Diabolical Entropy

Neil Dobbs Nicolae Mihalache

June 2016
Parameter Problems in Analytic Dynamics

Topological Entropy and the Quadratic Family

$$f_a: x \mapsto x^2 + a, \quad a \in \mathcal{A} = [-2, 1/4]$$

- $h(a) := \lim_{n \to \infty} \frac{1}{n} \log \# f_a^{-n}(0)$.
- h(a) exists, $a \mapsto h(a)$ is continuous and monotone. [MS, DHS, MT, BvS]
- $\lambda(a) := \lim_{n \to \infty} \frac{1}{n} \log |Df_a^n(a)|$
- If $\lambda(a_0) < 0$, a_0 is hyperbolic, there is a periodic attractor, $a \mapsto h(a)$ is locally constant at a_0 . [LPS]
- the hyperbolic set Hyp is open and dense. [GŚ, Ly]
- for almost every $a \in A$, $\lambda(a)$ exists, $\lambda(a) \neq 0$. [AM,Ly]
- for pos. measure set of parameters, $\lambda(a) > 0$. [J, BC, AM]

Topological Entropy and the Quadratic Family

$$f_a: x \mapsto x^2 + a, \qquad a \in \mathcal{A} = [-2, 1/4]$$

- $h(a) := \lim_{n \to \infty} \frac{1}{n} \log \# f_a^{-n}(0)$.
- h(a) exists, $a \mapsto h(a)$ is continuous and monotone. [MS, DHS, MT, BvS]
- $\lambda(a) := \lim_{n \to \infty} \frac{1}{n} \log |Df_a^n(a)|$
- If λ(a₀) < 0, a₀ is hyperbolic, there is a periodic attractor, a → h(a) is locally constant at a₀. [LPS]
- the hyperbolic set Hyp is open and dense. [GŚ, Ly]
- for almost every $a \in \mathcal{A}$, $\lambda(a)$ exists, $\lambda(a) \neq 0$. [AM,Ly]
- for pos. measure set of parameters, $\lambda(a) > 0$. [J, BC, AM]

Regularity of Toplogical Entropy

$$\operatorname{WR}(a): \lim_{\delta \searrow 0} \liminf_{n \to \infty} \frac{1}{n} \log \sum_{|f_a^j(a)| < \delta, j \le n} \log |f^j(a)| = 0$$

- Tsujii's weak regularity condition :
 "does not return too close, too soon, too often"
- $W := \{a : \lambda(a) \text{ exists and } \lambda(a) > 0 \text{ and } WR(a)\}$
- full measure in Hyp^c [AM,Ly,L,T]
- $A_{NLC} = \{a : \{a\} = h^{-1}(h(a))\}$ positive measure set

Theorem (D, Mihalache)

Suppose $a \in \mathcal{W}$ and $\{a\} = h^{-1}(h(a))$. Then

$$\lim_{t \to 0} \frac{\log |h(a+t) - h(a)|}{\log t} = \frac{h(a)}{\lambda(a)}$$

Regularity of Toplogical Entropy

$$\operatorname{WR}(a): \lim_{\delta \searrow 0} \liminf_{n \to \infty} \frac{1}{n} \log \sum_{|f_a^j(a)| < \delta, j \le n} \log |f^j(a)| = 0$$

- Tsujii's weak regularity condition :
 "does not return too close, too soon, too often"
- $W := \{a : \lambda(a) \text{ exists and } \lambda(a) > 0 \text{ and } WR(a)\}$
- full measure in Hyp^c [AM,Ly,L,T]
- $A_{NLC} = \{a : \{a\} = h^{-1}(h(a))\}$ positive measure set

Theorem (D, Mihalache)

Suppose
$$a \in \mathcal{W}$$
 and $\{a\} = h^{-1}(h(a))$. Then

$$\lim_{t\to 0}\frac{\log|h(a+t)-h(a)|}{\log t}=\frac{h(a)}{\lambda(a)}.$$

Visible measures of maximal entropy

 μ_{acip} : absolutely continuous invariant probability measure

 μ_{max} : measure of maximal entropy

Lyapunov exponent $\chi(\mu) := \int \log |Df| d\mu$.

Theorem (D, Mihalache)

Let g be a real-analytic unimodal map with non-degenerate critical point. Then $\mu_{\text{max}} = \mu_{\text{acip}}$ if and only if g is analytically conjugate to $x \mapsto x^2 - 2$.

[Shub-Sullivan, Martens de Melo] Expanding maps: abs cns conjugacy upgrades to smooth/analytic conjugacy.

[D] expanding induced map: upgrades to smooth conjugacy or an interval... implies pre-Chebyshev.

Analytic conjugacy between renormalised map and $x \mapsto x^2 - 2$, contradiction if renormalised (too many critical points).

Visible measures of maximal entropy

 μ_{acip} : absolutely continuous invariant probability measure

 $\mu_{ ext{max}}$: measure of maximal entropy

Lyapunov exponent $\chi(\mu) := \int \log |Df| d\mu$.

Theorem (D, Mihalache)

Let g be a real-analytic unimodal map with non-degenerate critical point. Then $\mu_{\text{max}} = \mu_{\text{acip}}$ if and only if g is analytically conjugate to $x \mapsto x^2 - 2$.

[Shub-Sullivan, Martens de Melo] Expanding maps: abs cns conjugacy upgrades to smooth/analytic conjugacy.

[D] expanding induced map: upgrades to smooth conjugacy on an interval... implies pre-Chebyshev.

Analytic conjugacy between renormalised map and $x \mapsto x^2 - 2$, contradiction if renormalised (too many critical points).

Escalier du diable

Corollary

$$a
eq -2$$
 implies $rac{h(a)}{\chi(\mu_{
m acip}^a)} > 1, \quad rac{h(a)}{\chi(\mu_{
m max}^a)} < 1.$

For
$$a \neq -2$$

$$\chi(\mu_{\text{acip}}) = h(\mu_{\text{acip}}^a) < h(\mu_{\text{max}}^a) = h(a) < \chi(\mu_{\text{max}}^a).$$

Corollary

Moreover, h'(a) = 0 almost everywhere.

For almost every $a \in \mathcal{W}, \quad \lambda(a) = \chi(\mu_{\mathrm{acip}}^a) = h(\mu_{\mathrm{acip}}^a)$ [AM]. Thus, almost everywhere, Hölder exponent > 1. Uniformity?

Escalier du diable

Corollary

$$a
eq -2$$
 implies $rac{h(a)}{\chi(\mu_{
m acip}^a)} > 1, \quad rac{h(a)}{\chi(\mu_{
m max}^a)} < 1.$

For
$$a \neq -2$$

$$\chi(\mu_{\text{acip}}) = h(\mu_{\text{acip}}^a) < h(\mu_{\text{max}}^a) = h(a) < \chi(\mu_{\text{max}}^a).$$

Corollary

Moreover, h'(a) = 0 almost everywhere.

For almost every $a \in \mathcal{W}$, $\lambda(a) = \chi(\mu_{\mathrm{acip}}^a) = h(\mu_{\mathrm{acip}}^a)$ [AM]. Thus, almost everywhere, Hölder exponent > 1. Uniformity?

Uniformity

Theorem (Misiurewicz Szlenk, Raith, D Todd, D Mihalache)

 $s \mapsto g_s$ continuous family of S-unimodal maps, each with positive topological entropy. Then

$$s \mapsto h_{\text{top}}(g_s), \quad s \mapsto \mu_{\text{max}}^{g_s}, \quad s \mapsto \chi(\mu_{\text{max}}^{g_s})$$

are continuous.

Pressure $P_s(t) = \sup_{\mu} h(\mu) - t \int \log |Dg_s| d\mu$

- pressure is analytic on a nbd of zero [based on DT]
- pressure functions converge on a nbd of zero [DT]
- slope of pressure at zero is $-\chi(\mu_{\max}^{g_s})$
- Therefore $s \mapsto \chi(\mu_{\max}^{g_s})$ is continuous.

Uniformity II

Lemma

If $g_k \to g_0$, S-unimodal, and $h_{\rm top}(g_k)/\chi(\mu_{\rm acip}^{g_k}) \to 1$. Then $\mu_{\rm max}^{g_0} = \mu_{\rm acin}^{g_0}$.

Lemma

In a neighbourhood of a_F (Feigenbaum), there exists $\varepsilon>0$ with

$$\frac{h(a)}{\chi(\mu_{\max}^a)} < 1 - \varepsilon, \quad \frac{h(a)}{\chi(\mu_{\mathrm{acip}}^a)} > 1 + \varepsilon.$$

- Take a sequence a_n converging to a_F , f_{a_n} is $(m_n + 1)$ times Feigenbaum renormalisable.
- subsequence of (rescaled) m_n -renormalised maps converge to some S-unimodal map g [Sullivan]
- by 2nd Theorem, $\mu_{\text{max}} \neq \mu_{\text{acip}}$.

Uniformity III

Summing up:

Theorem

Given $\varepsilon > 0$, there exists $\delta > 0$ for which

• for all $a \in (-2 + \varepsilon, a_F)$, if μ_{acin}^a exists then

$$h(a)/\chi(\mu_{\mathrm{acip}}^a) > 1 + \delta$$

• for all $a \in (-2 + \varepsilon, a_F)$,

$$h(a)/\chi(\mu_{\max}^a) < 1 - \delta.$$

Recall first theorem : Suppose $a \in \mathcal{W}$ and $\{a\} = h^{-1}(h(a))$. Then

$$\lim_{t\to 0} \frac{\log|h(a+t) - h(a)|}{\log t} = \frac{h(a)}{\lambda(a)}.$$

Uniformity and Dimension

$$\begin{split} X_{\varepsilon} &:= \{ a \in \mathcal{A}_{\mathrm{NLC}} \cap \mathcal{W} : a > -2 + \varepsilon, \quad \lambda(a) = \chi(\mu_{\mathrm{acip}}^a) \} \\ Y_{\varepsilon} &:= \{ a \in \mathcal{A}_{\mathrm{NLC}} \cap \mathcal{W} : a > -2 + \varepsilon, \quad \lambda(a) = \chi(\mu_{\mathrm{max}}^a) \}. \end{split}$$

$$\lim_{t\to 0} \frac{\log|h(a+t)-h(a)|}{\log t} = \frac{h(a)}{\lambda(a)}.$$

Theorem

$$\dim_{\mathrm{H}}(h(X_{\varepsilon})) < 1$$
, $\dim_{\mathrm{H}}(Y_{\varepsilon}) < 1$.

- $\cup_{\varepsilon} X_{\varepsilon}$ has full measure in \mathcal{A}_{NLC} [Avila Moreira Lyubich Levin Tsujii...]
- $\bigcup_{\varepsilon} h(Y_{\varepsilon})$ has full measure in $[0, \log 2]$. [Bruin Sands]

Proof of main theorem

$$\lim_{t\to 0}\frac{\log|h(a+t)-h(a)|}{\log t}=\frac{h(a)}{\lambda(a)}.$$

- h monotone, cns, suffices to prove for t_n with $\log t_n/\log t_{n+1}$ aribtrarily close to 1.
- Tent map $T_b: x \mapsto 1 b|x|$, turning point at 0, entropy $\log b$
- $\xi_n(a) = f_a^n(a), \quad \phi_n(b) = T_b^n(1)$
- $\frac{1}{n} \log |D\xi_n(a+t)| \approx \lambda(a)$ for a subsequence of n, for a neighbourhood which gets mapped to the large scale
- $\frac{1}{n}\log |D\phi_n(b)| \approx \log b_0 = h(a)$ on corresponding nbds
- Use conjugacy with tent map to measure change of entropy
- $\log |t| \approx -n\lambda(a)$, $\log |h(a+t) h(a)| \approx -nh(a)$

Tsujii's Lemma

Lemma

Suppose $a_0 \in \mathcal{W}$. Let $\delta > 0$. There exist $r_0 > 0, m \ge 1$, a sequence $(k_n)_{n \ge 0}$ and decreasing neighbourhoods $\omega_n \ni a_0$ for which

- $\frac{k_{n+1}}{k_n} \le 1 + \delta$
- $\xi_{k_n}(\omega_n) \supset B(\xi_{k_n}(a_0), r_0)$
- ξ_j has bounded distortion on ω_n for $j=m,m+1,\ldots,k_n$
- $\frac{1}{k_n}|D\xi_{k_n}(a)| \approx \lambda(a)$.

Requires Weak Regularity, Transversality [L], Collet-Eckmann.

HAPPY BIRTHDAY Sebastian

