Expanding Thurston maps

Mario Bonk and Daniel Meyer

UCLA

June 27, 2016

3) 3

_ ₽ ▶

Mario Bonk and Daniel Meyer Thurton maps

- it is continuous and orientation-preserving,
- near each point $p \in S^2$, it can be written in the form $z \mapsto z^d$, $d \in \mathbb{N}$, in suitable complex coordinates.
- $d = \deg_f(p)$ local degree of f at p.
- $C_f = \{p \in S^2 : \deg_f(p) \ge 2\}$ set of *critical points* of f.

Remark: Every rational map $R \colon \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

(日) (四) (日) (日) (日) (日)

- it is continuous and orientation-preserving,
- near each point $p \in S^2$, it can be written in the form $z \mapsto z^d$, $d \in \mathbb{N}$, in suitable complex coordinates.
- $d=\deg_f(p)$ local degree of f at p. $C_f=\{p\in S^2:\deg_f(p)\geq 2\}$ set of critical points of f.

Remark: Every rational map $R \colon \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

- it is continuous and orientation-preserving,
- near each point $p \in S^2$, it can be written in the form $z \mapsto z^d$, $d \in \mathbb{N}$, in suitable complex coordinates.

 $d = \deg_f(p)$ local degree of f at p. $C_f = \{p \in S^2 : \deg_f(p) \ge 2\}$ set of critical points of f.

Remark: Every rational map $R \colon \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

イロト イヨト イヨト イヨト 二日

- it is continuous and orientation-preserving,
- near each point $p \in S^2$, it can be written in the form $z \mapsto z^d$, $d \in \mathbb{N}$, in suitable complex coordinates.

$$d = \deg_f(p)$$
 local degree of f at p.

 $C_f = \{p \in S^2 : \deg_f(p) \ge 2\}$ set of *critical points* of f.

Remark: Every rational map $R \colon \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ on the Riemann sphere $\widehat{\mathbb{C}}$ is a branched covering map.

If $f: S^2 \to S^2$ is a branched covering map, then

$$P_f = \bigcup_{n \in \mathbb{N}} f^n(C_f)$$

is called the *postcritical set* of f. Here f^n is the *n*th-iterate of f.

Remarks: Points in P_f are obstructions to taking inverse branches of f^n . Each iterate f^n is a covering map over $S^2 \setminus P_f$.

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

- *f* well-defined only up to isotopy relative to *P_f* (one studies dynamics on isotopy classes of curves etc.), or
- *f* pointwise defined (one studies pointwise dynamics under iteration etc.).

Often one wants to find a "good representative" f in a given isotopy class.

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

- *f* well-defined only up to isotopy relative to *P_f* (one studies dynamics on isotopy classes of curves etc.), or
- *f* pointwise defined (one studies pointwise dynamics under iteration etc.).

Often one wants to find a "good representative" f in a given isotopy class.

(日) (四) (日) (日) (日) (日)

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

- *f* well-defined only up to isotopy relative to *P_f* (one studies dynamics on isotopy classes of curves etc.), or
- *f* pointwise defined (one studies pointwise dynamics under iteration etc.).

Often one wants to find a "good representative" f in a given isotopy class.

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

- *f* well-defined only up to isotopy relative to *P_f* (one studies dynamics on isotopy classes of curves etc.), or
- *f* pointwise defined (one studies pointwise dynamics under iteration etc.).

Often one wants to find a "good representative" *f* in a given isotopy class.

- it is a branched covering map,
- it has a finite postcritical set P_f .

Different viewpoints on Thurston maps:

- *f* well-defined only up to isotopy relative to *P_f* (one studies dynamics on isotopy classes of curves etc.), or
- *f* pointwise defined (one studies pointwise dynamics under iteration etc.).

Often one wants to find a "good representative" f in a given isotopy class.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

$$g(z)=1+rac{\omega-1}{z^3},\qquad \omega=e^{4\pi i/3}.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ = ● のへで

5/22

•
$$C_g = \{0,\infty\}.$$

- Critical portrait: $0 \mapsto \infty \mapsto 1 \mapsto \omega \mapsto \omega$.
- $P_{g} = \{1, \omega, \infty\}$,
- $J = C^0 = \text{line through 1, } \omega, \infty.$

Tiles for the map g

Tiles up to level 3 for g.

Tiles

Let $n \in \mathbb{N}_0$, $f: S^2 \to S^2$ be a Thurston map, and $J \subseteq S^2$ be a Jordan curve with $P_f \subseteq J$. Then a *tile of level n* or *n*-*tile* is the closure of a complementary component of $f^{-n}(J)$.

- tiles are topological 2-cells (=closed Jordan regions),
- tiles of a given level *n* form a cell decomposition \mathcal{D}^n of S^2 .
- the cell decompositions \mathcal{D}^n for different levels n are usually not compatible.
- they are compatible (i.e., Dⁿ⁺¹ is refinement of Dⁿ for all n ∈ N₀) iff J ⊆ f⁻¹(J) equiv. f(J) ⊆ J (i.e., J is f-invariant).

7 / 22

Let $n \in \mathbb{N}_0$, $f: S^2 \to S^2$ be a Thurston map, and $J \subseteq S^2$ be a Jordan curve with $P_f \subseteq J$. Then a *tile of level n* or *n*-*tile* is the closure of a complementary component of $f^{-n}(J)$.

- tiles are topological 2-cells (=closed Jordan regions),
- tiles of a given level *n* form a cell decomposition \mathcal{D}^n of S^2 .
- the cell decompositions \mathcal{D}^n for different levels *n* are usually not compatible.
- they are compatible (i.e., \mathcal{D}^{n+1} is refinement of \mathcal{D}^n for all $n \in \mathbb{N}_0$) iff $J \subseteq f^{-1}(J)$ equiv. $f(J) \subseteq J$ (i.e., J is f-invariant).

A Thurston map $f: S^2 \to S^2$ is *expanding* if the size of *n*-tiles goes to 0 uniformly as $n \to \infty$; so we require

 $\lim_{n\to\infty} \max_{n-{\rm tile}\, X^n} {\rm diam}(X^n) = 0.$

This is:

- independent of Jordan curve J,
- independent of the underlying base metric on S^2 .

Remark: A rational Thurston map R is expanding iff R has no periodic critical points iff $\mathcal{J}(R) = \widehat{\mathbb{C}}$ for its Julia set.

A Thurston map $f: S^2 \to S^2$ is *expanding* if the size of *n*-tiles goes to 0 uniformly as $n \to \infty$; so we require

 $\lim_{n\to\infty} \max_{n-{\rm tile}\, X^n} {\rm diam}(X^n)=0.$

This is:

- independent of Jordan curve J,
- independent of the underlying base metric on S^2 .

Remark: A rational Thurston map R is expanding iff R has no periodic critical points iff $\mathcal{J}(R) = \widehat{\mathbb{C}}$ for its Julia set.

A Thurston map $f: S^2 \to S^2$ is expanding if the size of *n*-tiles goes to 0 uniformly as $n \to \infty$; so we require

 $\lim_{n\to\infty} \max_{n-\text{tile } X^n} \text{diam}(X^n) = 0.$

This is:

- independent of Jordan curve J,
- independent of the underlying base metric on S^2 .

Remark: A rational Thurston map R is expanding iff R has no periodic critical points iff $\mathcal{J}(R) = \widehat{\mathbb{C}}$ for its Julia set.

Problem. Let f be an expanding Thurston map. Does there exist an f-invariant Jordan curve J with $P_f \subseteq J$?

Answer: No, in general!

Example:

$$f(z) = i \frac{z^4 - i}{z^4 + i}, \quad P_f = \{-i, 1, i\}.$$

Problem. Let f be an expanding Thurston map. Does there exist an f-invariant Jordan curve J with $P_f \subseteq J$?

Answer: No, in general!

Example:

$$f(z) = i \frac{z^4 - i}{z^4 + i}, \quad P_f = \{-i, 1, i\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 の Q @

Problem. Let f be an expanding Thurston map. Does there exist an f-invariant Jordan curve J with $P_f \subseteq J$?

Answer: No, in general!

Example:

$$f(z) = i \frac{z^4 - i}{z^4 + i}, \quad P_f = \{-i, 1, i\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Iterative construction of invariant curve for g

10/22

Theorem. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then for each sufficiently high iterate f^n there exists a (forward-)invariant quasicircle $C \subseteq S^2$ with $P_f = P_{f^n} \subseteq C$.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then every sufficiently high iterate f^n is described by a subdivision rule.

Remark: If $J \subseteq S^2$ is an arbitrary Jordan curve with $P_f \subseteq J$, then there exists n, and a quasicircle C isotopic to J rel. P_f s.t. $f^n(\mathcal{C}) \subseteq C$.

Theorem. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then for each sufficiently high iterate f^n there exists a (forward-)invariant quasicircle $C \subseteq S^2$ with $P_f = P_{f^n} \subseteq C$.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then every sufficiently high iterate f^n is described by a subdivision rule.

Remark: If $J \subseteq S^2$ is an arbitrary Jordan curve with $P_f \subseteq J$, then there exists n, and a quasicircle C isotopic to J rel. P_f s.t. $f^n(\mathcal{C}) \subseteq C$.

Theorem. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then for each sufficiently high iterate f^n there exists a (forward-)invariant quasicircle $C \subseteq S^2$ with $P_f = P_{f^n} \subseteq C$.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding Thurston map. Then every sufficiently high iterate f^n is described by a subdivision rule.

Remark: If $J \subseteq S^2$ is an arbitrary Jordan curve with $P_f \subseteq J$, then there exists n, and a quasicircle C isotopic to J rel. P_f s.t. $f^n(C) \subseteq C$.

Subdivision rule for g

12 / 22

Thurston map h

13 / 22

- $\#C_h = 6$,
- $\#P_h = 4$,
- Map *h* is described by a *two-tile subdivision rule*: Combinatorial data specifying how the two level-0 tiles are subdivided by 6 and 4 level-1 tiles, respectively.

When is an expanding Thurston map f conjugate to a rational map? So when is there a homeomorphism $\phi: S^2 \to \widehat{\mathbb{C}}$ and a rational map $R: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ s.t.

$$\begin{array}{cccc} S^2 & \stackrel{\phi}{\longleftrightarrow} & \widehat{\mathbb{C}} \\ \downarrow f & & \downarrow R \\ S^2 & \stackrel{\phi}{\longleftrightarrow} & \widehat{\mathbb{C}} \end{array}$$

Remark: The map *h* in the previous example is not conjugate to a rational map.

When is an expanding Thurston map f conjugate to a rational map? So when is there a homeomorphism $\phi: S^2 \to \widehat{\mathbb{C}}$ and a rational map $R: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ s.t.

$$\begin{array}{cccc} S^2 & \stackrel{\phi}{\longleftrightarrow} & \widehat{\mathbb{C}} \\ \downarrow f & & \downarrow K \\ S^2 & \stackrel{\phi}{\longleftrightarrow} & \widehat{\mathbb{C}} \end{array}$$

Remark: The map *h* in the previous example is not conjugate to a rational map.

(日)

Proposition. Let f be an expanding Thurston map. Then there exists a *visual metric* ρ on S^2 (unique up to snowflake equivalence) s.t. for all *n*-tiles X^n ,

 ϱ -diam $(X^n) \simeq \Lambda^{-n}$,

where $\Lambda > 1$.

Two metrics ϱ_1 and ϱ_2 are *snowflake equivalent* iff there ex. $\alpha > 0$ s.t.

$$\varrho_1 \simeq {\varrho_2}^{\alpha}.$$

Definition: The *visual sphere* of f is (S^2, ϱ) , where ϱ is a visual metric for f.

16/22

Proposition. Let f be an expanding Thurston map. Then there exists a *visual metric* ρ on S^2 (unique up to snowflake equivalence) s.t. for all *n*-tiles X^n ,

$$\underline{\rho}$$
-diam $(X^n) \simeq \Lambda^{-n},$

where $\Lambda > 1$.

Two metrics ρ_1 and ρ_2 are *snowflake equivalent* iff there ex. $\alpha > 0$ s.t.

$$\varrho_1 \simeq {\varrho_2}^{\alpha}$$

Definition: The *visual sphere* of f is (S^2, ϱ) , where ϱ is a visual metric for f.

Proposition. Let f be an expanding Thurston map. Then there exists a *visual metric* ρ on S^2 (unique up to snowflake equivalence) s.t. for all *n*-tiles X^n ,

$$\underline{\rho}$$
-diam $(X^n) \simeq \Lambda^{-n},$

where $\Lambda > 1$.

Two metrics ρ_1 and ρ_2 are *snowflake equivalent* iff there ex. $\alpha > 0$ s.t.

$$\varrho_1 \simeq \varrho_2^{\alpha}.$$

Definition: The visual sphere of f is (S^2, ϱ) , where ϱ is a visual metric for f.

The visual sphere of h

Theorem. (B.-Meyer, Pilgrim-Haïssinsky)

Let $f: S^2 \to S^2$ be an expanding Thurston map, and (S^2, ϱ) the visual sphere of f.

Then f is conjugate to a rational map if and only if f has no periodic crititical points and (S^2, ϱ) is quasisymmetrically equivalent to the standard sphere 2-sphere, i.e., $\widehat{\mathbb{C}}$ equipped with the chordal metric.

A homeomorphism $f: X \to Y$ between metric spaces is *(weakly-)* quasisymmetric (=qs) if there exists $H \ge 1$ s.t.

$$|x-y| \le |x-z| \Rightarrow |f(x) - f(y)| \le H|f(x) - f(z)|$$

for all $x, y, z \in X$.

- *f* is quasisymmetric if it maps balls to "roundish" sets of uniformly controlled eccentricity.
- Quasisymmetry global version of quasiconformality.
- bi-Lipschitz \Rightarrow qs \Rightarrow qc.
- In ℝⁿ, n ≥ 2: qs ⇔ qc.
 Also true for "Loewner spaces" (Heinonen-Koskela).

A homeomorphism $f: X \to Y$ between metric spaces is *(weakly-)* quasisymmetric (=qs) if there exists $H \ge 1$ s.t.

$$|x-y| \le |x-z| \Rightarrow |f(x) - f(y)| \le H|f(x) - f(z)|$$

for all $x, y, z \in X$.

- *f* is quasisymmetric if it maps balls to "roundish" sets of uniformly controlled eccentricity.
- Quasisymmetry global version of quasiconformality.
- bi-Lipschitz \Rightarrow qs \Rightarrow qc.
- In ℝⁿ, n ≥ 2: qs ⇔ qc.
 Also true for "Loewner spaces" (Heinonen-Koskela).

Version I: Suppose G is a Gromov hyperbolic group with $\partial_{\infty}G \approx \mathbb{S}^2$. Then G admits an action on hyperbolic 3-space \mathbb{H}^3 that is discrete, cocompact, and isometric.

If true, the conjecture would give a characterization of fundamental groups $\pi_1(M)$ of closed hyperbolic 3-manifolds M from the point of view of geometric group theory.

Version I: Suppose G is a Gromov hyperbolic group with $\partial_{\infty}G \approx \mathbb{S}^2$. Then G admits an action on hyperbolic 3-space \mathbb{H}^3 that is discrete, cocompact, and isometric.

This is equivalent to:

Version II: Suppose G is a Gromov hyperbolic group with $\partial_{\infty}G \approx \mathbb{S}^2$. Then $\partial_{\infty}G$ is qs-equivalent to \mathbb{S}^2 .

If true, the conjecture would give a characterization of fundamental groups $\pi_1(M)$ of closed hyperbolic 3-manifolds M from the point of view of geometric group theory.

Suppose X is a metric space homeomorphic to a "standard" metric space Y. When is X qs-equivalent to Y?

- Precise meaning of "standard" metric space depends on context.
- Examples: $Y = \mathbb{R}^n$, \mathbb{S}^n , standard 1/3-Cantor set C, etc.
- Case Y = S² particularly interesting in view of Cannon's conjecture and the characterization of rational Thurston maps.

Suppose X is a metric space homeomorphic to a "standard" metric space Y. When is X qs-equivalent to Y?

- Precise meaning of "standard" metric space depends on context.
- Examples: $Y = \mathbb{R}^n$, \mathbb{S}^n , standard 1/3-Cantor set C, etc.
- Case Y = S² particularly interesting in view of Cannon's conjecture and the characterization of rational Thurston maps.

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f. Does there always exist an invariant graph G ⊇ P_f?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

(1)

Further directions

• What are the special properties of subdivison rules associated with rational Thurston maps?

- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f. Does there always exist an invariant graph G ⊇ P_f?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

A B > A B > A B >

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f. Does there always exist an invariant graph G ⊇ P_f?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f. Does there always exist an invariant graph G ⊇ P_f?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).

- What are the special properties of subdivison rules associated with rational Thurston maps?
- Can one reprove Thurston's characterization of rational maps using the combinatorial approach?
- An expanding Thurston map need not have an invariant Jordan curve containing the postcritical set P_f. Does there always exist an invariant graph G ⊇ P_f?
- Can one extend the theory of expanding Thurston maps to Thurston maps that are only expanding on their "Julia sets"? (Analog of subhyperbolic rational maps).