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The tricorn family

I fc(z) = z̄2 + c.
I f 2

c (z) = (z2 + c̄)2 + c: real-analytic 2-parameter family of
biquadratic (quartic) polynomials.

I Kc = {z ∈ C; f n
c (z) 6→ ∞}: filled Julia set.

I Jc = ∂Kc : Julia set.
I M∗ = {c ∈ C; Kc : connected}: The tricorn.
I Periodic points:

I x : p-periodic point.
I λ: multiplier of x def⇔ multiplier for f 2

c .
I k : odd⇒ λ = (

∂f k
c

∂z̄ (x))(∂f k
c

∂z̄ (x)) ≥ 0.
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Hyperbolic components
I Hyperbolic component = (bounded) connected component

of the hyperbolicity locus Hyp∗ ( intM∗.
I Remark: 6= component of intM∗.
I e.g., period 1 and 2 hyperbolic components are contained

in the same component of intM∗ (Crowe et al.).
I H: hyperbolic component, p: period.
I c ∈ ∂H ⇒ fc has an indifferent fixed point of f p

c .
I p: odd⇒ ∂H consists of 3 parabolic arcs and 3 cusps.

I parabolic arc⇔ ∃ simple 1-parabolic p-periodic point
(1 attracting petal).

I cusp⇔ ∃ double 1-parabolic p-periodic point
(2 invariant attracting petals).
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It is a “1.5-dim family”!

I The tricorn is connected (Nakane).
I ∃Φ : C \M∗ → C \ D: real-analytic diffeomorphism.

I Therefore, we can define external rays (parameter rays)
and do some combinatorics with them as in the case of the
Mandelbrot set.

I Parameter rays are stretching rays.
I Even iterate is holomorphic 1D phenomena.

I discrete parabolic maps,
I baby Mandelbrot sets.

I Odd iterate is anti-holomorphic 2D phenomena.
I parabolic arcs,
I baby tricorn-like sets,
I wiggly features,
I discontinuous straightening maps (baby tricorn-like sets are

not homeomorphic to the tricorn).
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2D-phenomena: Wiggly features

The existence of parabolic arcs (arcs consisting parabolic
parameters) induces many wiggly features:
I Non-landing umbilical cords (Hubbard-Schleicher, I,

I-Mukherjee).
I Non-landing parameter rays (I-Mukherjee).
I baby tricorn-like sets are NOT (dynamically) homeomorphic

to the tricorn (I-Mukherjee).

Conjecture
No pair of baby tricorn-like sets are dynamically homeomorphic
unless they are symmetric (in which case they are trivially
affinely homeomorphic).
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Accessible/inaccessible hyperbolic components

We say a hyperbolic component H is accessible if there is a
path γ : (0,1]→ C \M∗ such that γ(t) converges to a point in
∂H as t ↘ 0.

Theorem 1 (I-Mukherjee)
Any hyperbolic component of period 1 and 3 inM∗ are
accessible.

I Seems reasonable to conjecture that “most” hyperbolic
components are inaccessible.

I An attempt to find infinitely many accessible hyperbolic
component converging to the Chebyshev map f−2
(I-Kawahira, in progress).
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Accessible/inaccessible hyperbolic components
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Fatou coordinates and Lavaurs maps

I H0: a hyperbolic component inM∗.
I C0 ⊂ ∂H0: parabolic arc of a hyperbolic component of odd

period p.
I c ∈ C0.
I φc,∗ (∗ = attr, rep): normalized attracting/repelling Fatou

coordinate, i.e.,
φc,∗(fc(z)) = φc,∗(z) + 1

2 .
Reφc,attr(0) = 0.

I Remark: R is invariant by z 7→ z̄ + 1
2 , hence it follows that

φc,∗ is unique up to real translation.
I Therefore, Imφc,∗ is well-defined (Ecalle height).
I Fact: C0 is analytically parametrized by Imφc,attr(c) (the

critical Ecalle height).
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I Tτ (z) = z + τ .
I gc,τ = φ−1

c,rep ◦ Tτ ◦ φc,attr : int Kc → C: Lavaurs map with
phase τ .

I We only consider the case τ ∈ R (reason explained later).
I Thus gc,τ ◦ fc = fc ◦ gc,τ .
I Kc,τ = K (fc ,gc,τ ) = {z ∈ C; (fc ,gc,τ )-orbit of z is

bounded}: filled Julia-Lavaurs set.
I Jc,τ = J(fc ,gc,τ ) = ∂K (fc ,gc,τ ): Julia-Lavaurs set.
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Julia-Lavaurs set
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Julia-Lavaurs set
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Geometric limits and Lavaurs maps

I Let cn 6∈ H0 → c0 ∈ C0.
I φcn : normalized Fatou coordinate s.t. φcn → φc,rep.

I Assume ∃kn →∞ s.t. φcn (f 2pkn
cn (0))→ τ .

I Then we have
f 2pkn
cn → gc,τ (n→∞).

I Notice: τ ∈ R!
I φcn − αn → φc,attr for some αn ∈ R.
I Therefore,
τ ← Imφcn (f 2kn

cn (0)) = Im(φcn (f 2kn
cn (0))− αn)→ Imφc,attr(0).

I Hubbard-Schleicher (implicitly proved):
{cn} 7→ (c0, τ) ∈ C0 × R/Z

is surjective.
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Parameter space of Julia-Lavaurs sets

Julia-Lavaurs family normalized tricorn family

The vertical direction is a parametrization of C0, and the
horizontal direction is (an approximation of) the phase.
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Parameter space of Julia-Lavaurs sets
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Parameter space of Julia-Lavaurs sets
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Inaccessibility for the family of geometric limits

H̃ ⊂ C0 × S1: “primitive” hyperbolic component.

Lemma 2

1. The attractive basins are inaccessible from the escape
region for (c, τ) ∈ H̃.

2. H̃ is inaccessible from the escape locus.

Remark
I Indeed, there is no path accumulating to the boundary.
I The first statement still holds for the parabolic basin of

(c, τ) ∈ ∂H̃.
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Lemma 2
1. The attractive basins are inaccessible from the escape

region for (c, τ) ∈ H̃.
2. H̃ is inaccessible from the escape locus.

Proof of 1.
I Assume f l

c ◦ gm
c,τ has an attracting fixed point.

I a polynomial-like restriction
hc,τ := f l

c ◦ gm
c,τ : U ′c,τ → Uc,τ exists.

I Let Kn = {z ∈ int Kc ; gk
c,τ (z) ∈ int Kc (k = 1, . . . ,n)}.

I Kn ⊃ h−n
c,τ (Uc,τ ) is a neighborhood of Kc,τ .

I ∂Kn is contained in Jc,τ .
I Therefore, the attractive basin is inaccessible from C \ Kn.
I Escape region for (fc ,gc,τ ) =

⋃
(C \ Kn).
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Lemma 2
1. The attractive basins are inaccessible from the escape

region for (c, τ) ∈ H̃.
2. H̃ is inaccessible from the escape locus.

Proof of 2.
I Assume f l

c ◦ gm
c,τ has an attracting fixed point.

I ∃U : nbd of H̃ where polynomial-like restriction
hc,τ := f l

c ◦ gm
c,τ : U ′c,τ → Uc,τ exists.

I Let An = {(c, τ); gk
c,τ (0) ∈ int Kc,τ (k = 1, . . . ,n)} and

I Cn = {(c, τ) ∈ U ; gk
c,τ (0) ∈ Uc,τ (k = 1, . . . ,n)}.

I Cn is a neighborhood of C(H̃) =
⋂

k Ck ⊃ H̃.
I ∂An is contained in the bifurcation locus.
I Therefore, H̃ is inaccessible from (C0 × S1) \ An.
I Escape locus =

⋃
((C0 × S1) \ An).
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Criterion for inaccessible hyperbolic components

Let H ⊂ Hyp∗ be a hyperbolic component of odd period.

Lemma 3

Assume for any non-cusp c ∈ ∂H the following holds:

I Let E1, . . . ,EK be the connected components of
Kc ∩ Dom(φc,rep) such that the parabolic periodic point is in
∂Ek .

I Ik := int Imφc,rep(Ek ) ⊂ R (Imφc,rep: Ecalle height).
I {Ik}Kk=1 is an open cover of R.

Then ∂H is inaccessible from the escape locus.
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I The bifurcation locus near a parabolic arc looks like the
blow-up of the Julia set at the parabolic periodic point w.r.t.
the Ecalle height.

I Since any parabolic-attracting (virtually attracting) c ∈ C (or
cusp) lies in the interior ofM∗ (in the common boundary
arc with another hyperbolic components of double period),
we need only check the assumption for c in the compact
subarc of C consisting of non-parabolic-attracting
parameters.
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Perturbations

Assume Hn ⊂ Hyp∗ satisfy Hn → H̃ “geometrically”.
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Inaccessible hyperbolic components forM∗

Theorem 4 (I-Mukherjee, in progress)
I H0 ⊂ Hyp∗: real hyperbolic component of odd period

p > 1.
I C ⊂ ∂H0: the root arc (i.e., the “umbilical cord” converges

to it).
I H̃ ⊂ C × S1: real hyperbolic component in the space of

geometric limits.
I Hn ⊂ Hyp∗ converges to H̃ geometrically.

Then for sufficiently large n, the root arc of Hn is inaccessible
from the escape locus.
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Outline of proof

I For any cn ∈ ∂Hn, there are three connected components
E∗ = E∗(cn) (∗ = ±,0) of Kc ∩ Dom(φc,rep) in Lemma 3.

I Let I∗ = I∗(cn) = int Imφc,rep(E∗).
I I+ is unbounded above,
I I0 is bounded,
I I− is unbounded below.

I Consider a geometric limit of a sequence
Hn 3 cn → (c0, τ).

I (fc0 ,gc0,τ ) has an inaccessible parabolic basin.
I Therefore, int Imφc0,τ,rep(Kc0,τ ) = R.
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Outline of proof (continued)

I Moreover, by assumption that H0 and H̃ is real, E+ and E−
must touch in the limit, so we have

lim
n→∞

inf I+ ≤ lim
n→∞

sup I−.

I I− = −I+ and I0 = −I0 by symmetry w.r.t. z 7→ z̄ + 1
2 , so

lim
n→∞

inf I+ ≤ 0 < lim
n→∞

sup I0,

lim
n→∞

inf I0 < 0 ≤ lim
n→∞

sup I−.

I Hence for sufficiently large n, {I∗}∗=±,0 is an open covering
of R, and we can apply Lemma 3.
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Remarks

The assumptions that
I the period p > 1,
I hyperbolic components are real, and
I the parabolic arc is the root arc

seems unnecessary, but we do not know how to exclude
“degenarate” case:
On root arcs: lim inf I+ = lim sup I0, lim inf I0 = lim sup I−.
On co-root arcs: lim inf I+ = lim sup I−.

(E0 = I0 = ∅ in this case.)
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On root arc
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On co-root arcs
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On co-root arcs
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