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Branched covering maps

Let S? be a topological 2-sphere. A map f: S? — S? is a branched
covering map iff

@ it is continuous and orientation-preserving,

@ near each point p € S2, it can be written in the form z — z9,

d € N, in suitable complex coordinates.

d = degs(p) local degree of f at p.
Cr = {p € S? : degs(p) > 2} set of critical points of f.

Remark: Every rational map R: C — C on the Riemann sphere C
is a branched covering map.
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The postcritical set

If f: S> — S? is a branched covering map, then

Pr=J f(Cr)

neN

is called the postcritical set of f. Here f" is the nth-iterate of f.

Remarks: Points in Pr are obstructions to taking inverse branches
of f". Each iterate " is a covering map over S?\ Pr.
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Thurston maps

A map f: S? — S? is called a Thurston map iff

@ it is a branched covering map,

@ it has a finite postcritical set Pr.

Different viewpoints on Thurston maps:

o f well-defined only up to isotopy relative to Pr (one studies
dynamics on isotopy classes of curves etc.), or

e f pointwise defined (one studies pointwise dynamics under
iteration etc.).

Often one wants to find a “good representative” f in a given
isotopy class.



Thurston map g

-1 ,
g(z)=1+ wz3 , w = e*/3,

Cg = {0,00}.

Critical portrait: 0 = oco— 1 — w +— w.
Py = {1,w, o0},

J = C° = line through 1, w, oo.



Tiles for the map g

(&

Tiles up to level 3 for g.
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Let n € Ng, f: S> — S? be a Thurston map, and J C S? be a
Jordan curve with Pr C J. Then a tile of level n or n-tile is the
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Let n € Ng, f: S> — S? be a Thurston map, and J C S? be a
Jordan curve with Pr C J. Then a tile of level n or n-tile is the
closure of a complementary component of £f~"(J).

e tiles are topological 2-cells (=closed Jordan regions),
o tiles of a given level n form a cell decomposition D" of S2.

o the cell decompositions D" for different levels n are usually
not compatible.

e they are compatible (i.e., D" is refinement of D" for all
n € Np) iff J C f71(J) equiv. f(J) C J (i.e., J is f-invariant).
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Expanding Thurston maps

A Thurston map f: S? — S? is expanding if the size of n-tiles
goes to 0 uniformly as n — oo; so we require

lim max diam(X") = 0.
n—o00 n-tile X"

This is:
@ independent of Jordan curve J,

e independent of the underlying base metric on S2.

Remark: A rational Thurston map R is expanding iff R has no
periodic critical points iff 7(R) = C for its Julia set.
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Invariant curves |

Problem. Let f be an expanding Thurston map. Does there exist
an f-invariant Jordan curve J with Pr C J?

Answer: No, in general!

Example:




Iterative construction of invariant curve for g
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Invariant curves Il

Theorem. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding
Thurston map. Then for each sufficiently high iterate f” there
exists a (forward-)invariant quasicircle C C S? with Ps = P C C.
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Invariant curves Il

Theorem. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding
Thurston map. Then for each sufficiently high iterate f” there
exists a (forward-)invariant quasicircle C C S? with Ps = P C C.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding
Thurston map. Then every sufficiently high iterate f” is described
by a subdivision rule.

Remark: If J C S%is an arbitrary Jordan curve with P C J, then

there exists n, and a quasicircle C isotopic to J rel. Pr s.t.
f7(C) CC.
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Subdivision rule for g




Thurston map h




Thurston map h

o #(Cn =06,
o #Pp=4,
@ Map h is described by a two-tile subdivision rule:

Combinatorial data specifying how the two level-0 tiles are
subdivided by 6 and 4 level-1 tiles, respectively.
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A basic problem

When is an expanding Thurston map f conjugate to a rational
map? So when is there a homeomorphism ¢: S — C and a
rational map R: C — C s.t.

s2 4y ¢
If IR
52 2y ¢
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A basic problem

When is an expanding Thurston map f conjugate to a rational
map? So when is there a homeomorphism ¢: S — C and a
rational map R: C — C s.t.

s2 4y ¢
If IR
52 2y ¢

Remark: The map h in the previous example is not conjugate to a
rational map.

15 /22



The visual sphere of a Thurston map

Proposition. Let f be an expanding Thurston map. Then there
exists a visual metric o on S? (unique up to snowflake equivalence)

s.t. for all n-tiles X",

o-diam(X") ~ A™",
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The visual sphere of a Thurston map

Proposition. Let f be an expanding Thurston map. Then there
exists a visual metric o on S? (unique up to snowflake equivalence)
s.t. for all n-tiles X",

o-diam(X") ~ A™",
where A > 1.

Two metrics 01 and g, are snowflake equivalent iff there ex. a > 0
s.t.
01~ 02"

Definition: The visual sphere of f is (52, o), where g is a visual
metric for f.
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The visual sphere of h
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Characterization of rational Thurston maps

Theorem. (B.-Meyer, Pilgrim-Haissinsky)

Let f: S2 — S2 be an expanding Thurston map, and (52, o) the
visual sphere of f.

Then f is conjugate to a rational map if and only if f has no
periodic crititical points and (52, ) is quasisymmetrically
equivalent to the standard sphere 2-sphere, i.e., C equipped with
the chordal metric.
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Quasisymmetric maps

A homeomorphism f: X — Y between metric spaces is (weakly-)
quasisymmetric (=qs) if there exists H > 1 s.t.

x =yl < |x =zl = |f(x) = fy)| < HIf(x) = f(2)|

for all x,y,z € X.
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Quasisymmetric maps

A homeomorphism f: X — Y between metric spaces is (weakly-)
quasisymmetric (=qs) if there exists H > 1 s.t.

x =yl < |x =zl = |f(x) = fy)| < HIf(x) = f(2)|

for all x,y,z € X.

@ f is quasisymmetric if it maps balls to “roundish” sets of
uniformly controlled eccentricity.

@ Quasisymmetry global version of quasiconformality.
@ bi-Lipschitz = gs = qc.

e InR", n>2: gs < qc.
Also true for “Loewner spaces” (Heinonen-Koskela).
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Cannon's conjecture

Version |: Suppose G is a Gromov hyperbolic group with
050G ~ S?. Then G admits an action on hyperbolic 3-space H3
that is discrete, cocompact, and isometric.

If true, the conjecture would give a characterization of
fundamental groups 71 (M) of closed hyperbolic 3-manifolds M
from the point of view of geometric group theory.



Cannon's conjecture

Version |: Suppose G is a Gromov hyperbolic group with
050G ~ S?. Then G admits an action on hyperbolic 3-space H3
that is discrete, cocompact, and isometric.

This is equivalent to:

Version |l: Suppose G is a Gromov hyperbolic group with
050G ~ S?. Then 05 G is gs-equivalent to S°.

If true, the conjecture would give a characterization of
fundamental groups 71 (M) of closed hyperbolic 3-manifolds M
from the point of view of geometric group theory.
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The quasisymmetric uniformization problem

Suppose X is a metric space homeomorphic to a “standard” metric
space Y. When is X gs-equivalent to Y7

@ Precise meaning of “standard” metric space depends on
context.

e Examples: Y =R", S”, standard 1/3-Cantor set C, etc.

e Case Y = S? particularly interesting in view of Cannon's
conjecture and the characterization of rational Thurston maps.
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Further directions

@ What are the special properties of subdivison rules associated
with rational Thurston maps?

@ Can one reprove Thurston's characterization of rational maps
using the combinatorial approach?

@ An expanding Thurston map need not have an invariant
Jordan curve containing the postcritical set Pr. Does there
always exist an invariant graph G D P¢?

@ Can one extend the theory of expanding Thurston maps to
Thurston maps that are only expanding on their “Julia sets”?
(Analog of subhyperbolic rational maps).
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