Double Parabolic Renormalization in the Quadratic Family

Xavier Buff

joint work with A. Epstein and C. Petersen

X. Buff Double parabolic renormalization

(* E) * E)

æ

Quadratic rational maps

- rat₂ is the space of conjugacy classes of quadratic rational maps.
- the elementary symmetric functions of the multipliers of the fixed points are
 - $\sigma_1 := \mu_1 + \mu_2 + \mu_3$,
 - $\sigma_2 := \mu_1 \mu_2 + \mu_2 \mu_3 + \mu_3 \mu_1$ and
 - $\sigma_3 := \mu_1 \mu_2 \mu_3$.

Proposition (Milnor)

- rat_2 is isomorphic to \mathbb{C}^2 .
- σ_1 and σ_2 provide global coordinates.

•
$$\sigma_3 = \sigma_1 - 2.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Quadratic rational maps

- rat₂ is the space of conjugacy classes of quadratic rational maps.
- the elementary symmetric functions of the multipliers of the fixed points are
 - $\sigma_1 := \mu_1 + \mu_2 + \mu_3$,
 - $\sigma_2 := \mu_1 \mu_2 + \mu_2 \mu_3 + \mu_3 \mu_1$ and
 - $\sigma_3 := \mu_1 \mu_2 \mu_3$.

Proposition (Milnor)

- rat_2 is isomorphic to \mathbb{C}^2 .
- σ_1 and σ_2 provide global coordinates.

•
$$\sigma_3 = \sigma_1 - 2$$
.

• $\operatorname{Per}_1(\mu) \subset \operatorname{rat}_2 = \{[f] \text{ having a fixed point with multiplier } \mu\}.$

ヘロン 人間 とくほ とくほ とう

Quadratic rational maps

- rat₂ is the space of conjugacy classes of quadratic rational maps.
- the elementary symmetric functions of the multipliers of the fixed points are
 - $\sigma_1 := \mu_1 + \mu_2 + \mu_3$,
 - $\sigma_2 := \mu_1 \mu_2 + \mu_2 \mu_3 + \mu_3 \mu_1$ and
 - $\sigma_3 := \mu_1 \mu_2 \mu_3$.

Proposition (Milnor)

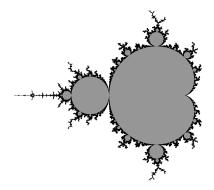
- rat_2 is isomorphic to \mathbb{C}^2 .
- σ_1 and σ_2 provide global coordinates.

•
$$\sigma_3 = \sigma_1 - 2.$$

- Per₁(µ) ⊂ rat₂ = {[f] having a fixed point with multiplier µ}.
- $\operatorname{Per}_{1}(\mu)$ is the line $\mu^{3} \sigma_{1}\mu^{2} + \sigma_{2}\mu \sigma_{3} = 0$.

Bifurcation loci

• Bif(μ) := $\overline{\{[f] \text{ having a cycle with multiplier 1}\}}$.



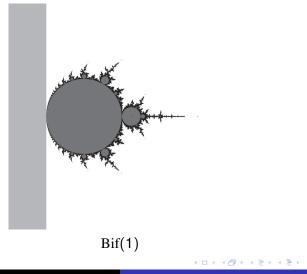
Bif(0)

伺き くほき くほう

э

Bifurcation loci

• Bif(μ) := $\overline{\{[f] \text{ having a cycle with multiplier 1}\}}$.



э

Germs with a parabolic fixed point

Assume

$$g(z) = e^{2\pi i \frac{p}{q}} z + \mathcal{O}(z^2).$$

Then

$g^{\circ q}(z)=z+Cz^{ u q+1}+\mathcal{O}(z^{ u q+2})$ with C eq 0.

• g is formally conjugate to

$$e^{2\pi i \frac{\rho}{q}} z \cdot (1 + z^{\nu q} + \alpha z^{2\nu q})$$
 with $\alpha \in \mathbb{C}$.

Definition

The résidu itératif of g is

$$\mathsf{r\acute{e}sit}(g) = \frac{\nu q + 1}{2} - \alpha.$$

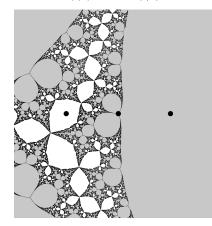
・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

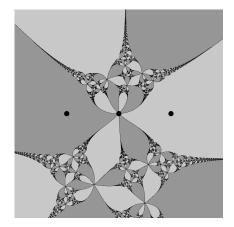
æ –

Quadratic rational maps with parabolic fixed points

•
$$g_{p/q,a}(z) = e^{2\pi i \frac{\rho}{q}} \cdot \frac{z}{1 + az + z^2}$$
.

• $g_{p/q,a}$ and $g_{p/q,-a}$ are conjugate via $z \mapsto -z$.





Quadratic rational maps with parabolic fixed points

•
$$g_{p/q,a}^{\circ q}(z) = z + C_{p/q}(a)z^{q+1} + O(z^{q+2}).$$

Set *R*_{p/q}(*a*) := résit(*g*_{p/q,a}) when the parabolic point is not degenerate (i.e., *C*_{p/q}(*a*) ≠ 0).

Theorem (B., Ecalle, Epstein)

For $q \ge 2$,

- $C_{p/q}$ is a polynomial of degree q 2 having simple roots.
- R_{p/q} is a rational map of degree 2q 2 which only has double poles : infinity and the zeroes of C_{p/q}.

・ロト ・四ト ・ヨト ・ヨト ・

Quadratic rational maps with parabolic fixed points

•
$$g_{p/q,a}^{\circ q}(z) = z + C_{p/q}(a)z^{q+1} + O(z^{q+2}).$$

Set *R*_{p/q}(*a*) := résit(*g*_{p/q,a}) when the parabolic point is not degenerate (i.e., *C*_{p/q}(*a*) ≠ 0).

Theorem (B., Ecalle, Epstein)

For $q \ge 2$,

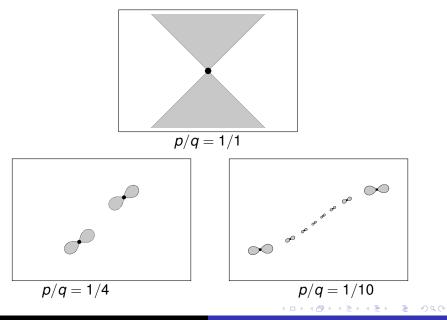
- $C_{p/q}$ is a polynomial of degree q 2 having simple roots.
- R_{p/q} is a rational map of degree 2q 2 which only has double poles : infinity and the zeroes of C_{p/q}.

Question

How does $R_{p/q}$ depend on p/q?

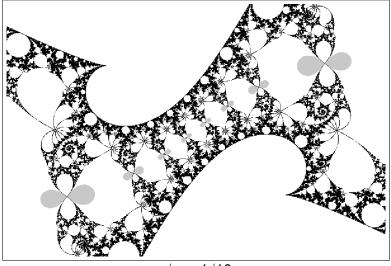
ヘロン 人間 とくほど 人 ほとう

Parabolic degeneracy



X. Buff Double parabolic renormalization

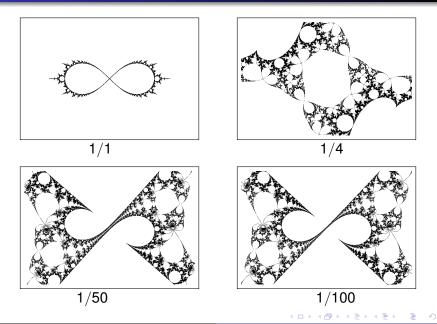
Bifurcation locus



p/q = 1/10

<ロ> (四) (四) (三) (三) (三) (三)

Limit of bifurcation loci



X. Buff

Limit of résidus itératifs

- Consider $R_{p/q}$ as a function $R_{p/q}$: $\operatorname{Per}_1(e^{2\pi i p/q}) \to \widehat{\mathbb{C}}$.
- Given $r/s \in \mathbb{Q}$ and $k \in \mathbb{N}$, set $p_k/q_k := 1/(k + r/s)$.

Theorem (B., Ecalle, Epstein)

As $k \to +\infty$, the sequence of meromorphic functions

$$\left(rac{
ho_k}{q_k}
ight)^2 R_{
ho_k/q_k}:\operatorname{Per}_1(\mathrm{e}^{2\pi\mathrm{i}
ho/q}) o \widehat{\mathbb{C}}$$

converges to a meromorphic transcendental function

$$\mathfrak{R}_{r/s}$$
: Per₁(1) \{[g_0]} $\rightarrow \widehat{\mathbb{C}}$.

The function $\mathfrak{R}_{r/s}$ has a double pole at infinity, an essential singularity at $[g_0]$ and infinitely many poles (which are double poles) accumulating this singularity.

Fatou coordinates

- Set $b = 1/a^2$.
- The map

$$g_a(z) = \frac{z}{1+az+z^2}$$

is conjugate via Z = 1/(az) to

$$F_b(Z)=Z+1+\frac{b}{Z}.$$

- The sequence (F^{on}_b(Z) − n − b log n) converges to an attracting Fatou coordinate Φ_b.
- The sequence $(F_b^{\circ n}(Z n + b \log n))$ converges to a repelling Fatou parametrization Ψ_b .

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

- It projects via $Z \mapsto z = e^{2\pi i Z}$ to a germ \mathfrak{h}_b fixing 0 with multiplier $e^{2\pi^2 b}$.
- The holomorphic map

$$\mathfrak{f}_{r/s,b}=\mathrm{e}^{2\pi\mathrm{i}\frac{r}{s}}\cdot\mathrm{e}^{-2\pi^2b}\cdot\mathfrak{h}_b$$

fixes 0 with multiplier $e^{2\pi i \frac{r}{s}}$.

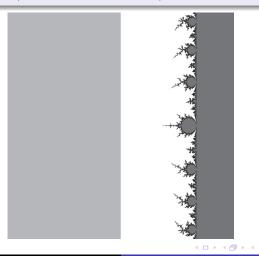
 ℜ_{r/s}(b) is the résidu itératif of
 f_{r/s,b} when the parabolic
 point is not degenerate.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Where are the poles?

Proposition

The poles of $\Re_{r/s}$ belong to the strip $\{0 < \operatorname{Re}(b) < 1/2\}$.



ъ

ヨントー

Theorem (B., Epstein, Petersen)

For each r/s, the poles of $\Re_{r/s}$ form s sequences $(b_{j,n})$, $j \in [\![1, s]\!]$, satisfying

$$b_{j,n} = rac{n}{2\pi \mathrm{i}} + rac{1}{4} - rac{\sigma_j}{2\pi \mathrm{i}} + \mathrm{o}(1), \quad \text{as } n \to +\infty,$$

where

- the numbers $\mu_i := e^{2\pi i \sigma_j}$ are distinct,
- $\prod \mu_j = (-1)^s$ and
- the set $\{\mu_j, j \in \llbracket 1, s \rrbracket\}$ is invariant by the map $\mu \mapsto e^{2\pi i r/s}/\mu$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Corollary

The poles of $\mathfrak{R}_{0/1}$ form a sequence (b_n) with the asymptotic behavior

$$b_n = rac{n}{2\pi i} + rac{1}{4} - rac{1}{4\pi i} + o(1).$$

Corollary

The poles of $\mathfrak{R}_{1/2}$ form a sequence (b_n) with the asymptotic behavior

$$b_n = \frac{n}{4\pi i} + \frac{1}{4} - \frac{1}{8\pi i} + o(1).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Corollary

For r/s with s odd, among the poles of $\Re_{r/s}$, there is a sequence (b_n) which has the asymptotic behavior

$$b_n = rac{n}{2\pi i} + rac{1}{4} - rac{1-r+r/s}{4\pi i} + o(1).$$

Corollary

For r/s with s even, among the poles of $\Re_{r/s}$, there is a sequence (b_n) which has the asymptotic behavior

$$b_n = \frac{n}{4\pi i} + \frac{1}{4} - \frac{r/s}{4\pi i} + o(1).$$

ヘロト ヘアト ヘヨト ヘ

Elements of the proof

- For a = 0, the map $g_0(z) = z/(1 + z^2)$ is semi-conjugate to g_2 via $z \mapsto z^2$. Note that a = 2 corresponds to b = 1/4.

通 とく ヨ とく ヨ とう

Elements of the proof

- For a = 0, the map $g_0(z) = z/(1 + z^2)$ is semi-conjugate to g_2 via $z \mapsto z^2$. Note that a = 2 corresponds to b = 1/4.

Set

$$\mathfrak{F}_b := \mathfrak{H}_b + \pi \mathsf{i} b.$$

• Let $\tau : \mathbb{C} \smallsetminus (-\infty, 0] \to \mathbb{C}$ be the holomorphic map defined by

$$au(b) := \Phi_b(\sqrt{b}) - \Phi_{1/4}(1/2) - i\pi(b-1/4).$$

Set

$$\Lambda(b) := 2\pi i(b - 1/4).$$

(雪) (ヨ) (ヨ)

Elements of the proofLimit of horn maps

Proposition

As Im(b) $ightarrow +\infty$,

$$T_{-\tau(b)} \circ \mathfrak{F}_b \circ T_{\tau(b)} \to \mathfrak{F}_{1/4}$$

locally uniformly in the upper half-plane.

Proposition

As ${\sf Im}(b) o -\infty$,

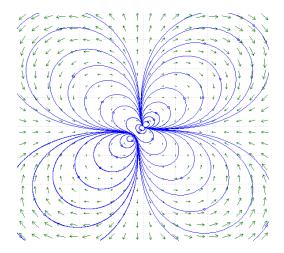
$$T_{-\tau(b)} \circ \mathfrak{F}_{b} \circ T_{\tau(b)} - T_{\Lambda(b)} \circ \mathfrak{F}_{1/4} \circ T_{-\Lambda(b)} \circ \mathfrak{F}_{1/4} \to 0$$

locally uniformly in the upper half-plane.

ヘロト 人間 とくほとく ほとう

3

The dynamics when $Im(b) \rightarrow -\infty$

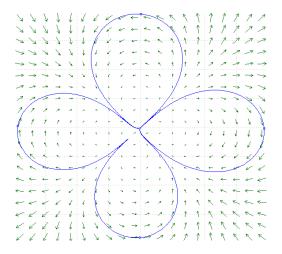


< < >> < <</>

2

·콜▶ ★ 콜▶ ···

Perturbed Fatou Coordinates



프 🖌 🛪 프 🛌

2

Corollary

As Im(b) $\rightarrow +\infty$, the following convergence holds locally uniformly in the unit disk:

$$e^{-2\pi i \tau(b)}\mathfrak{g}_b\left(e^{2\pi i \tau(b)}Z\right)
ightarrow \mathfrak{g}_{1/4}.$$

Corollary

As
$$\operatorname{Im}(b) \to +\infty$$
, $\mathfrak{R}_{r/s}(b) \to \mathfrak{R}_{r/s}(1/4)$.

Corollary

The entire map $\mathfrak{R}_{r/s}$ has no poles with large positive imaginary part.

・ロン・西方・ ・ ヨン・ ヨン・

э

For μ ∈ ℂ \ {0}, let 𝓕_μ : D → Ĉ be the *finite type analytic* map on Ĉ defined by

$$\mathcal{F}_{\mu}(z) := rac{\mathrm{e}^{2\pi r/s}}{\mu} \cdot \mathfrak{f}_{1/4} \big(\mu \cdot \mathfrak{f}_{1/4}(z) \big).$$

• Let $\mathcal{R}:\mathbb{C\smallsetminus}\{0\}\to\mathbb{C}$ be the meromorphic transcendental function defined by

$$\mathcal{R}(\mu) := \mathsf{résit}(\mathcal{F}_{\mu})$$

when the parabolic point is not degenerate.

A E > A E >

Elements of the proof

Let $\lambda : \mathbb{C} \to \mathbb{C} \smallsetminus \{0\}$ be defined by

$$\lambda(b) := e^{2\pi i \Lambda(b)} = e^{4\pi^2(b-1/4)}.$$

Corollary

As $Im(b) \rightarrow -\infty$, the following convergence holds locally uniformly in the unit disk:

$$\mathrm{e}^{-2\pi\mathrm{i} au(b)}\mathfrak{g}_b\left(\mathrm{e}^{2\pi\mathrm{i} au(b)}z
ight)-\mathcal{F}_{\lambda(b)}(z)
ightarrow 0.$$

Corollary

As
$$\mathsf{Im}(b) o -\infty$$
, $\mathfrak{R}_{r/s} - \mathcal{R} \circ \lambda \to 0$ uniformly.

・ロン ・聞と ・ ほと ・ ほとう

3