecalle height).
- $\{I_k\}_{k=1}^K$ is an open cover of \mathbb{R} .

Then $\partial \mathcal{H}$ is inaccessible from the escape locus.

Criterion for inaccessible hyperbolic components

Let $\mathcal{H} \subset \mathsf{Hyp}^*$ be a hyperbolic component of odd period.

Lemma 3

Assume for any non-cusp $c \in \partial \mathcal{H}$ the following holds:

- ► Let $E_1, ..., E_K$ be the connected components of $K_c \cap \text{Dom}(\phi_{c,\text{rep}})$ such that the parabolic periodic point is in ∂E_k .
- ► $I_k := \operatorname{int} \operatorname{Im} \phi_{c, \operatorname{rep}}(E_k) \subset \mathbb{R}$ (Im $\phi_{c, \operatorname{rep}}$: Ecalle height).

•
$$\{I_k\}_{k=1}^K$$
 is an open cover of \mathbb{R} .

Then $\partial \mathcal{H}$ is inaccessible from the escape locus.

Criterion for inaccessible hyperbolic components

Let $\mathcal{H} \subset \mathsf{Hyp}^*$ be a hyperbolic component of odd period.

Lemma 3

Assume for any non-cusp $c \in \partial \mathcal{H}$ the following holds:

- ► Let $E_1, ..., E_K$ be the connected components of $K_c \cap \text{Dom}(\phi_{c,\text{rep}})$ such that the parabolic periodic point is in ∂E_k .
- ► $I_k := \operatorname{int} \operatorname{Im} \phi_{c, \operatorname{rep}}(E_k) \subset \mathbb{R}$ (Im $\phi_{c, \operatorname{rep}}$: Ecalle height).

•
$$\{I_k\}_{k=1}^K$$
 is an open cover of \mathbb{R} .

Then $\partial \mathcal{H}$ is inaccessible from the escape locus.

The bifurcation locus near a parabolic arc looks like the blow-up of the Julia set at the parabolic periodic point w.r.t. the Ecalle height.

Since any parabolic-attracting (virtually attracting) *c* ∈ C (or cusp) lies in the interior of *M*^{*} (in the common boundary arc with another hyperbolic components of double period), we need only check the assumption for *c* in the compact subarc of C consisting of non-parabolic-attracting parameters.

The bifurcation locus near a parabolic arc looks like the blow-up of the Julia set at the parabolic periodic point w.r.t. the Ecalle height.

Since any parabolic-attracting (virtually attracting) *c* ∈ C (or cusp) lies in the interior of *M*^{*} (in the common boundary arc with another hyperbolic components of double period), we need only check the assumption for *c* in the compact subarc of C consisting of non-parabolic-attracting parameters.

Perturbations

Assume $\mathcal{H}_n \subset Hyp^*$ satisfy $\mathcal{H}_n \to \tilde{\mathcal{H}}$ "geometrically".

Inaccessible hyperbolic components for \mathcal{M}^*

Theorem 4 (I-Mukherjee, in progress)

- → H₀ ⊂ Hyp*: real hyperbolic component of odd period p > 1.
- C ⊂ ∂H₀: the root arc (i.e., the "umbilical cord" converges to it).
- $\mathcal{H}_n \subset Hyp^*$ converges to $\tilde{\mathcal{H}}$ geometrically.

Then for sufficiently large *n*, the root arc of H_n is inaccessible from the escape locus.

Outline of proof

- ► For any $c_n \in \partial \mathcal{H}_n$, there are three connected components $E_* = E_*(c_n)$ (* = ±, 0) of $K_c \cap \text{Dom}(\phi_{c,\text{rep}})$ in Lemma 3.
- Let $I_* = I_*(c_n) = \operatorname{int} \operatorname{Im} \phi_{c,\operatorname{rep}}(E_*).$
 - I_+ is unbounded above,
 - \blacktriangleright I_0 is bounded,
 - I_ is unbounded below.
- Consider a geometric limit of a sequence $\mathcal{H}_n \ni c_n \rightarrow (c_0, \tau)$.
- ► $(f_{c_0}, g_{c_0,\tau})$ has an inaccessible parabolic basin.
- ▶ Therefore, int Im $\phi_{c_0,\tau,\mathsf{rep}}(K_{c_0,\tau}) = \mathbb{R}$.

Moreover, by assumption that H₀ and H̃ is real, E₊ and E₋ must touch in the limit, so we have
lim inf I₊ ≤ lim sup I₋.

I₋ = −I₊ and I₀ = −I₀ by symmetry w.r.t. z ↦ z̄ + ½, so
lim inf I₊ ≤ 0 < lim sup I₀,
lim inf I₀ < 0 ≤ lim sup I₋.

Hence for sufficiently large n, {I_{*}}_{*=±,0} is an open covering of ℝ, and we can apply Lemma 3.

Remarks

The assumptions that

- the period p > 1,
- hyperbolic components are real, and
- the parabolic arc is the root arc

seems unnecessary, but we do not know how to exclude "degenarate" case:

On root arcs: $\liminf I_+ = \limsup I_0$, $\liminf I_0 = \limsup I_-$.

On co-root arcs: $\liminf_{l \to l} I_{+} = \limsup_{l \to l} I_{-}$.

 $(E_0 = I_0 = \emptyset$ in this case.)

On root arc

On co-root arcs

On co-root arcs

