Non-density of stability for holomorphic endomorphisms of \mathbb{CP}^k

Romain Dujardin

Université Paris-Est Marne la Vallée

Parameters problems in analytic dynamics, London, June 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

► Goal : prove that for such mappings, the bifurcation locus (recently introduced by Berteloot, Bianchi and Dupont) has non-empy interior, and exhibit phenomena responsible for robust bifurcations in this context.

► Goal : prove that for such mappings, the bifurcation locus (recently introduced by Berteloot, Bianchi and Dupont) has non-empy interior, and exhibit phenomena responsible for robust bifurcations in this context.

► This is work in progress and some details still need to be checked.

► Goal : prove that for such mappings, the bifurcation locus (recently introduced by Berteloot, Bianchi and Dupont) has non-empy interior, and exhibit phenomena responsible for robust bifurcations in this context.

► This is work in progress and some details still need to be checked.

▶ I restrict to k = 2. Similar results in higher dimensions can be obtained easily (e.g. by taking products).

- 1. Basic facts on endomorphisms of \mathbb{CP}^2
- 2. Stability and bifurcations in dimension 1
- 3. Review on bifurcations in higher dimension and main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 4. Two mechanisms for robust bifurcations :
 - Mechanism 1 : robustness from topology
 - Mechanism 2 : robustness from fractal geometry
- 5. Further settings and perpectives

Holomorphic maps on \mathbb{P}^2

Let $f : \mathbb{CP}^2 \to \mathbb{CP}^2$ holomorphic (no indeterminacy points), and $d = \deg(f)$, which equals $\deg(f^{-1}(L))$ for a generic line *L*. From now on $d \ge 2$.

Given homogeneous coordinates $[z_0 : z_1 : z_2]$, f expresses as

$$[P_0(z_0, z_1, z_2) : P_1(z_0, z_1, z_2) : P_2(z_0, z_1, z_2)]$$

where the P_i are homogeneous polynomials of degree d without common factor. Note $f^{-1}(L) = \{aP_1 + bP_2 + cP_3 = 0\}$ Basic example : regular polynomial mappings on \mathbb{C}^2 .

Holomorphic maps on \mathbb{P}^2

Let $f : \mathbb{CP}^2 \to \mathbb{CP}^2$ holomorphic (no indeterminacy points), and $d = \deg(f)$, which equals $\deg(f^{-1}(L))$ for a generic line *L*. From now on $d \ge 2$.

Given homogeneous coordinates $[z_0 : z_1 : z_2]$, f expresses as

$$[P_0(z_0, z_1, z_2) : P_1(z_0, z_1, z_2) : P_2(z_0, z_1, z_2)]$$

where the P_i are homogeneous polynomials of degree d without common factor. Note $f^{-1}(L) = \{aP_1 + bP_2 + cP_3 = 0\}$ Basic example : regular polynomial mappings on \mathbb{C}^2 .

In particular the space \mathcal{H}_d of holomorphic maps on \mathbb{P}^2 is a Zariski open set in \mathbb{P}^N with $N = 3\frac{(d+2)!}{2d!} - 1$

For generic x, $\#f^{-1}(x) = d^2$ (Bézout) so the topological degree is $d_t = d^2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Yomdin, Gromov)

Topological entropy $h_{top}(f) = \log d_t = 2 \log d$.

For generic x, $\#f^{-1}(x) = d^2$ (Bézout) so the topological degree is $d_t = d^2$.

Theorem (Yomdin, Gromov)

Topological entropy $h_{top}(f) = \log d_t = 2 \log d$.

Preimages equidistribute towards a canonical invariant measure μ_f . Theorem (Fornæss-Sibony)

There is a unique probability measure μ_f s.t. for generic $x \in \mathbb{P}^2$,

$$\frac{1}{d^{2n}}\sum_{f^n(y)=x}\delta_y\to\mu_f.$$

and μ_f is invariant and mixing.

▶ Denote $J^* = \text{Supp}(\mu_f)$ and J the Julia set (in the usual sense).

► Typically
$$J^* \subsetneq J$$
.

Trivial example : f(z, w) = (p(z), q(w)) where p and q are polynomials of degree d. Then

$$J^* = \pi_1^{-1}(J_
ho) \cap \pi_2^{-1}(J_q)$$
 and $J = \pi_1^{-1}(J_
ho) \cup \pi_2^{-1}(J_q)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Denote
$$J^* = \text{Supp}(\mu_f)$$
 and J the Julia set (in the usual sense).

► Typically
$$J^* \subsetneq J$$
.

Trivial example : f(z, w) = (p(z), q(w)) where p and q are polynomials of degree d. Then

$$J^* = \pi_1^{-1}(J_{
ho}) \cap \pi_2^{-1}(J_q)$$
 and $J = \pi_1^{-1}(J_{
ho}) \cup \pi_2^{-1}(J_q)$

Polynomial maps in \mathbb{C}^2 of the form f(z, w) = (p(z, w), q(z, w))and such that $p_d^{-1}(0) \cap q_d^{-1}(0) = \{0\}$, extend as holomorphic maps on \mathbb{P}^2 . Then J^* is a compact subset in \mathbb{C}^2 while J is unbounded.

The canonical measure μ_f concentrates a lot of the dynamics of f. Theorem (Briend-Duval)

- μ_f is the unique measure of maximal entropy $h_{\mu}(f) = h_{top}(f)$;
- periodic points (resp. repelling periodic points) equidistribute towards µ_f;

 µ_f is (non-uniformly) repelling : its (complex) Lyapunov exponents satisfy χ₁, χ₂ ≥ ¹/₂ log d

The canonical measure μ_f concentrates a lot of the dynamics of f. Theorem (Briend-Duval)

- μ_f is the unique measure of maximal entropy $h_{\mu}(f) = h_{top}(f)$;
- periodic points (resp. repelling periodic points) equidistribute towards µ_f;
- µ_f is (non-uniformly) repelling : its (complex) Lyapunov exponents satisfy χ₁, χ₂ ≥ ¹/₂ log d

There may exist repelling points outside J^* (Hubbard-Papadopol).

The canonical measure μ_f concentrates a lot of the dynamics of f. Theorem (Briend-Duval)

- μ_f is the unique measure of maximal entropy $h_{\mu}(f) = h_{top}(f)$;
- periodic points (resp. repelling periodic points) equidistribute towards µ_f;
- µ_f is (non-uniformly) repelling : its (complex) Lyapunov exponents satisfy χ₁, χ₂ ≥ ¹/₂ log d

There may exist repelling points outside J^* (Hubbard-Papadopol).

```
Theorem (De Thélin)
If X \Subset \mathbb{P}^2 \setminus \text{Supp}(\mu_f) then h_{top}(f|_X) \le \log d.
```

Let $(f_{\lambda})_{\lambda \in \Lambda}$ is a holomorphic family of rational maps $f_{\lambda} : \mathbb{P}^1 \to \mathbb{P}^1$ of degree d, where Λ is a complex manifold.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Stability and bifurcations in dimension $\ensuremath{\mathbf{1}}$

Let $(f_{\lambda})_{\lambda \in \Lambda}$ is a holomorphic family of rational maps $f_{\lambda} : \mathbb{P}^1 \to \mathbb{P}^1$ of degree d, where Λ is a complex manifold.

Theorem (Mañé-Sad-Sullivan, Lyubich)

Let $(f_{\lambda})_{\lambda \in \Lambda}$ as above, and $\Omega \subset \Lambda$ be a connected open subset. The following properties are equivalent :

- 1. periodic points do not change type (attracting, repelling, indifferent) in $\Omega\,;$
- 2. J_{λ} moves continuously for the Hausdorff topology in Ω ;
- 3. J_{λ} moves by a conjugating holomorphic motion in Ω .

Let $(f_{\lambda})_{\lambda \in \Lambda}$ is a holomorphic family of rational maps $f_{\lambda} : \mathbb{P}^1 \to \mathbb{P}^1$ of degree d, where Λ is a complex manifold.

Theorem (Mañé-Sad-Sullivan, Lyubich)

Let $(f_{\lambda})_{\lambda \in \Lambda}$ as above, and $\Omega \subset \Lambda$ be a connected open subset. The following properties are equivalent :

- 1. periodic points do not change type (attracting, repelling, indifferent) in $\Omega\,;$
- 2. J_λ moves continuously for the Hausdorff topology in Ω ;
- 3. J_{λ} moves by a conjugating holomorphic motion in Ω .

Then we say that the family is stable over $\boldsymbol{\Omega},$ and from this we get a decomposition

$$\Lambda = \mathsf{Stab} \cup \mathsf{Bif} \ .$$

Density of stability in dimension 1

Theorem (Mañé-Sad-Sullivan, Lyubich)

For any holomorphic family $(f_{\lambda})_{\lambda \in \Lambda}$, the stability locus is dense in Λ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Density of stability in dimension 1

Theorem (Mañé-Sad-Sullivan, Lyubich)

For any holomorphic family $(f_{\lambda})_{\lambda \in \Lambda}$, the stability locus is dense in Λ

Proof :

Let $\lambda_0 \in \Lambda$. Since attracting cycles are locally persistent there exists a neighborhood $U \ni \lambda_0$ s.t. for $f \in U$, $N_{att}(f) \ge N_{att}(f_0)$.

For any holomorphic family $(f_{\lambda})_{\lambda \in \Lambda}$, the stability locus is dense in Λ

Proof :

Let $\lambda_0 \in \Lambda$. Since attracting cycles are locally persistent there exists a neighborhood $U \ni \lambda_0$ s.t. for $f \in U$, $N_{att}(f) \ge N_{att}(f_0)$. If $\lambda_0 \in$ Stab we are done. Otherwise, there exists $\lambda_1 \in N_0$ with $N_{att}(f_1) > N_{att}(f_0)$.

For any holomorphic family $(f_{\lambda})_{\lambda \in \Lambda}$, the stability locus is dense in Λ

Proof :

Let $\lambda_0 \in \Lambda$. Since attracting cycles are locally persistent there exists a neighborhood $U \ni \lambda_0$ s.t. for $f \in U$, $N_{att}(f) \ge N_{att}(f_0)$. If $\lambda_0 \in$ Stab we are done. Otherwise, there exists $\lambda_1 \in N_0$ with $N_{att}(f_1) > N_{att}(f_0)$.

If $\lambda_1 \in \mathsf{Stab}$ we are done. Otherwise, repeat the procedure.

For any holomorphic family $(f_{\lambda})_{\lambda \in \Lambda}$, the stability locus is dense in Λ

Proof :

Let $\lambda_0 \in \Lambda$. Since attracting cycles are locally persistent there exists a neighborhood $U \ni \lambda_0$ s.t. for $f \in U$, $N_{att}(f) \ge N_{att}(f_0)$.

If $\lambda_0 \in$ Stab we are done. Otherwise, there exists $\lambda_1 \in N_0$ with $N_{att}(f_1) > N_{att}(f_0)$.

If $\lambda_1 \in \mathsf{Stab}$ we are done. Otherwise, repeat the procedure.

Since $N_{att} \leq 2d - 2$ the procedure stops after finitely many steps, so we ultimately obtain f_k belonging to Stab $\cap U$.

For any holomorphic family $(f_{\lambda})_{\lambda \in \Lambda}$, the stability locus is dense in Λ

Proof :

Let $\lambda_0 \in \Lambda$. Since attracting cycles are locally persistent there exists a neighborhood $U \ni \lambda_0$ s.t. for $f \in U$, $N_{att}(f) \ge N_{att}(f_0)$.

If $\lambda_0 \in$ Stab we are done. Otherwise, there exists $\lambda_1 \in N_0$ with $N_{att}(f_1) > N_{att}(f_0)$.

If $\lambda_1 \in \mathsf{Stab}$ we are done. Otherwise, repeat the procedure.

Since $N_{att} \leq 2d - 2$ the procedure stops after finitely many steps, so we ultimately obtain f_k belonging to Stab $\cap U$.

Remark : this argument cannot be generalized to higher dimensions...

Thus Bif is a closed set with empty interior in Λ . How large is it?

Thus Bif is a closed set with empty interior in Λ . How large is it?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Shishikura, Tan Lei, McMullen) Let $\Omega \subset \Lambda$ be such that $\Omega \cap Bif \neq \emptyset$, then $HD(Bif) = HD(\Lambda)$.

Thus Bif is a closed set with empty interior in Λ . How large is it?

Theorem (Shishikura, Tan Lei, McMullen) Let $\Omega \subset \Lambda$ be such that $\Omega \cap Bif \neq \emptyset$, then $HD(Bif) = HD(\Lambda)$.

The proof is based on the notion of Misiurewicz bifurcation : i.e. when a critical point falls into a hyperbolic repeller under iteration.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus Bif is a closed set with empty interior in Λ . How large is it?

Theorem (Shishikura, Tan Lei, McMullen) Let $\Omega \subset \Lambda$ be such that $\Omega \cap Bif \neq \emptyset$, then $HD(Bif) = HD(\Lambda)$.

The proof is based on the notion of Misiurewicz bifurcation : i.e. when a critical point falls into a hyperbolic repeller under iteration.

Two main ideas :

- Construction of hyperbolic repellers of large Hausdorff dimension from bifurcations of parabolic points.
- At a Misiurewicz bifurcation there is similarity between dynamical and parameter space.

Also, the Douady-Hubbard theory of polynomial-like mappings shows that copies of the Mandelbrot set are abundant in Bif

There is a nice stability stability theory for J^* (which is not equivalent to structural stability on \mathbb{P}^2).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There is a nice stability stability theory for J^* (which is not equivalent to structural stability on \mathbb{P}^2).

Theorem (Berteloot-Bianchi-Dupont)

Let $(f_{\lambda})_{\lambda \in \Lambda}$ be a holomorphic family of holomorphic mappings of degree $d \geq 2$ on \mathbb{P}^2 , and $\Omega \subset \Lambda$ be a connected open set. TFAE :

- 1. J^* -repelling cycles do not bifurcate along Ω ;
- 2. J^* moves holomorphically (in a weak sense) in Ω ;
- 3. $\lambda \mapsto \chi_1(f_\lambda) + \chi_2(f_\lambda)$ is harmonic on Ω ;
- 4. there is no Misiurewicz bifurcation in $\boldsymbol{\Omega}.$

There is a nice stability stability theory for J^* (which is not equivalent to structural stability on \mathbb{P}^2).

Theorem (Berteloot-Bianchi-Dupont)

Let $(f_{\lambda})_{\lambda \in \Lambda}$ be a holomorphic family of holomorphic mappings of degree $d \geq 2$ on \mathbb{P}^2 , and $\Omega \subset \Lambda$ be a connected open set. TFAE :

- 1. J^* -repelling cycles do not bifurcate along Ω ;
- 2. J^* moves holomorphically (in a weak sense) in Ω ;
- 3. $\lambda \mapsto \chi_1(f_\lambda) + \chi_2(f_\lambda)$ is harmonic on Ω ;
- 4. there is no Misiurewicz bifurcation in Ω .

This yields a parameter dichotomy $\Lambda = \text{Stab} \cup \text{Bif.}$

There is a nice stability stability theory for J^* (which is not equivalent to structural stability on \mathbb{P}^2).

Theorem (Berteloot-Bianchi-Dupont)

Let $(f_{\lambda})_{\lambda \in \Lambda}$ be a holomorphic family of holomorphic mappings of degree $d \geq 2$ on \mathbb{P}^2 , and $\Omega \subset \Lambda$ be a connected open set. TFAE :

- 1. J^* -repelling cycles do not bifurcate along Ω ;
- 2. J^* moves holomorphically (in a weak sense) in Ω ;
- 3. $\lambda \mapsto \chi_1(f_\lambda) + \chi_2(f_\lambda)$ is harmonic on Ω ;
- 4. there is no Misiurewicz bifurcation in Ω .

This yields a parameter dichotomy $\Lambda = \text{Stab} \cup \text{Bif}$.

Note that the definition depends on Λ : if $\Lambda \subset \Lambda'$ it may happen that $f \in \text{Stab}|_{\Lambda}$ but $f \in \text{Bif}|_{\Lambda'}$.

A Misiurewicz bifurcation occurs at λ_0 if there exists $N \ni \lambda_0$, a holomorphically moving repelling periodic point $N \ni \lambda \mapsto \gamma(\lambda)$ and an integer k such that :

- 1. $\gamma(\lambda_0) \in f_{\lambda_0}^k(\operatorname{Crit}(f_{\lambda_0}))$ and $\gamma(\lambda_0) \in J_{\lambda_0}^*$
- 2. for some $\lambda \in N$, $\gamma(\lambda) \notin f_{\lambda}^{k}(\operatorname{Crit}(f_{\lambda}))$, i.e. $\gamma(\lambda)$ does not persistently belong to the post-critical set.

A Misiurewicz bifurcation occurs at λ_0 if there exists $N \ni \lambda_0$, a holomorphically moving repelling periodic point $N \ni \lambda \mapsto \gamma(\lambda)$ and an integer k such that :

- 1. $\gamma(\lambda_0) \in f_{\lambda_0}^k(\operatorname{Crit}(f_{\lambda_0}))$ and $\gamma(\lambda_0) \in J_{\lambda_0}^*$
- 2. for some $\lambda \in N$, $\gamma(\lambda) \notin f_{\lambda}^{k}(\operatorname{Crit}(f_{\lambda}))$, i.e. $\gamma(\lambda)$ does not persistently belong to the post-critical set.

Remark : the condition that $\gamma(\lambda) \in J_{\lambda}^*$ is open in parameter space.

A (generalized) Misiurewicz bifurcation occurs at λ_0 if there exists a repelling basic set $E_{\lambda_0} \subset J^*_{\lambda_0}$ and an integer k such that :

- 1. there exists $\gamma(\lambda_0) \in f_{\lambda_0}^k(\operatorname{Crit}(f_{\lambda_0})) \cap E_{\lambda_0}$
- 2. the hyperbolic continuation $\gamma(\lambda)$ of $\gamma(\lambda_0)$ does not persistently belong to $f_{\lambda}^k(\operatorname{Crit}(f_{\lambda}))$

A (generalized) Misiurewicz bifurcation occurs at λ_0 if there exists a repelling basic set $E_{\lambda_0} \subset J^*_{\lambda_0}$ and an integer k such that :

- 1. there exists $\gamma(\lambda_0) \in f_{\lambda_0}^k(\operatorname{Crit}(f_{\lambda_0})) \cap E_{\lambda_0}$
- 2. the hyperbolic continuation $\gamma(\lambda)$ of $\gamma(\lambda_0)$ does not persistently belong to $f_{\lambda}^k(\operatorname{Crit}(f_{\lambda}))$

Lemma

(generalized) Misiurewicz bifurcations are contained (and dense) in the bifurcation locus.

The interior of Bif is non-empty in \mathcal{H}_d for every $d \geq 3$.

The interior of Bif is non-empty in \mathcal{H}_d for every $d \geq 3$.

Basic ideas :

Construct robust Misiurewicz bifurcations, that is robust proper intersections between the post-critical set and a basic repeller E ⊂ J*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The interior of Bif is non-empty in \mathcal{H}_d for every $d \geq 3$.

Basic ideas :

Construct robust Misiurewicz bifurcations, that is robust proper intersections between the post-critical set and a basic repeller E ⊂ J*.

start with 1-dimensional mappings

The interior of Bif is non-empty in \mathcal{H}_d for every $d \geq 3$.

Basic ideas :

Construct robust Misiurewicz bifurcations, that is robust proper intersections between the post-critical set and a basic repeller E ⊂ J*.

start with 1-dimensional mappings

The interior of Bif is non-empty in \mathcal{H}_d for every $d \geq 3$.

Basic ideas :

- Construct robust Misiurewicz bifurcations, that is robust proper intersections between the post-critical set and a basic repeller E ⊂ J*.
- start with 1-dimensional mappings

Note : families with open subsets of bifurcations were recently constructed by Bianchi and Taflin.

```
Theorem (Buzzard)
```

Bif is non empty in $\operatorname{Aut}_d(\mathbb{C}^2)$ for sufficiently large d.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Biebler)

Bif is non empty in $\operatorname{Aut}_d(\mathbb{C}^3)$ for $d \ge 5$.

```
Theorem (Buzzard)
```

Bif is non empty in $Aut_d(\mathbb{C}^2)$ for sufficiently large d.

```
Theorem (Biebler)
Bif is non empty in \operatorname{Aut}_d(\mathbb{C}^3) for d \ge 5.
```

Remark : one can embed the dynamics of a complex Hénon map into a holomorphic map of \mathbb{P}^2

$$(z,w)\mapsto (aw+p(z),az+\varepsilon w^d)$$

This cannot be used to produce robust bifurcations in \mathcal{H}_d because the maximal measure is disjoint from the Hénon-like dynamics.

Robust bifurcations from topology

Start with a "one-dimensional" mapping of the form

$$f_0(z,w)=(p(z),w^d).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Note that from the 1D theory $f \notin Bif$.

Start with a "one-dimensional" mapping of the form

$$f_0(z,w)=(p(z),w^d).$$

Note that from the 1D theory $f \notin Bif$.

Theorem

Suppose that p has the property that there exists a critical point c and $k \ge 1$ s.t. $p^k(c) \in E$, where E is a basic repeller for p which disconnects the plane (and $p^j(c) \notin \operatorname{Crit}(p)$ for 0 < j < k)

Then f is accumulated by robustly bifurcating parameters in \mathcal{H}_d .

Start with a "one-dimensional" mapping of the form

$$f_0(z,w)=(p(z),w^d).$$

Note that from the 1D theory $f \notin Bif$.

Theorem

Suppose that p has the property that there exists a critical point c and $k \ge 1$ s.t. $p^k(c) \in E$, where E is a basic repeller for p which disconnects the plane (and $p^j(c) \notin \operatorname{Crit}(p)$ for 0 < j < k)

Then f is accumulated by robustly bifurcating parameters in \mathcal{H}_d .

Note : the assumption requires $d \ge 3$.

Typical situation : Assume d = 3 (2 critical points), c_1 belongs to an attracting basin A such that ∂A is a hyperbolic Jordan curve, and p is not stable so c_2 bifurcates.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Typical situation : Assume d = 3 (2 critical points), c_1 belongs to an attracting basin A such that ∂A is a hyperbolic Jordan curve, and p is not stable so c_2 bifurcates.

Taking a small perturbation of *p* the assumption of the theorem is satisfied with $E = \partial A$.

Typical situation : Assume d = 3 (2 critical points), c_1 belongs to an attracting basin A such that ∂A is a hyperbolic Jordan curve, and p is not stable so c_2 bifurcates.

Taking a small perturbation of *p* the assumption of the theorem is satisfied with $E = \partial A$.

Then there exists $\varepsilon_j \rightarrow 0$ such that

$$(p(z) + \varepsilon_j(w-1), w^d) \in \mathring{\mathsf{Bif}}.$$

Robust bifurcations from fractal geometry

Let $f(z, w) = (p(z), w^d + \kappa)$. Assume there exists $c \in Crit(p)$ such that p(c) is a repelling fixed point with

 $1 < \big|p'(p(c))\big| < 1.01$

Then if κ is large enough, f is accumulated by robust bifurcations : $f \in \overline{Bif}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $f(z, w) = (p(z), w^d + \kappa)$. Assume there exists $c \in Crit(p)$ such that p(c) is a repelling fixed point with

1 < |p'(p(c))| < 1.01

Then if κ is large enough, f is accumulated by robust bifurcations : $f \in \overline{Bif}$.

The mechanism underlying the proof is based on the idea of blenders (Bonatti-Diaz, etc.).

Note : again the assumption requires $d \ge 3$.

The previous construction is reminiscent from :

```
Theorem (Shishikura)
```

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ and assume $f \in \mathsf{Bif}$. Then there exists $f_j \to f$ such that

hyp-dim $(f_j) \rightarrow 2$.

The previous construction is reminiscent from :

Theorem (Shishikura)

Let $f: \mathbb{P}^1 \to \mathbb{P}^1$ and assume $f \in \mathsf{Bif}$. Then there exists $f_j \to f$ such that

hyp-dim
$$(f_j) \rightarrow 2$$
.

Question : Assume $f(z, w) = (p(z), q(w)) \in Bif$. Does there exist $\mathcal{H}_d \ni f_j \to f$ possessing (repelling) blenders? Does $f \in \overline{Bif}$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The previous construction is reminiscent from :

Theorem (Shishikura)

Let $f: \mathbb{P}^1 \to \mathbb{P}^1$ and assume $f \in \mathsf{Bif}$. Then there exists $f_j \to f$ such that

hyp-dim
$$(f_j) \rightarrow 2$$
.

Question : Assume $f(z, w) = (p(z), q(w)) \in Bif.$ Does there exist $\mathcal{H}_d \ni f_j \to f$ possessing (repelling) blenders? Does $f \in \overline{Bif}$? More generally : assume $f \in Bif$ and hyp-dim(f) > 2. Does $f \in \overline{Bif}$?

Special case : recall that a Lattès map is an endomorphism semiconjugate to a multiplication on a complex torus.

In particular it admits basic repellers of dimension $\geq (4 - \varepsilon)$ for every $\varepsilon > 0$.

Question : Let $f : \mathbb{P}^2 \to \mathbb{P}^2$ be a Lattès map. Does $f \in \overline{Bif}$?

Thanks!