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» Motivation : explore the basic geography of the parameter
space of holomorphic mappings on PX(C).

» Goal : prove that for such mappings, the bifurcation locus
(recently introduced by Berteloot, Bianchi and Dupont) has
non-empy interior, and exhibit phenomena responsible for robust
bifurcations in this context.

» This is work in progress and some details still need to be
checked.

» | restrict to kK = 2. Similar results in higher dimensions can be
obtained easily (e.g. by taking products).



Plan

Basic facts on endomorphisms of CP?
Stability and bifurcations in dimension 1

Review on bifurcations in higher dimension and main results

B

Two mechanisms for robust bifurcations :

» Mechanism 1 : robustness from topology
» Mechanism 2 : robustness from fractal geometry

5. Further settings and perpectives



Holomorphic maps on P2

Let f : CP? — CP? holomorphic (no indeterminacy points), and
d = deg(f), which equals deg(f (L)) for a generic line L. From
now on d > 2.

Given homogeneous coordinates [zg : z1 : z2], f expresses as

[Po(20, 21, 22) : P1(20, 21, 22) : P2(20, 21, 22)]

where the P; are homogeneous polynomials of degree d without
common factor. Note f~1(L) = {aPy + bP; + cP3 = 0}
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[Po(20, 21, 22) : P1(20, 21, 22) : P2(20, 21, 22)]

where the P; are homogeneous polynomials of degree d without
common factor. Note f~1(L) = {aPy + bP; + cP3 = 0}

Basic example : regular polynomial mappings on C2.

In particular the space H4 of holomorphic maps on P? is a Zariski

PN _ 3(d+2)!
open set in P with N =357 —1
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Dynamics of holomorphic maps on P?

For generic x, #f~1(x) = d? (Bézout) so the topological degree is
dt = d2.

Theorem (Yomdin, Gromov)
Topological entropy hsop(f) = log dy = 2logd.
Preimages equidistribute towards a canonical invariant measure .

Theorem (Fornaess-Sibony)
There is a unique probability measure jif s.t. for generic x € P?,

1
dz2n Z 5y 7 Hf
fr(y)=x

and puf is invariant and mixing.
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» Denote J* = Supp(ur) and J the Julia set (in the usual sense).
» Typically J* C J.
Trivial example : f(z, w) = (p(z), g(w)) where p and q are

polynomials of degree d. Then

I =m M (Jp) Ny H(Jg) and J =yt (dp) Uy (Jg)

Polynomial maps in C? of the form f(z, w) = (p(z, w), q(z, w))
and such that p;*(0) N q;*(0) = {0}, extend as holomorphic maps
on P2, Then J* is a compact subset in C? while J is unbounded.
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Dynamics of holomorphic maps on P?

The canonical measure pr concentrates a lot of the dynamics of f.

Theorem (Briend-Duval)

> Lur is the unique measure of maximal entropy h,(f) = heop(f);

» periodic points (resp. repelling periodic points) equidistribute
towards uf;

» L is (non-uniformly) repelling : its (complex) Lyapunov
exponents satisfy x1, x2 > % log d

There may exist repelling points outside J* (Hubbard-Papadopol).

Theorem (De Thélin)
If X € P2\ Supp(pr) then heop(f]x) < logd.
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Let (f\)xen is a holomorphic family of rational maps fy : P* — P!
of degree d, where A is a complex manifold.
Theorem (Mafié-Sad-Sullivan, Lyubich)

Let (f\)xen as above, and Q C A be a connected open subset. The
following properties are equivalent :

1. periodic points do not change type (attracting, repelling,
indifferent) in Q;

2. J\ moves continuously for the Hausdorff topology in Q;

3. J\ moves by a conjugating holomorphic motion in €.

Then we say that the family is stable over €2, and from this we get

a decomposition
A = StabUBif.
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Density of stability in dimension 1

Theorem (Mafié-Sad-Sullivan, Lyubich)

For any holomorphic family (fy)aen, the stability locus is dense in A

Proof :
Let A\g € A. Since attracting cycles are locally persistent there
exists a neighborhood U 3 Ag s.t. for f € U, Naw(f) > Nawe(fo).

If A\g € Stab we are done. Otherwise, there exists \; € Ny with
Nate(f1) > Nate(fo)-

If A1 € Stab we are done. Otherwise, repeat the procedure.

Since Ny < 2d — 2 the procedure stops after finitely many steps,
so we ultimately obtain f; belonging to StabNU. ]

Remark : this argument cannot be generalized to higher
dimensions...
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The bifurcation locus

Thus Bif is a closed set with empty interior in A. How large is it ?

Theorem (Shishikura, Tan Lei, McMullen)
Let Q C A be such that Q N Bif # 0, then HD(Bif) = HD(A).

The proof is based on the notion of Misiurewicz bifurcation : i.e.
when a critical point falls into a hyperbolic repeller under iteration.

Two main ideas :

» Construction of hyperbolic repellers of large Hausdorff
dimension from bifurcations of parabolic points.

» At a Misiurewicz bifurcation there is similarity between
dynamical and parameter space.

Also, the Douady-Hubbard theory of polynomial-like mappings
shows that copies of the Mandelbrot set are abundant in Bif
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Stability and bifurcations in higher dimension

There is a nice stability stability theory for J* (which is not
equivalent to structural stability on P?).
Theorem (Berteloot-Bianchi-Dupont)

Let (f\)aen be a holomorphic family of holomorphic mappings of
degree d > 2 on P?, and Q C A be a connected open set. TFAE :

1. J*-repelling cycles do not bifurcate along € ;

2. J* moves holomorphically (in a weak sense) in Q;
3. A= x1(f) + x2(f\) is harmonic on Q;

4. there is no Misiurewicz bifurcation in Q.

This yields a parameter dichotomy A = Stab U Bif.

Note that the definition depends on A : if A C A’ it may happen
that f € Stab |5 but f € Bif |o.



Misiurewicz bifurcations

Definition
A Misiurewicz bifurcation occurs at \g if there exists N 3 )\g, a
holomorphically moving repelling periodic point N > A — ~(\) and
an integer k such that :

1. v(Xo) € f/\’;(Crit(on)) and (o) € J3,

2. for some A € N, v(A) ¢ £(Crit(£,)), i.e. 7(\) does not
persistently belong to the post-critical set.



Misiurewicz bifurcations

Definition
A Misiurewicz bifurcation occurs at \g if there exists N 3 )\g, a
holomorphically moving repelling periodic point N > A — ~(\) and
an integer k such that :

1. v(Xo) € f/\’;(Crit(on)) and (o) € J3,

2. for some A € N, v(A) ¢ £(Crit(£,)), i.e. 7(\) does not
persistently belong to the post-critical set.

Remark : the condition that v(\) € J5 is open in parameter space.
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Misiurewicz bifurcations, encore

Definition
A (generalized) Misiurewicz bifurcation occurs at \g if there exists
a repelling basic set Ey, C J§  and an integer k such that :

1. there exists y(\o) € f)\’;(Crit(fAO)) N Ey,

2. the hyperbolic continuation () of v(Ag) does not
persistently belong to £(Crit(f,))

Lemma
(generalized) Misiurewicz bifurcations are contained (and dense) in

the bifurcation locus.
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Main theorem

Theorem
The interior of Bif is non-empty in Hy for every d > 3.

Basic ideas :

» construct robust Misiurewicz bifurcations, that is robust
proper intersections between the post-critical set and a basic
repeller E C J*.

» start with 1-dimensional mappings

Note : families with open subsets of bifurcations were recently
constructed by Bianchi and Taflin.
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Remark : case of holomorphic automorphisms

Theorem (Buzzard)
Bif is non empty in Autg(C?) for sufficiently large d.

Theorem (Biebler)
Bif is non empty in Autg(C3) for d > 5.

Remark : one can embed the dynamics of a complex Hénon map
into a holomorphic map of P?

(z,w) = (aw + p(2), az + ew)

This cannot be used to produce robust bifurcations in H4 because
the maximal measure is disjoint from the Hénon-like dynamics.
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Note that from the 1D theory f ¢ Bif.

Theorem

Suppose that p has the property that there exists a critical point ¢
and k > 1 s.t. p¥(c) € E, where E is a basic repeller for p which
disconnects the plane (and p/(c) ¢ Crit(p) for 0 < j < k)

Then f is accumulated by robustly bifurcating parameters in Hy.

Note : the assumption requires d > 3.
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Robust bifurcations from topology

Typical situation : Assume d = 3 (2 critical points), ¢; belongs to
an attracting basin A such that A is a hyperbolic Jordan curve,
and p is not stable so ¢, bifurcates.

Taking a small perturbation of p the assumption of the theorem is
satisfied with E = 0A.

Then there exists ¢; — 0 such that

(p(z) + ¢j(w — 1), w9) € Bif.
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Let f(z,w) = (p(z), w? + k). Assume there exists ¢ € Crit(p)
such that p(c) is a repelling fixed point with

1 <|p'(p(c))| < 1.01

Then if s is large enough, f is accumulated by robust bifurcations :
f € Bif.



Robust bifurcations from fractal geometry

Theorem
Let f(z,w) = (p(z), w? + k). Assume there exists ¢ € Crit(p)
such that p(c) is a repelling fixed point with

1 <|p'(p(c))| < 1.01
Then if s is large enough, f is accumulated by robust bifurcations :
f € Bif.
The mechanism underlying the proof is based on the idea of
blenders (Bonatti-Diaz, etc.).

Note : again the assumption requires d > 3.
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Perspectives

The previous construction is reminiscent from :

Theorem (Shishikura)

Let f : P! — P! and assume f € Bif. Then there exists fi—f
such that
hyp-dim(f;) — 2.

Question : Assume f(z, w) = (p(z), g(w)) € Bif. Does there exist
Hq > fj — f possessing (repelling) blenders? Does f € Bif ?

More generally : assume f € Bif and hyp-dim(f) > 2. Does
f € Bif ?



Perspectives

Special case : recall that a Lattés map is an endomorphism
semiconjugate to a multiplication on a complex torus.

T2 =25 T2
2 2
P? ——>P

In particular it admits basic repellers of dimension > (4 — ¢) for
every € > 0.

Question : Let f : P? — P? be a Latteés map. Does f € ﬁ?



Thanks!



