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Université Paris-Est Marne la Vallée

Parameters problems in analytic dynamics, London, June 2016



Foreword

I Motivation : explore the basic geography of the parameter
space of holomorphic mappings on Pk(C).

I Goal : prove that for such mappings, the bifurcation locus
(recently introduced by Berteloot, Bianchi and Dupont) has
non-empy interior, and exhibit phenomena responsible for robust
bifurcations in this context.

I This is work in progress and some details still need to be
checked.

I I restrict to k = 2. Similar results in higher dimensions can be
obtained easily (e.g. by taking products).
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Plan

1. Basic facts on endomorphisms of CP2

2. Stability and bifurcations in dimension 1

3. Review on bifurcations in higher dimension and main results

4. Two mechanisms for robust bifurcations :
I Mechanism 1 : robustness from topology
I Mechanism 2 : robustness from fractal geometry

5. Further settings and perpectives



Holomorphic maps on P2

Let f : CP2 → CP2 holomorphic (no indeterminacy points), and
d = deg(f ), which equals deg(f −1(L)) for a generic line L. From
now on d ≥ 2.

Given homogeneous coordinates [z0 : z1 : z2], f expresses as

[P0(z0, z1, z2) : P1(z0, z1, z2) : P2(z0, z1, z2)]

where the Pi are homogeneous polynomials of degree d without
common factor. Note f −1(L) = {aP1 + bP2 + cP3 = 0}
Basic example : regular polynomial mappings on C2.

In particular the space Hd of holomorphic maps on P2 is a Zariski
open set in PN with N = 3 (d+2)!

2d! − 1
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Dynamics of holomorphic maps on P2

For generic x , #f −1(x) = d2 (Bézout) so the topological degree is
dt = d2.

Theorem (Yomdin, Gromov)

Topological entropy htop(f ) = log dt = 2 log d .

Preimages equidistribute towards a canonical invariant measure µf .

Theorem (Fornæss-Sibony)

There is a unique probability measure µf s.t. for generic x ∈ P2,

1

d2n

∑
f n(y)=x

δy → µf .

and µf is invariant and mixing.
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Dynamics of holomorphic maps on P2

I Denote J∗ = Supp(µf ) and J the Julia set (in the usual sense).

I Typically J∗ ( J.

Trivial example : f (z ,w) = (p(z), q(w)) where p and q are
polynomials of degree d . Then

J∗ = π−1
1 (Jp) ∩ π−1

2 (Jq) and J = π−1
1 (Jp) ∪ π−1

2 (Jq)

Polynomial maps in C2 of the form f (z ,w) = (p(z ,w), q(z ,w))
and such that p−1

d (0)∩ q−1
d (0) = {0}, extend as holomorphic maps

on P2. Then J∗ is a compact subset in C2 while J is unbounded.
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Dynamics of holomorphic maps on P2

The canonical measure µf concentrates a lot of the dynamics of f .

Theorem (Briend-Duval)

I µf is the unique measure of maximal entropy hµ(f ) = htop(f ) ;

I periodic points (resp. repelling periodic points) equidistribute
towards µf ;

I µf is (non-uniformly) repelling : its (complex) Lyapunov
exponents satisfy χ1, χ2 ≥ 1

2 log d

There may exist repelling points outside J∗ (Hubbard-Papadopol).

Theorem (De Thélin)

If X b P2 \ Supp(µf ) then htop(f |X ) ≤ log d .
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Stability and bifurcations in dimension 1

Let (fλ)λ∈Λ is a holomorphic family of rational maps fλ : P1 → P1

of degree d , where Λ is a complex manifold.

Theorem (Mañé-Sad-Sullivan, Lyubich)

Let (fλ)λ∈Λ as above, and Ω ⊂ Λ be a connected open subset. The
following properties are equivalent :

1. periodic points do not change type (attracting, repelling,
indifferent) in Ω ;

2. Jλ moves continuously for the Hausdorff topology in Ω ;

3. Jλ moves by a conjugating holomorphic motion in Ω.

Then we say that the family is stable over Ω, and from this we get
a decomposition

Λ = Stab∪Bif .
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Density of stability in dimension 1

Theorem (Mañé-Sad-Sullivan, Lyubich)

For any holomorphic family (fλ)λ∈Λ, the stability locus is dense in Λ

Proof :
Let λ0 ∈ Λ. Since attracting cycles are locally persistent there
exists a neighborhood U 3 λ0 s.t. for f ∈ U, Natt(f ) ≥ Natt(f0).

If λ0 ∈ Stab we are done. Otherwise, there exists λ1 ∈ N0 with
Natt(f1) > Natt(f0).

If λ1 ∈ Stab we are done. Otherwise, repeat the procedure.

Since Natt ≤ 2d − 2 the procedure stops after finitely many steps,
so we ultimately obtain fk belonging to Stab∩U.

Remark : this argument cannot be generalized to higher
dimensions...
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The bifurcation locus

Thus Bif is a closed set with empty interior in Λ. How large is it ?

Theorem (Shishikura, Tan Lei, McMullen)

Let Ω ⊂ Λ be such that Ω ∩ Bif 6= ∅, then HD(Bif) = HD(Λ).

The proof is based on the notion of Misiurewicz bifurcation : i.e.
when a critical point falls into a hyperbolic repeller under iteration.

Two main ideas :

I Construction of hyperbolic repellers of large Hausdorff
dimension from bifurcations of parabolic points.

I At a Misiurewicz bifurcation there is similarity between
dynamical and parameter space.

Also, the Douady-Hubbard theory of polynomial-like mappings
shows that copies of the Mandelbrot set are abundant in Bif
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Stability and bifurcations in higher dimension

There is a nice stability stability theory for J∗ (which is not
equivalent to structural stability on P2).

Theorem (Berteloot-Bianchi-Dupont)

Let (fλ)λ∈Λ be a holomorphic family of holomorphic mappings of
degree d ≥ 2 on P2, and Ω ⊂ Λ be a connected open set. TFAE :

1. J∗-repelling cycles do not bifurcate along Ω ;

2. J∗ moves holomorphically (in a weak sense) in Ω ;

3. λ 7→ χ1(fλ) + χ2(fλ) is harmonic on Ω ;

4. there is no Misiurewicz bifurcation in Ω.

This yields a parameter dichotomy Λ = Stab∪Bif.

Note that the definition depends on Λ : if Λ ⊂ Λ′ it may happen
that f ∈ Stab |Λ but f ∈ Bif |Λ′ .
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Misiurewicz bifurcations

Definition
A Misiurewicz bifurcation occurs at λ0 if there exists N 3 λ0, a
holomorphically moving repelling periodic point N 3 λ 7→ γ(λ) and
an integer k such that :

1. γ(λ0) ∈ f kλ0
(Crit(fλ0)) and γ(λ0) ∈ J∗λ0

2. for some λ ∈ N, γ(λ) /∈ f kλ (Crit(fλ)), i.e. γ(λ) does not
persistently belong to the post-critical set.

Remark : the condition that γ(λ) ∈ J∗λ is open in parameter space.
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Misiurewicz bifurcations, encore

Definition
A (generalized) Misiurewicz bifurcation occurs at λ0 if there exists
a repelling basic set Eλ0 ⊂ J∗λ0

and an integer k such that :

1. there exists γ(λ0) ∈ f kλ0
(Crit(fλ0)) ∩ Eλ0

2. the hyperbolic continuation γ(λ) of γ(λ0) does not
persistently belong to f kλ (Crit(fλ))

Lemma
(generalized) Misiurewicz bifurcations are contained (and dense) in
the bifurcation locus.
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Main theorem

Theorem
The interior of Bif is non-empty in Hd for every d ≥ 3.

Basic ideas :

I construct robust Misiurewicz bifurcations, that is robust
proper intersections between the post-critical set and a basic
repeller E ⊂ J∗.

I start with 1-dimensional mappings

Note : families with open subsets of bifurcations were recently
constructed by Bianchi and Taflin.



Main theorem

Theorem
The interior of Bif is non-empty in Hd for every d ≥ 3.

Basic ideas :

I construct robust Misiurewicz bifurcations, that is robust
proper intersections between the post-critical set and a basic
repeller E ⊂ J∗.

I start with 1-dimensional mappings

Note : families with open subsets of bifurcations were recently
constructed by Bianchi and Taflin.



Main theorem

Theorem
The interior of Bif is non-empty in Hd for every d ≥ 3.

Basic ideas :

I construct robust Misiurewicz bifurcations, that is robust
proper intersections between the post-critical set and a basic
repeller E ⊂ J∗.

I start with 1-dimensional mappings

Note : families with open subsets of bifurcations were recently
constructed by Bianchi and Taflin.



Main theorem

Theorem
The interior of Bif is non-empty in Hd for every d ≥ 3.

Basic ideas :

I construct robust Misiurewicz bifurcations, that is robust
proper intersections between the post-critical set and a basic
repeller E ⊂ J∗.

I start with 1-dimensional mappings

Note : families with open subsets of bifurcations were recently
constructed by Bianchi and Taflin.



Main theorem

Theorem
The interior of Bif is non-empty in Hd for every d ≥ 3.

Basic ideas :

I construct robust Misiurewicz bifurcations, that is robust
proper intersections between the post-critical set and a basic
repeller E ⊂ J∗.

I start with 1-dimensional mappings

Note : families with open subsets of bifurcations were recently
constructed by Bianchi and Taflin.



Remark : case of holomorphic automorphisms

Theorem (Buzzard)

B̊if is non empty in Autd(C2) for sufficiently large d .

Theorem (Biebler)

B̊if is non empty in Autd(C3) for d ≥ 5.

Remark : one can embed the dynamics of a complex Hénon map
into a holomorphic map of P2

(z ,w) 7→ (aw + p(z), az + εwd)

This cannot be used to produce robust bifurcations in Hd because
the maximal measure is disjoint from the Hénon-like dynamics.
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Robust bifurcations from topology

Start with a “one-dimensional” mapping of the form

f0(z ,w) = (p(z),wd).

Note that from the 1D theory f /∈ B̊if.

Theorem
Suppose that p has the property that there exists a critical point c
and k ≥ 1 s.t. pk(c) ∈ E , where E is a basic repeller for p which
disconnects the plane (and pj(c) /∈ Crit(p) for 0 < j < k)

Then f is accumulated by robustly bifurcating parameters in Hd .

Note : the assumption requires d ≥ 3.
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Robust bifurcations from topology

Typical situation : Assume d = 3 (2 critical points), c1 belongs to
an attracting basin A such that ∂A is a hyperbolic Jordan curve,
and p is not stable so c2 bifurcates.

Taking a small perturbation of p the assumption of the theorem is
satisfied with E = ∂A.

Then there exists εj → 0 such that

(p(z) + εj(w − 1),wd) ∈ B̊if.



Robust bifurcations from topology

Typical situation : Assume d = 3 (2 critical points), c1 belongs to
an attracting basin A such that ∂A is a hyperbolic Jordan curve,
and p is not stable so c2 bifurcates.
Taking a small perturbation of p the assumption of the theorem is
satisfied with E = ∂A.

Then there exists εj → 0 such that

(p(z) + εj(w − 1),wd) ∈ B̊if.
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Robust bifurcations from fractal geometry

Theorem
Let f (z ,w) = (p(z),wd + κ). Assume there exists c ∈ Crit(p)
such that p(c) is a repelling fixed point with

1 <
∣∣p′(p(c))

∣∣ < 1.01

Then if κ is large enough, f is accumulated by robust bifurcations :

f ∈ B̊if.

The mechanism underlying the proof is based on the idea of
blenders (Bonatti-Diaz, etc.).

Note : again the assumption requires d ≥ 3.



Robust bifurcations from fractal geometry

Theorem
Let f (z ,w) = (p(z),wd + κ). Assume there exists c ∈ Crit(p)
such that p(c) is a repelling fixed point with

1 <
∣∣p′(p(c))

∣∣ < 1.01

Then if κ is large enough, f is accumulated by robust bifurcations :

f ∈ B̊if.

The mechanism underlying the proof is based on the idea of
blenders (Bonatti-Diaz, etc.).

Note : again the assumption requires d ≥ 3.



Robust bifurcations from fractal geometry

Theorem
Let f (z ,w) = (p(z),wd + κ). Assume there exists c ∈ Crit(p)
such that p(c) is a repelling fixed point with

1 <
∣∣p′(p(c))

∣∣ < 1.01

Then if κ is large enough, f is accumulated by robust bifurcations :

f ∈ B̊if.

The mechanism underlying the proof is based on the idea of
blenders (Bonatti-Diaz, etc.).

Note : again the assumption requires d ≥ 3.



Perspectives

The previous construction is reminiscent from :

Theorem (Shishikura)

Let f : P1 → P1 and assume f ∈ Bif. Then there exists fj → f
such that

hyp-dim(fj)→ 2.

Question : Assume f (z ,w) = (p(z), q(w)) ∈ Bif. Does there exist

Hd 3 fj → f possessing (repelling) blenders ? Does f ∈ B̊if ?

More generally : assume f ∈ Bif and hyp-dim(f ) > 2. Does

f ∈ B̊if ?
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Perspectives

Special case : recall that a Lattès map is an endomorphism
semiconjugate to a multiplication on a complex torus.

T2 ×k //

π
��

T2

π
��

P2
f
// P2

In particular it admits basic repellers of dimension ≥ (4− ε) for
every ε > 0.

Question : Let f : P2 → P2 be a Lattès map. Does f ∈ B̊if ?



Thanks !


