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The parameter space of polynomials

Poly,: degree d polynomials modulo conjugacy by affine
transformations.

> {P=ag2%+ -+ ay, ag # 0}/{P ~¢poPod ", ¢(2) =
az + b}
> C* x C9/ Aff(2,C).

Complex affine variety of dimension d — 1: finite quotient
singularities.
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Exploring the geometry of Poly,

Interested in the geometry of the locus of polynomials with
special dynamics in Poly,.

Work with a suitable ramified cover of Poly, by C9-1.
» d = 2: parameterization P.(z) = z? + ¢, ¢ € C. Critical
point: 0.
» PCF maps: 0 is pre-periodic.

PCF maps are defined over Q:

c=0,c+¢c=0,(c?+¢)?+¢c=0,...



Distribution of hyperbolic quadratic PCF polynomials
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Distribution of quadratic PCF polynomials

PCF(n) = {P., the orbit of 0 has cardinality < n}.

Theorem (Levin, Baker-H’sia, F.-Rivera-Letelier, ...)

The probability measures ., equidistributed on PCF(n)
converge weakly towards the harmonic measure of the
Mandelbrot set.



Distribution of quadratic PCF polynomials

PCF(n) = {P., the orbit of 0 has cardinality < n}.

Theorem (Levin, Baker-H’'sia, F.-Rivera-Letelier, ...)

The probability measures ., equidistributed on PCF(n)
converge weakly towards the harmonic measure of the
Mandelbrot set.

» Levin: potential theoretic arguments

» Baker-H’sia: exploit adelic arguments, and work over all
completions of Q both Archimedean and
non-Archimedean: C, C,, for p prime.



The cubic case Poly;

» Parameterization: P 4(z) = 28 — §z2+ &, a,c € C.
> Cr't(PQa) == {07 C}

3
> Pc7a(0) — 33, PQa(C) - 33 - %

PCF(n, m) = {orbit of 0 has cardinality < n} &
{orbit of ¢ has cardinality < m}
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» in Cp with p > 5:
> if |[a] > max{1, |c|}, then |P; 2(0)| = |a[®, |P5 ,(0)| = |af®
and, [P ,(0)| = [a]*" — oo;
» PCF(n,m) C {[c|,|al <1}.



Finiteness of PCF maps

Pea(z) = 328 - §22 + &
Proposition (Branner-Hubbard)
The set PCF(n, m) is finite and defined over Q.

Proposition (Ingram)

For any finite extension K /Q the set PCF NK? is finite.
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Distribution of PCF maps

an( ) § 3_%22+a3
Theorem (F.-Gauthier)

The probability measures pn m equidistributed on PCF(n, m)
converge weakly towards the equilibrium measure . of the
connectedness locus C as n,m — oo.

» C ={(c,a),Julia set of P; 4 is connected} =
{(c, a), 0 and c have bounded orbit};

» Green function Ge: C° psh > 0 function, C = {G¢ = 0},
G(c, a) = logmax{1, |c|, |a[} + O(1);

1 = Monge-Ampére(Ge) = (dd°)?Ge.



The adelic approach

Interpretation of the Green function in the parameter space:

Gc = max{Gc,a(c), G¢,a(0)}

» Dynamical Green function:

o1
Ge.a = lim 37 log max{1, |P’C7,a|}
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The adelic approach

Interpretation of the Green function in the parameter space:
GC - maX{an(C), cha(o)}
» Dynamical Green function:
1
Ge.a = lim 37 logmax{1, |P{ |}

» Same construction for any norm | - |, on Q: Gep

Key observation: P, € PCF iff

Height(c, a) deg c.a) ZZ Gep(c, d)

p c.,a

— Apply Yuan’s theorem!
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Special curves

Problem (Baker-DeMarco)
Describe all irreducible algebraic curves C in Polys such that
PCF NC is infinite.

» motivated by the André-Oort conjecture in arithmetic
geometry

Theorem (Baker-DeMarco, Ghioca-Ye, F.-Gauthier)

Suppose C is an irreducible algebraic curve in Poly; such that
PCF NC is infinite. Then there exists a persistent critical
relation.
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The curves Per,()\): DeMarco’s conjecture

Perp(\) = {P¢,2 admitting a periodic point
of period n and multiplier A}

» Geometry of Per,(0): Milnor, DeMarco-Schiff, irreducibility
by Arfeux-Kiwi;

» Distribution of Perp(A) when n — oo described by
Bassaneli-Berteloot.

Theorem (F.-Gauthier)
The set PCF N Pern()) is infinite iff A = 0.

n =1 by Baker-DeMarco



Scheme of proof

C irreducible component of Perp(A) containing infinitely many
PCF: )\ € Q.

1. One of the critical point is persistently preperiodic on C.

2. C contains a unicritical PCF polynomial = |3 < 1.

3. There exists a quadratic PCF polynomial having A as a
multiplier = |A|3 = 1.
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Step 2

Pea(z) = 322 - §22+ &
C contains a unicritical PCF polynomial, and |\|3 < 1.

a) Existence of the PCF unicritical polynomial by Bezout and
Step 1.

b) Suppose P(z) = z3 + bis PCF
> [bls < 1
» periodic orbits are included in |z|3 < 1
» |P'(2)|3 = |32%|3 < 1 on the unit ball hence |\|3 < 1



Q>
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Step 1

One of the critical point is persistently preperiodic on C.

1. Apply the previous theorem: there exists a persistent
critical relation.
2. Suppose PT,(0) = PT,(c) forall c,a € C.
» a branch at infinity ¢ of C induces a cubic polynomial
B = Per,ar) € C((1))[2]
» both points 0 and c tend to co on ¢
» Kiwi & Bezivin = all multipliers of 3 are repelling
» contradiction with the existence of a periodic point with
constant multiplier A
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Construction of the quadratic renormalization

Use more from Kiwi on the dynamics of % over the
non-Archimedean field C((¢))!

» Step 1 implies 0 is pre-periodic whereas c¢ tends to cc.

» If 0 is in the Julia set, then all cycles are repelling (Kiwi).

» Non-wandering theorem of Kiwi-Trucco: 0 belongs to a
periodic (closed) ball: p™(B) = B.

P(2) = ap(t) + a1 ()z + ...+ ax(t)z"
P{|z| <1} = {|z| < 1} implies a;(t) € C[[1]]

The renormalization is ay(0) + a1(0)z + ... + ax(0)z*.



Dynamics of the quadratic renormalization

» The renormalization is a quadratic PCF polynomial Q.
» One multiplier of Q is \: non-repelling orbits pass through

B (Kiwi)
» All multipliers of Q have |- |3 = 1.



Happy Birthday Sebastian!




