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The parameter space of polynomials

Polyd : degree d polynomials modulo conjugacy by affine
transformations.

I {P = adzd + · · ·+ a0, ad 6= 0}/{P ∼ φ ◦ P ◦ φ−1, φ(z) =
az + b}

I C∗ × Cd/Aff(2,C).

Complex affine variety of dimension d − 1: finite quotient
singularities.
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Exploring the geometry of Poly2

Interested in the geometry of the locus of polynomials with
special dynamics in Polyd .

Work with a suitable ramified cover of Polyd by Cd−1.
I d = 2: parameterization Pc(z) = z2 + c, c ∈ C. Critical

point: 0.
I PCF maps: 0 is pre-periodic.

PCF maps are defined over Q:

c = 0, c2 + c = 0, (c2 + c)2 + c = 0, . . .
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Distribution of quadratic PCF polynomials

PCF(n) = {Pc , the orbit of 0 has cardinality ≤ n}.

Theorem (Levin, Baker-H’sia, F.-Rivera-Letelier, ...)

The probability measures µn equidistributed on PCF(n)
converge weakly towards the harmonic measure of the
Mandelbrot set.



Distribution of quadratic PCF polynomials

PCF(n) = {Pc , the orbit of 0 has cardinality ≤ n}.

Theorem (Levin, Baker-H’sia, F.-Rivera-Letelier, ...)

The probability measures µn equidistributed on PCF(n)
converge weakly towards the harmonic measure of the
Mandelbrot set.

I Levin: potential theoretic arguments
I Baker-H’sia: exploit adelic arguments, and work over all

completions of Q both Archimedean and
non-Archimedean: C,Cp for p prime.



The cubic case Poly3

I Parameterization: Pc,a(z) = 1
3z3 − c

2z2 + a3, a, c ∈ C.
I Crit(Pc,a) = {0, c}
I Pc,a(0) = a3, Pc,a(c) = a3 − c3

6 .

PCF(n,m) = {orbit of 0 has cardinality ≤ n} &

{orbit of c has cardinality ≤ m}
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I in Cp with p ≥ 5:
I if |a| > max{1, |c|}, then |Pc,a(0)| = |a|3, |P2

c,a(0)| = |a|9

and, |Pn
c,a(0)| = |a|3n →∞;

I PCF(n,m) ⊂ {|c|, |a| ≤ 1}.



Finiteness of PCF maps

Pc,a(z) = 1
3z3 − c

2z2 + a3

Proposition (Branner-Hubbard)

The set PCF(n,m) is finite and defined over Q.

Proposition (Ingram)

For any finite extension K/Q the set PCF∩K 2 is finite.
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Distribution of PCF maps

Pc,a(z) = 1
3z3 − c

2z2 + a3

Theorem (F.-Gauthier)

The probability measures µn,m equidistributed on PCF(n,m)
converge weakly towards the equilibrium measure µ of the
connectedness locus C as n,m→∞.

I C = {(c,a) , Julia set of Pc,a is connected} =
{(c,a) ,0 and c have bounded orbit};

I Green function GC : C0 psh ≥ 0 function, C = {GC = 0},
G(c,a) = log max{1, |c|, |a|}+ O(1);

µ = Monge-Ampère(GC) = (ddc)2GC .
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The adelic approach

Interpretation of the Green function in the parameter space:

GC = max{Gc,a(c),Gc,a(0)}

I Dynamical Green function:

Gc,a = lim
1
3n log max{1, |Pn

c,a|}

I Same construction for any norm | · |p on Q: GC,p

Key observation: Pc,a ∈ PCF iff

Height(c,a) :=
1

deg(c,a)

∑
p

∑
c′,a′

GC,p(c′,a′) = 0

−→ Apply Yuan’s theorem!
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Special curves

Problem (Baker-DeMarco)

Describe all irreducible algebraic curves C in Poly3 such that
PCF∩C is infinite.

I motivated by the André-Oort conjecture in arithmetic
geometry

Theorem (Baker-DeMarco, Ghioca-Ye, F.-Gauthier)

Suppose C is an irreducible algebraic curve in Poly3 such that
PCF∩C is infinite. Then there exists a persistent critical
relation.
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The curves Pern(λ): DeMarco’s conjecture

Pern(λ) = {Pc,a admitting a periodic point
of period n and multiplier λ}

I Geometry of Pern(0): Milnor, DeMarco-Schiff, irreducibility
by Arfeux-Kiwi;

I Distribution of Pern(λ) when n→∞ described by
Bassaneli-Berteloot.

Theorem (F.-Gauthier)

The set PCF∩Pern(λ) is infinite iff λ = 0.

n = 1 by Baker-DeMarco



Scheme of proof

C irreducible component of Pern(λ) containing infinitely many
PCF: λ ∈ Q̄.

1. One of the critical point is persistently preperiodic on C.
2. C contains a unicritical PCF polynomial =⇒ |λ|3 < 1.
3. There exists a quadratic PCF polynomial having λ as a

multiplier =⇒ |λ|3 = 1.
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a) Existence of the PCF unicritical polynomial by Bezout and
Step 1.



Step 2

Pc,a(z) = 1
3z3 − c

2z2 + a3

C contains a unicritical PCF polynomial, and |λ|3 < 1.

a) Existence of the PCF unicritical polynomial by Bezout and
Step 1.

b) Suppose P(z) = z3 + b is PCF

I |b|3 ≤ 1
I periodic orbits are included in |z|3 ≤ 1
I |P ′(z)|3 = |3z2|3 < 1 on the unit ball hence |λ|3 < 1
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Step 1

One of the critical point is persistently preperiodic on C.

1. Apply the previous theorem: there exists a persistent
critical relation.

2. Suppose Pm′
c,a(0) = Pm

c,a(c) for all c,a ∈ C.
I a branch at infinity c of C induces a cubic polynomial

P = Pc(t),a(t) ∈ C((t))[z]
I both points 0 and c tend to∞ on c
I Kiwi & Bezivin =⇒ all multipliers of P are repelling
I contradiction with the existence of a periodic point with

constant multiplier λ
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Construction of the quadratic renormalization

Use more from Kiwi on the dynamics of P over the
non-Archimedean field C((t))!

I Step 1 implies 0 is pre-periodic whereas c tends to∞.
I If 0 is in the Julia set, then all cycles are repelling (Kiwi).
I Non-wandering theorem of Kiwi-Trucco: 0 belongs to a

periodic (closed) ball: Pm(B) = B.

Pm(z) = a0(t) + a1(t)z + . . .+ ak (t)zk

Pm{|z| ≤ 1} = {|z| ≤ 1} implies ai (t) ∈ C[[t ]]

The renormalization is a0(0) + a1(0)z + . . .+ ak (0)zk .



Dynamics of the quadratic renormalization

I The renormalization is a quadratic PCF polynomial Q.
I One multiplier of Q is λ: non-repelling orbits pass through

B (Kiwi)
I All multipliers of Q have | · |3 = 1.



Happy Birthday Sebastian!


