Distribution of PCF cubic polynomials

Charles Favre

charles.favre@polytechnique.edu

June 28th, 2016

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Poly_d: degree *d* polynomials modulo conjugacy by affine transformations.

$$\{P = a_d z^d + \dots + a_0, a_d \neq 0\} / \{P \sim \phi \circ P \circ \phi^{-1}, \phi(z) = az + b\}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

•
$$\mathbb{C}^* \times \mathbb{C}^d / \operatorname{Aff}(2, \mathbb{C}).$$

Complex affine variety of dimension d - 1: finite quotient singularities.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Work with a suitable ramified cover of $Poly_d$ by \mathbb{C}^{d-1} .

Work with a suitable ramified cover of Poly_d by \mathbb{C}^{d-1} .

d = 2: parameterization *P_c(z)* = *z*² + *c*, *c* ∈ ℂ. Critical point: 0.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

PCF maps: 0 is pre-periodic.

Work with a suitable ramified cover of Poly_d by \mathbb{C}^{d-1} .

- *d* = 2: parameterization *P_c(z)* = *z*² + *c*, *c* ∈ ℂ. Critical point: 0.
- PCF maps: 0 is pre-periodic.

PCF maps are defined over \mathbb{Q} :

$$c = 0, c^2 + c = 0, (c^2 + c)^2 + c = 0, \dots$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

Distribution of hyperbolic quadratic PCF polynomials

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q (2)

Distribution of hyperbolic quadratic PCF polynomials

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Distribution of quadratic PCF polynomials

 $PCF(n) = \{P_c, \text{ the orbit of 0 has cardinality } \leq n\}.$

Theorem (Levin, Baker-H'sia, F.-Rivera-Letelier, ...)

The probability measures μ_n equidistributed on PCF(*n*) converge weakly towards the harmonic measure of the Mandelbrot set.

(ロ) (同) (三) (三) (三) (○) (○)

Distribution of quadratic PCF polynomials

 $PCF(n) = \{P_c, \text{ the orbit of 0 has cardinality } \leq n\}.$

Theorem (Levin, Baker-H'sia, F.-Rivera-Letelier, ...)

The probability measures μ_n equidistributed on PCF(*n*) converge weakly towards the harmonic measure of the Mandelbrot set.

- Levin: potential theoretic arguments
- ► Baker-H'sia: exploit adelic arguments, and work over all completions of Q both Archimedean and non-Archimedean: C, Cp for p prime.

・ロト・日本・日本・日本・日本

The cubic case Poly₃

- ▶ Parameterization: $P_{c,a}(z) = \frac{1}{3}z^3 \frac{c}{2}z^2 + a^3$, $a, c \in \mathbb{C}$.
- ► Crit(P_{c,a}) = {0, c}

►
$$P_{c,a}(0) = a^3$$
, $P_{c,a}(c) = a^3 - \frac{c^3}{6}$

$\mathsf{PCF}(n,m) = \{ \text{orbit of 0 has cardinality } \leq n \} \& \\ \{ \text{orbit of } c \text{ has cardinality } \leq m \}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Proposition (Branner-Hubbard)

The set PCF(n, m) is finite and defined over \mathbb{Q} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Proposition (Branner-Hubbard)

The set PCF(n, m) is finite and defined over \mathbb{Q} .

▶ PCF(n, m) is bounded in \mathbb{C}^2 by Koebe distortion estimates;

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Proposition (Branner-Hubbard)

The set PCF(n, m) is finite and defined over \mathbb{Q} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• in
$$\mathbb{C}_p$$
 with $p \ge 5$:

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Proposition (Branner-Hubbard)

The set PCF(n, m) is finite and defined over \mathbb{Q} .

• in
$$\mathbb{C}_p$$
 with $p \ge 5$:

▶ if $|a| > \max\{1, |c|\}$, then $|P_{c,a}(0)| = |a|^3$, $|P_{c,a}^2(0)| = |a|^9$ and, $|P_{c,a}^n(0)| = |a|^{3^n} \to \infty$;

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Proposition (Branner-Hubbard)

The set PCF(n, m) is finite and defined over \mathbb{Q} .

• in
$$\mathbb{C}_p$$
 with $p \ge 5$:

▶ if $|a| > \max\{1, |c|\}$, then $|P_{c,a}(0)| = |a|^3$, $|P_{c,a}^2(0)| = |a|^9$ and, $|P_{c,a}^n(0)| = |a|^{3^n} \to \infty$;

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

▶ $\mathsf{PCF}(n,m) \subset \{|c|, |a| \le 1\}.$

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Proposition (Branner-Hubbard)

The set PCF(n, m) is finite and defined over \mathbb{Q} .

Proposition (Ingram)

For any finite extension K/\mathbb{Q} the set PCF $\cap K^2$ is finite.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Theorem (F.-Gauthier)

The probability measures $\mu_{n,m}$ equidistributed on PCF(n, m) converge weakly towards the equilibrium measure μ of the connectedness locus C as $n, m \to \infty$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Theorem (F.-Gauthier)

The probability measures $\mu_{n,m}$ equidistributed on PCF(n, m) converge weakly towards the equilibrium measure μ of the connectedness locus C as $n, m \to \infty$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• $C = \{(c, a), \text{Julia set of } P_{c,a} \text{ is connected}\} = \{(c, a), 0 \text{ and } c \text{ have bounded orbit}\};$

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Theorem (F.-Gauthier)

The probability measures $\mu_{n,m}$ equidistributed on PCF(n, m) converge weakly towards the equilibrium measure μ of the connectedness locus C as $n, m \to \infty$.

- $C = \{(c, a), \text{Julia set of } P_{c,a} \text{ is connected}\} = \{(c, a), 0 \text{ and } c \text{ have bounded orbit}\};$
- ► Green function $G_{\mathcal{C}}$: \mathcal{C}^0 psh ≥ 0 function, $\mathcal{C} = \{G_{\mathcal{C}} = 0\}$, $G(c, a) = \log \max\{1, |c|, |a|\} + O(1);$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Theorem (F.-Gauthier)

The probability measures $\mu_{n,m}$ equidistributed on PCF(*n*, *m*) converge weakly towards the equilibrium measure μ of the connectedness locus C as $n, m \to \infty$.

- $C = \{(c, a), \text{Julia set of } P_{c,a} \text{ is connected}\} = \{(c, a), 0 \text{ and } c \text{ have bounded orbit}\};$
- ► Green function $G_{\mathcal{C}}$: \mathcal{C}^0 psh ≥ 0 function, $\mathcal{C} = \{G_{\mathcal{C}} = 0\}$, $G(c, a) = \log \max\{1, |c|, |a|\} + O(1);$
- $\mu = \text{Monge-Ampère}(G_{\mathcal{C}}) = (dd^c)^2 G_{\mathcal{C}}.$

The adelic approach

Interpretation of the Green function in the parameter space:

$$G_{\mathcal{C}} = \max\{G_{c,a}(c), G_{c,a}(0)\}$$

Dynamical Green function:

$$G_{c,a} = \lim \frac{1}{3^n} \log \max\{1, |P_{c,a}^n|\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The adelic approach

Interpretation of the Green function in the parameter space:

$$G_{\mathcal{C}} = \max\{G_{c,a}(c), G_{c,a}(0)\}$$

Dynamical Green function:

$$G_{c,a} = \lim \frac{1}{3^n} \log \max\{1, |P_{c,a}^n|\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Same construction for any norm $|\cdot|_p$ on \mathbb{Q} : $G_{\mathcal{C},p}$

The adelic approach

Interpretation of the Green function in the parameter space:

$$G_{\mathcal{C}} = \max\{G_{c,a}(c), G_{c,a}(0)\}$$

Dynamical Green function:

$$G_{c,a} = \lim \frac{1}{3^n} \log \max\{1, |P_{c,a}^n|\}$$

Same construction for any norm $|\cdot|_p$ on \mathbb{Q} : $G_{\mathcal{C},p}$ Key observation: $P_{c,a} \in \mathsf{PCF}$ iff

$$\operatorname{Height}(\boldsymbol{c},\boldsymbol{a}):=\frac{1}{\operatorname{deg}(\boldsymbol{c},\boldsymbol{a})}\sum_{p}\sum_{\boldsymbol{c}',\boldsymbol{a}'}G_{\mathcal{C},p}(\boldsymbol{c}',\boldsymbol{a}')=0$$

→ Apply Yuan's theorem!

Problem (Baker-DeMarco)

Describe all irreducible algebraic curves C in $Poly_3$ such that $PCF \cap C$ is infinite.

 motivated by the André-Oort conjecture in arithmetic geometry

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Problem (Baker-DeMarco)

Describe all irreducible algebraic curves C in $Poly_3$ such that $PCF \cap C$ is infinite.

 motivated by the André-Oort conjecture in arithmetic geometry

Theorem (Baker-DeMarco, Ghioca-Ye, F.-Gauthier)

Suppose C is an irreducible algebraic curve in $Poly_3$ such that $PCF \cap C$ is infinite. Then there exists a persistent critical relation.

 $\operatorname{Per}_n(\lambda) = \{ P_{c,a} \text{ admitting a periodic point}$ of period *n* and multiplier $\lambda \}$

 $\operatorname{Per}_n(\lambda) = \{P_{c,a} \text{ admitting a periodic point}$ of period *n* and multiplier $\lambda\}$

 Geometry of Per_n(0): Milnor, DeMarco-Schiff, irreducibility by Arfeux-Kiwi (*n* prime);

(日) (日) (日) (日) (日) (日) (日)

 $\operatorname{Per}_n(\lambda) = \{P_{c,a} \text{ admitting a periodic point}$ of period *n* and multiplier $\lambda\}$

 Geometry of Per_n(0): Milnor, DeMarco-Schiff, irreducibility by Arfeux-Kiwi (*n* prime);

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ Distribution of $Per_n(\lambda)$ when $n \to \infty$ described by Bassaneli-Berteloot.

 $\operatorname{Per}_n(\lambda) = \{P_{c,a} \text{ admitting a periodic point}$ of period *n* and multiplier $\lambda\}$

 Geometry of Per_n(0): Milnor, DeMarco-Schiff, irreducibility by Arfeux-Kiwi;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Distribution of Per_n(λ) when n → ∞ described by Bassaneli-Berteloot.

Theorem (F.-Gauthier)

The set $PCF \cap Per_n(\lambda)$ *is infinite iff* $\lambda = 0$.

n = 1 by Baker-DeMarco

C irreducible component of $\text{Per}_n(\lambda)$ containing infinitely many PCF: $\lambda \in \overline{\mathbb{Q}}$.

- 1. One of the critical point is persistently preperiodic on C.
- 2. *C* contains a unicritical PCF polynomial $\implies |\lambda|_3 < 1$.
- 3. There exists a *quadratic* PCF polynomial having λ as a multiplier $\implies |\lambda|_3 = 1$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

C contains a unicritical PCF polynomial, and $|\lambda|_3 < 1$.

a) Existence of the PCF unicritical polynomial by Bezout and Step 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

C contains a unicritical PCF polynomial, and $|\lambda|_3 < 1$.

a) Existence of the PCF unicritical polynomial by Bezout and Step 1.

b) Suppose $P(z) = z^3 + b$ is PCF

- periodic orbits are included in $|z|_3 \leq 1$
- ▶ $|P'(z)|_3 = |3z^2|_3 < 1$ on the unit ball hence $|\lambda|_3 < 1$

(日) (日) (日) (日) (日) (日) (日)

One of the critical point is persistently preperiodic on *C*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

One of the critical point is persistently preperiodic on C.

1. Apply the previous theorem: there exists a persistent critical relation.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

One of the critical point is persistently preperiodic on C.

- 1. Apply the previous theorem: there exists a persistent critical relation.
- 2. Suppose $P_{c,a}^{m'}(0) = P_{c,a}^m(c)$ for all $c, a \in C$.
 - A branch at infinity c of C induces a cubic polynomial 𝔅 = P_{c(t),a(t)} ∈ ℂ((t))[z]
 - both points 0 and c tend to ∞ on c
 - Kiwi & Bezivin \Longrightarrow all multipliers of \mathfrak{P} are repelling
 - \blacktriangleright contradiction with the existence of a periodic point with constant multiplier λ

(日) (日) (日) (日) (日) (日) (日)

Construction of the quadratic renormalization

Use more from Kiwi on the dynamics of \mathfrak{P} over the non-Archimedean field $\mathbb{C}((t))!$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Use more from Kiwi on the dynamics of \mathfrak{P} over the non-Archimedean field $\mathbb{C}((t))!$

- Step 1 implies 0 is pre-periodic whereas c tends to ∞ .
- If 0 is in the Julia set, then all cycles are repelling (Kiwi).

(日) (日) (日) (日) (日) (日) (日)

Use more from Kiwi on the dynamics of \mathfrak{P} over the non-Archimedean field $\mathbb{C}((t))!$

- Step 1 implies 0 is pre-periodic whereas c tends to ∞ .
- If 0 is in the Julia set, then all cycles are repelling (Kiwi).
- Non-wandering theorem of Kiwi-Trucco: 0 belongs to a periodic (closed) ball: 𝔅ⁿ(B) = B.

(ロ) (同) (三) (三) (三) (○) (○)

Use more from Kiwi on the dynamics of \mathfrak{P} over the non-Archimedean field $\mathbb{C}((t))!$

- Step 1 implies 0 is pre-periodic whereas c tends to ∞ .
- If 0 is in the Julia set, then all cycles are repelling (Kiwi).
- Non-wandering theorem of Kiwi-Trucco: 0 belongs to a periodic (closed) ball: 𝔅^m(B) = B.

$$\mathfrak{P}^m(z) = a_0(t) + a_1(t)z + \ldots + a_k(t)z^k$$

 $\mathfrak{P}^m\{|z| \leq 1\} = \{|z| \leq 1\} \text{ implies } a_i(t) \in \mathbb{C}[[t]]$

The renormalization is $a_0(0) + a_1(0)z + \ldots + a_k(0)z^k$.

Dynamics of the quadratic renormalization

- ► The renormalization is a quadratic PCF polynomial *Q*.
- One multiplier of Q is λ : non-repelling orbits pass through \overline{B} (Kiwi)

(ロ) (同) (三) (三) (三) (○) (○)

• All multipliers of Q have $|\cdot|_3 = 1$.

Happy Birthday Sebastian!

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●