Lyapunov exponents and related concepts for entire functions

Walter Bergweiler

Christian-Albrechts-Universität zu Kiel

24098 Kiel, Germany

(joint work with Xiao Yao and Jianhua Zheng, Tsinghua University)

Parameter Problems in Analytic Dynamics

London, June 27 - July 1, 2016

Lyapunov exponents and related concepts for entire functions

Walter Bergweiler

Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany

(joint work with Xiao Yao and Jianhua Zheng, Tsinghua University)

Parameter Problems in Analytic Dynamics

London, June 27 - July 1, 2016

Lyapunov exponents and related concepts for entire functions

Walter Bergweiler

Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany

(joint work with Xiao Yao and Jianhua Zheng, Tsinghua University)

Parameter Problems in Analytic Dynamics

London, June 27 - July 1, 2016

f entire,

f entire, J(f) Julia set,

f entire, J(f) Julia set,

$$f^{\#} = \frac{|f'|}{1 + |f|^2}$$
 spherical derivative

f entire, J(f) Julia set,

$$f^{\#} = \frac{|f'|}{1 + |f|^2}$$
 spherical derivative

Marty:

f entire, J(f) Julia set,

$$f^{\#} = \frac{|f'|}{1 + |f|^2}$$
 spherical derivative

Marty: U open, $U \cap J(f) \neq \emptyset$

f entire, J(f) Julia set,

$$f^{\#} = \frac{|f'|}{1 + |f|^2}$$
 spherical derivative

Marty: U open, $U \cap J(f) \neq \emptyset \Rightarrow \sup_{z \in U} (f^n)^{\#}(z)$ unbounded

f entire, J(f) Julia set,

$$f^{\#} = \frac{|f'|}{1 + |f|^2}$$
 spherical derivative

Marty: U open, $U \cap J(f) \neq \emptyset \Rightarrow \sup_{z \in U} (f^n)^{\#}(z)$ unbounded

Questions: 1. How fast will $\sup_{z \in U} (f^n)^{\#}(z)$ tend to ∞ ?

f entire, J(f) Julia set,

$$f^{\#} = \frac{|f'|}{1 + |f|^2}$$
 spherical derivative

Marty: U open, $U \cap J(f) \neq \emptyset \Rightarrow \sup_{z \in U} (f^n)^{\#}(z)$ unbounded

- Questions: 1. How fast will $\sup_{z \in U} (f^n)^{\#}(z)$ tend to ∞ ?
 - 2. How fast can $(f^n)^{\#}(z)$ tend to ∞ for a point z?

f entire, J(f) Julia set,

$$f^{\#} = rac{|f'|}{1 + |f|^2}$$
 spherical derivative

Marty: U open, $U \cap J(f) \neq \emptyset \Rightarrow \sup_{z \in U} (f^n)^{\#}(z)$ unbounded

Questions: 1. How fast will $\sup_{z \in U} (f^n)^{\#}(z)$ tend to ∞ ?

2. How fast can $(f^n)^{\#}(z)$ tend to ∞ for a point z?

It is more systematical to consider

$$f^*(z) = |f'(z)| \frac{1+|z|^2}{1+|f(z)|^2} = f^{\#}(z)(1+|z|^2)$$

instead of $f^{\#}$

f entire, J(f) Julia set,

$$f^{\#} = \frac{|f'|}{1 + |f|^2}$$
 spherical derivative

Marty: U open, $U \cap J(f) \neq \emptyset \Rightarrow \sup_{z \in U} (f^n)^{\#}(z)$ unbounded

- Questions: 1. How fast will $\sup_{z \in U} (f^n)^{\#}(z)$ tend to ∞ ?
 - 2. How fast can $(f^n)^{\#}(z)$ tend to ∞ for a point z?

It is more systematical to consider

$$f^*(z) = |f'(z)| \frac{1+|z|^2}{1+|f(z)|^2} = f^{\#}(z)(1+|z|^2)$$

instead of $f^{\#}$, but this does not affect the growth rates considered.

Przytycki 1994:

$$\sup_{z\in\mathbb{C}}(f^n)^*(z)$$

$$\log\left(\sup_{z\in\mathbb{C}}(f^n)^*(z)\right)$$

$$\frac{1}{n}\log\left(\sup_{z\in\mathbb{C}}(f^n)^*(z)\right)$$

$$\limsup_{n\to\infty}\frac{1}{n}\log\left(\sup_{z\in\mathbb{C}}(f^n)^*(z)\right)$$

$$\limsup_{n\to\infty}\frac{1}{n}\log\left(\sup_{z\in\mathbb{C}}(f^n)^*(z)\right)=\sup_{z\in\mathbb{C}}\limsup_{n\to\infty}\frac{1}{n}\log(f^n)^*(z)$$

$$\limsup_{n\to\infty} \frac{1}{n} \log \left(\sup_{z\in\mathbb{C}} (f^n)^*(z) \right) = \sup_{z\in\mathbb{C}} \limsup_{n\to\infty} \frac{1}{n} \log (f^n)^*(z)$$

$$= \sup_{z \in Per(f)} \lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)$$

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z) \end{split}$$

$$\limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) = \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)}$$

$$= \sup_{z \in \operatorname{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)}$$

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f,z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f,z)} \end{split}$$

$$\chi(f,z) = \text{Lyapunov exponent,}$$

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \operatorname{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z) = \text{Lyapunov exponent}, \quad \text{Per}(f) = \text{set of periodic points}.$$

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \operatorname{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z)=$$
 Lyapunov exponent, $Per(f)=$ set of periodic points. $z\in Per(f)$:

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z)=$$
 Lyapunov exponent, $Per(f)=$ set of periodic points. $z\in Per(f): \quad f^p(z)=z, \ \lambda=(f^p)'(z)$

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z)=$$
 Lyapunov exponent, $\operatorname{Per}(f)=$ set of periodic points. $z\in\operatorname{Per}(f)\colon f^p(z)=z,\ \lambda=(f^p)'(z) \Rightarrow \chi(f,z)=rac{\log|\lambda|}{p}$

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z)=$$
 Lyapunov exponent, $\operatorname{Per}(f)=$ set of periodic points. $z\in\operatorname{Per}(f)\colon f^p(z)=z,\ \lambda=(f^p)'(z) \Rightarrow \chi(f,z)=rac{\log|\lambda|}{p}$

Eremenko, Levin 1990:

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f,z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f,z)} \end{split}$$

$$\chi(f,z) = \text{Lyapunov exponent}, \quad \text{Per}(f) = \text{set of periodic points}.$$

$$z \in \mathsf{Per}(f)$$
: $f^p(z) = z$, $\lambda = (f^p)'(z)$ \Rightarrow $\chi(f,z) = \frac{\log |\lambda|}{p}$

Eremenko, Levin 1990:

$$f \text{ polynomial } \Rightarrow \exists z \in \text{Per}(f) \colon \chi(f,z) \geqslant \log \deg(f)$$

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z) = \text{Lyapunov exponent}, \quad \text{Per}(f) = \text{set of periodic points}.$$

$$z \in \operatorname{Per}(f)$$
: $f^p(z) = z$, $\lambda = (f^p)'(z)$ \Rightarrow $\chi(f,z) = \frac{\log |\lambda|}{p}$

Eremenko, Levin 1990:

$$f \text{ polynomial } \Rightarrow \exists z \in \text{Per}(f) \colon \chi(f,z) \geqslant \log \deg(f)$$

Zdunik 2014:

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z) = \text{Lyapunov exponent}, \quad \text{Per}(f) = \text{set of periodic points}.$$

$$z \in \mathsf{Per}(f)$$
: $f^p(z) = z$, $\lambda = (f^p)'(z)$ \Rightarrow $\chi(f,z) = \frac{\log |\lambda|}{p}$

Eremenko, Levin 1990:

$$f \text{ polynomial } \Rightarrow \exists z \in \text{Per}(f) \colon \chi(f,z) \geqslant \log \deg(f)$$

Zdunik 2014:
$$f$$
 rational $\Rightarrow \exists z \in Per(f) : \chi(f,z) > \frac{1}{2} \log \deg(f)$

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \mathsf{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z) = \text{Lyapunov exponent}, \quad \text{Per}(f) = \text{set of periodic points}.$$

$$z \in \mathsf{Per}(f)$$
: $f^p(z) = z$, $\lambda = (f^p)'(z)$ \Rightarrow $\chi(f,z) = \frac{\log |\lambda|}{p}$

Eremenko, Levin 1990:

$$f \text{ polynomial } \Rightarrow \exists z \in \text{Per}(f) \colon \chi(f,z) \geqslant \log \deg(f)$$

Zdunik 2014:
$$f$$
 rational $\Rightarrow \exists z \in Per(f): \chi(f,z) > \frac{1}{2} \log \deg(f)$

Barrett, Eremenko 2013:

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \left(\sup_{z \in \mathbb{C}} (f^n)^*(z) \right) &= \sup_{z \in \mathbb{C}} \underbrace{\lim \sup_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \overline{\chi}(f, z)} \\ &= \sup_{z \in \operatorname{Per}(f)} \underbrace{\lim_{n \to \infty} \frac{1}{n} \log(f^n)^*(z)}_{=: \chi(f, z)} \end{split}$$

$$\chi(f,z) = \text{Lyapunov exponent}, \quad \text{Per}(f) = \text{set of periodic points}.$$

$$z \in \operatorname{Per}(f)$$
: $f^p(z) = z$, $\lambda = (f^p)'(z) \Rightarrow \chi(f,z) = \frac{\log |\lambda|}{p}$

Eremenko, Levin 1990:

$$f \text{ polynomial } \Rightarrow \exists z \in \text{Per}(f) \colon \chi(f,z) \geqslant \log \deg(f)$$

Zdunik 2014:
$$f$$
 rational $\Rightarrow \exists z \in Per(f): \chi(f,z) > \frac{1}{2} \log \deg(f)$

Barrett, Eremenko 2013: The constant $\frac{1}{2}$ is best possible here.

Theorem:

Idea of proof:

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$.

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

How fast can $(f^n)^{\#}(z)$ tend to ∞ ?

Example: $f(z) = e^z$,

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

How fast can $(f^n)^{\#}(z)$ tend to ∞ ?

Example: $f(z) = e^z$, $z_0 \in \mathbb{C}$ with $\chi(f, z_0) = \infty$,

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

How fast can $(f^n)^{\#}(z)$ tend to ∞ ?

Example: $f(z) = e^z$, $z_0 \in \mathbb{C}$ with $\chi(f, z_0) = \infty$, $z_n = f^n(z_0)$

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Example:
$$f(z) = e^z$$
, $z_0 \in \mathbb{C}$ with $\chi(f, z_0) = \infty$, $z_n = f^n(z_0)$

$$\Rightarrow 1 \leqslant (f^n)^{\#}(z_0)$$

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Example:
$$f(z) = e^z$$
, $z_0 \in \mathbb{C}$ with $\chi(f, z_0) = \infty$, $z_n = f^n(z_0)$

$$\Rightarrow 1 \leq (f^n)^{\#}(z_0) = \frac{\prod_{j=1}^{n} |z_j|}{1 + |z_n|^2}$$

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Example:
$$f(z) = e^z$$
, $z_0 \in \mathbb{C}$ with $\chi(f, z_0) = \infty$, $z_n = f^n(z_0)$

$$\Rightarrow 1 \leqslant (f^n)^{\#}(z_0) = \frac{\prod_{j=1}^n |z_j|}{1 + |z_n|^2} \leqslant \frac{\prod_{j=1}^{n-1} |z_j|}{|z_n|}$$

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Example:
$$f(z) = e^z$$
, $z_0 \in \mathbb{C}$ with $\chi(f, z_0) = \infty$, $z_n = f^n(z_0)$

$$\Rightarrow 1 \leqslant (f^n)^{\#}(z_0) = \frac{\prod_{j=1}^n |z_j|}{1 + |z_n|^2} \leqslant \frac{\prod_{j=1}^{n-1} |z_j|}{|z_n|}$$

$$\Rightarrow |z_n| \leqslant \prod_{j=1}^{n-1} |z_j|$$

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Example:
$$f(z) = e^z$$
, $z_0 \in \mathbb{C}$ with $\chi(f, z_0) = \infty$, $z_n = f^n(z_0)$

$$\Rightarrow 1 \leqslant (f^n)^{\#}(z_0) = \frac{\prod_{j=1}^n |z_j|}{1 + |z_n|^2} \leqslant \frac{\prod_{j=1}^{n-1} |z_j|}{|z_n|}$$

$$\Rightarrow |z_n| \leqslant \prod_{j=1}^{n-1} |z_j|$$

$$\Rightarrow |z_n| \leq \exp(c \cdot 2^n)$$

Idea of proof: There exists a sequence (z_k) of periodic points with that $\chi(f, z_k) \to \infty$. Suppose for simplicity the z_k are fixed points.

Choose z near z_1 such that $f^n(z)$ stays near z_1 for a long time, then "jumps" close to z_2 , stays there, jumps close to z_3 , etc.

Example:
$$f(z) = e^z$$
, $z_0 \in \mathbb{C}$ with $\chi(f, z_0) = \infty$, $z_n = f^n(z_0)$

$$\Rightarrow 1 \leqslant (f^n)^{\#}(z_0) = \frac{\prod_{j=1}^n |z_j|}{1 + |z_n|^2} \leqslant \frac{\prod_{j=1}^{n-1} |z_j|}{|z_n|}$$

$$\Rightarrow |z_n| \leqslant \prod_{j=1}^{n-1} |z_j|$$

$$\Rightarrow |z_n| \leq \exp(c \cdot 2^n)$$

$$\Rightarrow \limsup_{n\to\infty} \frac{1}{n} \log \log (f^n)^{\#}(z_0) \leqslant \log 2.$$

 $\mathcal{B} = \mathsf{Eremenko\text{-}Lyubich\ class}$

= transcendental entire functions with bounded set of critical and asymptotic values

= transcendental entire functions with bounded set of critical and asymptotic values

Theorem:

= transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$.

= transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log (f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

 transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

More generally:

= transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

More generally: $M(r, f) = \max_{|z|=r} |f(z)|$

= transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

 transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r}$$

 transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \text{lower order of } f$$

 transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

More generally: $M(r, f) = \max_{|z|=r} |f(z)| = \max_{z \in F} |f(z)|$

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \text{lower order of } f$$

Fact:

 transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \text{lower order of } f$$

Fact:
$$f \in \mathcal{B} \Rightarrow \lambda(f) \geqslant \frac{1}{2}$$
.

 transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

More generally: $M(r, f) = \max_{|z|=r} |f(z)| = \max_{z \in F} |f(z)|$

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \text{lower order of } f$$

Fact:
$$f \in \mathcal{B} \Rightarrow \lambda(f) \geqslant \frac{1}{2}$$
.

Theorem:

 $\mathcal{B} = \mathsf{Eremenko-Lyubich}$ class

 transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

More generally: $M(r, f) = \max_{|z|=r} |f(z)| = \max_{z \in F} |f(z)|$

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \text{lower order of } f$$

Fact:
$$f \in \mathcal{B} \Rightarrow \lambda(f) \geqslant \frac{1}{2}$$
.

Theorem:

$$f \in \mathcal{B} \Rightarrow \exists z \in J(f) \colon \liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log(1 + \lambda(f)).$$

 $\mathcal{B} = \mathsf{Eremenko-Lyubich}$ class

= transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log \frac{3}{2}$. This result is sharp.

More generally: $M(r, f) = \max_{|z|=r} |f(z)| = \max_{z \in F} |f(z)|$

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \text{lower order of } f$$

Fact:
$$f \in \mathcal{B} \Rightarrow \lambda(f) \geqslant \frac{1}{2}$$
.

Theorem:

$$f \in \mathcal{B} \Rightarrow \exists z \in J(f) \colon \liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log(1 + \lambda(f)).$$

The exponential function shows that this is sharp if $\lambda(f) = 1$

 $\mathcal{B} = \mathsf{Eremenko-Lyubich}$ class

= transcendental entire functions with bounded set of critical and asymptotic values

Theorem: $f \in \mathcal{B} \Rightarrow \exists z \in J(f)$: $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \ge \log \frac{3}{2}$. This result is sharp.

More generally: $M(r, f) = \max_{|z|=r} |f(z)| = \max_{z \in F} |f(z)|$

$$\lambda(f) = \liminf_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \text{lower order of } f$$

Fact:
$$f \in \mathcal{B} \Rightarrow \lambda(f) \geqslant \frac{1}{2}$$
.

Theorem:

$$f \in \mathcal{B} \Rightarrow \exists z \in J(f) \colon \liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log(1 + \lambda(f)).$$

The exponential function shows that this is sharp if $\lambda(f) = 1$ – and there are examples for all other values of $\lambda(f)$.

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

Theorem:

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

Theorem: *U* open, $U \cap J(f) \neq \emptyset$, R > 0

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

Theorem:
$$U$$
 open, $U \cap J(f) \neq \emptyset$, $R > 0$
 $\Rightarrow \exists m \in \mathbb{N} : \sup_{z \in U} (f^n)^{\#}(z) \geqslant \log M^{n-m}(R, f)$

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

Theorem:
$$U$$
 open, $U \cap J(f) \neq \emptyset$, $R > 0$
 $\Rightarrow \exists m \in \mathbb{N} : \sup_{z \in U} (f^n)^{\#}(z) \geqslant \log M^{n-m}(R, f)$

E.g. for $f(z) = e^z$ this growth is much faster than that given by $\liminf_{n \to \infty} \frac{1}{n} \log \log (f^n)^\#(z) \geqslant \log (1 + \lambda(f)).$

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

Theorem:
$$U$$
 open, $U \cap J(f) \neq \emptyset$, $R > 0$
 $\Rightarrow \exists m \in \mathbb{N} : \sup_{z \in U} (f^n)^{\#}(z) \geqslant \log M^{n-m}(R, f)$

E.g. for $f(z) = e^z$ this growth is much faster than that given by $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \ge \log(1 + \lambda(f)).$

Ideas of proof:

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

Theorem:
$$U$$
 open, $U \cap J(f) \neq \emptyset$, $R > 0$
 $\Rightarrow \exists m \in \mathbb{N} : \sup_{z \in U} (f^n)^{\#}(z) \geqslant \log M^{n-m}(R, f)$

E.g. for $f(z) = e^z$ this growth is much faster than that given by $\liminf_{n \to \infty} \frac{1}{n} \log \log(f^n)^\#(z) \geqslant \log(1 + \lambda(f)).$

Ideas of proof: Sketch that there exists z satisfying last equation

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

Theorem:
$$U$$
 open, $U \cap J(f) \neq \emptyset$, $R > 0$
 $\Rightarrow \exists m \in \mathbb{N} : \sup_{z \in U} (f^n)^{\#}(z) \geqslant \log M^{n-m}(R, f)$

E.g. for $f(z) = e^z$ this growth is much faster than that given by

$$\liminf_{n\to\infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log(1+\lambda(f)).$$

Ideas of proof: Sketch that there exists z satisfying last equation, for $f \in \mathcal{B}$.

In contrast to Przytycki's result for rational f, for entire f this grows much faster than $(f^n)^{\#}(z)$ for individual points z.

Let $M^n(r, f)$ be the iterate of M(r, f) with respect to r:

$$M^{1}(r, f) = M(r, f)$$
 and $M^{n+1}(r, f) = M(M^{n}(r, f), f)$.

For large R we have $M^n(R, f) \to \infty$.

Theorem:
$$U$$
 open, $U \cap J(f) \neq \emptyset$, $R > 0$
 $\Rightarrow \exists m \in \mathbb{N} : \sup_{z \in U} (f^n)^{\#}(z) \geqslant \log M^{n-m}(R, f)$

E.g. for $f(z) = e^z$ this growth is much faster than that given by

$$\liminf_{n\to\infty} \frac{1}{n} \log \log(f^n)^{\#}(z) \geqslant \log(1+\lambda(f)).$$

Ideas of proof: Sketch that there exists z satisfying last equation, for $f \in \mathcal{B}$. Use logarithmic change of variable.

Let $f \in \mathcal{B}$, with critical and asymptotic values in $\{z : |z| < R\}$.

Let $f \in \mathcal{B}$, with critical and asymptotic values in $\{z \colon |z| < R\}$. Assume |f(0)| < R.

Put $W = \exp^{-1}(A)$ and $H = \{z : \operatorname{Re} z > \log R\}$.

Put $W = \exp^{-1}(A)$ and $H = \{z \colon \operatorname{Re} z > \log R\}$.

Put $W = \exp^{-1}(A)$ and $H = \{z : \operatorname{Re} z > \log R\}.$

Can lift f to map $F: W \to H$, and F maps every component of W univalently onto H.

Put $W = \exp^{-1}(A)$ and $H = \{z : \operatorname{Re} z > \log R\}.$

Can lift f to map $F: W \to H$, and F maps every component of W univalently onto H. This is the *logarithmic change of variable*.

Koebe's theorem:

Koebe's theorem: $\frac{1}{4} |(F^{-1})'(w)| \operatorname{Re} w$

 ${\sf Koebe's\ theorem:} \quad \frac{1}{4}|(F^{-1})'(w)|\ {\sf Re}\ w\leqslant {\sf dist}(z,\partial U)$

 $\text{Koebe's theorem:} \quad \frac{1}{4} |(F^{-1})'(w)| \operatorname{Re} w \leqslant \operatorname{dist}(z, \partial U) \leqslant \pi.$

Koebe's theorem: $\frac{1}{4}|(F^{-1})'(w)| \operatorname{Re} w \leq \operatorname{dist}(z, \partial U) \leq \pi.$

$$\Rightarrow |F'(z)| \geqslant \frac{1}{4\pi} \operatorname{Re} F(z).$$

$$\text{Koebe's theorem:} \quad \frac{1}{4} |(F^{-1})'(w)| \operatorname{Re} w \leqslant \operatorname{dist}(z, \partial U) \leqslant \pi.$$

$$\Rightarrow |F'(z)| \geqslant \frac{1}{4\pi} \operatorname{Re} F(z).$$

$$\text{Koebe's theorem:} \quad \frac{1}{4} |(F^{-1})'(w)| \operatorname{Re} w \leqslant \operatorname{dist}(z, \partial U) \leqslant \pi.$$

$$\Rightarrow |F'(z)| \geqslant \frac{1}{4\pi} \operatorname{Re} F(z).$$

$$\text{Koebe's theorem:} \quad \frac{1}{4} |(F^{-1})'(w)| \operatorname{Re} w \leqslant \operatorname{dist}(z, \partial U) \leqslant \pi.$$

$$\Rightarrow |F'(z)| \geqslant \frac{1}{4\pi} \operatorname{Re} F(z).$$

$$\text{Koebe's theorem:} \quad \frac{1}{4} |(F^{-1})'(w)| \operatorname{Re} w \leqslant \operatorname{dist}(z, \partial U) \leqslant \pi.$$

$$\Rightarrow |F'(z)| \geqslant \frac{1}{4\pi} \operatorname{Re} F(z).$$

 $\text{Koebe's theorem:} \quad \frac{1}{4} |(F^{-1})'(w)| \operatorname{Re} w \leqslant \operatorname{dist}(z, \partial U) \leqslant \pi.$

$$\Rightarrow |F'(z)| \geqslant \frac{1}{4\pi} \operatorname{Re} F(z).$$

 $\text{Koebe's theorem:} \quad \frac{1}{4} |(F^{-1})'(w)| \operatorname{Re} w \leqslant \operatorname{dist}(z, \partial U) \leqslant \pi.$

$$\Rightarrow |F'(z)| \geqslant \frac{1}{4\pi} \operatorname{Re} F(z).$$

Lemma: For p in the straight line connecting z to ∂U we have $|F'(p)| \geqslant \frac{1}{8\pi} \operatorname{Re} F(z)$.

Proof: Harnack's inequality for positive harmonic function Re F(z).

There are points u_0 such that $\operatorname{Re} F^n(u_0)$ behaves in a prescribed way

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^{\#}(z_0)\geqslant\log(1+\lambda(f)).$$

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^{\#}(z_0)\geqslant\log(1+\lambda(f)).$$

The example $f(z) = e^z$ suggests to choose $z_0 = e^{u_0}$ with Re $F^n(u_0) \approx (1 + \lambda(f))^n$.

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^{\#}(z_0)\geqslant\log(1+\lambda(f)).$$

The example $f(z) = e^z$ suggests to choose $z_0 = e^{u_0}$ with $\operatorname{Re} F^n(u_0) \approx (1 + \lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

$$\liminf_{n\to\infty} \frac{1}{n} \log \log (f^n)^{\#}(z_0) \geqslant \log (1+\lambda(f)).$$

The example $f(z)=e^z$ suggests to choose $z_0=e^{u_0}$ with $\operatorname{Re} F^n(u_0)\approx (1+\lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let $\alpha < \beta < \lambda(f)$.

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^\#(z_0)\geqslant\log(1+\lambda(f)).$$

The example $f(z)=e^z$ suggests to choose $z_0=e^{u_0}$ with $\operatorname{Re} F^n(u_0)\approx (1+\lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let
$$\alpha < \beta < \lambda(f)$$
. Then $\log M(r, f) \geqslant r^{\beta}$

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^\#(z_0)\geqslant\log(1+\lambda(f)).$$

The example $f(z) = e^z$ suggests to choose $z_0 = e^{u_0}$ with $\operatorname{Re} F^n(u_0) \approx (1 + \lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let $\alpha < \beta < \lambda(f)$. Then $\log M(r, f) \ge r^{\beta}$, and this translates to

$$\max_{\text{Re } z=x} \text{Re } F(z) \geqslant e^{\beta x}.$$

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^\#(z_0)\geqslant\log(1+\lambda(f)).$$

The example $f(z)=e^z$ suggests to choose $z_0=e^{u_0}$ with $\operatorname{Re} F^n(u_0)\approx (1+\lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let $\alpha < \beta < \lambda(f)$. Then $\log M(r, f) \ge r^{\beta}$, and this translates to

$$\max_{\text{Re }z=x} \text{Re } F(z) \geqslant e^{\beta x}.$$

The lemma yields that with $u_k = F^k(u_0)$ we can achieve that

$$|F'(u_k)| \lessapprox \max_{\operatorname{Re} z = \operatorname{Re} u_k} \operatorname{Re} F(z)$$

$$\liminf_{n\to\infty} \frac{1}{n} \log \log (f^n)^{\#}(z_0) \geqslant \log (1+\lambda(f)).$$

The example $f(z)=e^z$ suggests to choose $z_0=e^{u_0}$ with $\operatorname{Re} F^n(u_0)\approx (1+\lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let $\alpha < \beta < \lambda(f)$. Then $\log M(r, f) \ge r^{\beta}$, and this translates to

$$\max_{\text{Re }z=x} \text{Re } F(z) \geqslant e^{\beta x}.$$

The lemma yields that with $u_k = F^k(u_0)$ we can achieve that

$$|F'(u_k)| \lessapprox \max_{\mathsf{Re}\, z = \mathsf{Re}\, u_k} \mathsf{Re}\, F(z) \lessapprox e^{\beta\,\mathsf{Re}\, u_k}$$

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^\#(z_0)\geqslant\log(1+\lambda(f)).$$

The example $f(z)=e^z$ suggests to choose $z_0=e^{u_0}$ with $\operatorname{Re} F^n(u_0)\approx (1+\lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let $\alpha < \beta < \lambda(f)$. Then $\log M(r, f) \ge r^{\beta}$, and this translates to

$$\max_{\text{Re }z=x} \text{Re } F(z) \geqslant e^{\beta x}.$$

The lemma yields that with $u_k = F^k(u_0)$ we can achieve that

$$|F'(u_k)| \gtrsim \max_{\operatorname{Re} z = \operatorname{Re} u_k} \operatorname{Re} F(z) \gtrsim e^{\beta \operatorname{Re} u_k} \approx \exp(\beta (1 + \alpha)^k).$$

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^\#(z_0)\geqslant\log(1+\lambda(f)).$$

The example $f(z) = e^z$ suggests to choose $z_0 = e^{u_0}$ with Re $F^n(u_0) \approx (1 + \lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let $\alpha < \beta < \lambda(f)$. Then $\log M(r, f) \ge r^{\beta}$, and this translates to

$$\max_{\mathsf{Re}\,z=x} \mathsf{Re}\,F(z) \geqslant e^{\beta x}.$$

The lemma yields that with $u_k = F^k(u_0)$ we can achieve that

$$|F'(u_k)| \gtrapprox \max_{\operatorname{Re} z = \operatorname{Re} u_k} \operatorname{Re} F(z) \gtrapprox e^{\beta \operatorname{Re} u_k} \approx \exp \Big(\beta (1 + \alpha)^k \Big) \,.$$

This implies that

$$|(F^n)'(u_0)| = \prod_{k=0}^{n-1} |F'(u_k)|$$

$$\liminf_{n\to\infty} \frac{1}{n} \log \log(f^n)^{\#}(z_0) \geqslant \log(1+\lambda(f)).$$

The example $f(z) = e^z$ suggests to choose $z_0 = e^{u_0}$ with Re $F^n(u_0) \approx (1 + \lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let $\alpha < \beta < \lambda(f)$. Then $\log M(r, f) \ge r^{\beta}$, and this translates to

$$\max_{\mathsf{Re}\,z=x} \mathsf{Re}\,F(z) \geqslant e^{\beta x}.$$

The lemma yields that with $u_k = F^k(u_0)$ we can achieve that

$$|F'(u_k)| \gtrsim \max_{\operatorname{Re} z = \operatorname{Re} u_k} \operatorname{Re} F(z) \gtrsim e^{\beta \operatorname{Re} u_k} \approx \exp(\beta (1 + \alpha)^k).$$

This implies that

$$|(F^n)'(u_0)| = \prod_{k=0}^{n-1} |F'(u_k)| \gtrsim \exp\left(\sum_{k=0}^{n-1} \beta(1+\alpha)^k\right)$$

$$\liminf_{n\to\infty} \frac{1}{n} \log \log (f^n)^{\#}(z_0) \geqslant \log (1+\lambda(f)).$$

The example $f(z) = e^z$ suggests to choose $z_0 = e^{u_0}$ with Re $F^n(u_0) \approx (1 + \lambda(f))^n$. We will actually choose

Re
$$F^n(u_0) \approx (1 + \alpha)^n$$
 with $\alpha < \lambda(f)$.

Let $\alpha < \beta < \lambda(f)$. Then $\log M(r, f) \geqslant r^{\beta}$, and this translates to

$$\max_{\mathsf{Re}\,z=x} \mathsf{Re}\,F(z) \geqslant e^{\beta x}.$$

The lemma yields that with $u_k = F^k(u_0)$ we can achieve that

$$|F'(u_k)| \gtrsim \max_{\operatorname{Re} z = \operatorname{Re} u_k} \operatorname{Re} F(z) \gtrsim e^{\beta \operatorname{Re} u_k} \approx \exp(\beta (1 + \alpha)^k).$$

This implies that

$$|(F^n)'(u_0)| = \prod_{k=0}^{n-1} |F'(u_k)| \gtrsim \exp\left(\sum_{k=0}^{n-1} \beta(1+\alpha)^k\right) \approx \exp\left(\frac{\beta}{\alpha}(1+\alpha)^n\right).$$

11 / 12

$$\operatorname{Re} F^n(u_0) \approx (1+\alpha)^n \quad \text{and} \quad |(F^n)'(u_0)| \gtrapprox \exp\biggl(\frac{\beta}{\alpha}(1+\alpha)^n\biggr) \,.$$

$$\operatorname{Re} F^n(u_0) \approx (1+\alpha)^n$$
 and $|(F^n)'(u_0)| \gtrsim \exp\left(\frac{\beta}{\alpha}(1+\alpha)^n\right)$.

Since $\exp F(u) = f(e^u)$ we have, with $z_0 = e^{u_0}$,

$$|f^n(z_0)| \approx \exp(\operatorname{Re} F^n(u_0)) \approx \exp((1+\alpha)^n)$$

$$\operatorname{Re} F^n(u_0) \approx (1+\alpha)^n$$
 and $|(F^n)'(u_0)| \gtrsim \exp\left(\frac{\beta}{\alpha}(1+\alpha)^n\right)$.

Since $\exp F(u) = f(e^u)$ we have, with $z_0 = e^{u_0}$,

$$|f^n(z_0)| \approx \exp(\operatorname{Re} F^n(u_0)) \approx \exp((1+\alpha)^n)$$

and

$$|(f^n)'(z_0)| = \frac{1}{|z_0|} |f^n(z_0)| \cdot |(F^n)'(u_0)| \gtrsim |f^n(z_0)| \exp\left(\frac{\beta}{\alpha} (1+\alpha)^n\right).$$

$$\operatorname{\mathsf{Re}} F^n(u_0) pprox (1+lpha)^n \quad ext{and} \quad |(F^n)'(u_0)| \gtrapprox \exp\left(rac{eta}{lpha}(1+lpha)^n
ight).$$

Since $\exp F(u) = f(e^u)$ we have, with $z_0 = e^{u_0}$,

$$|f^n(z_0)| \approx \exp(\operatorname{Re} F^n(u_0)) \approx \exp((1+\alpha)^n)$$

and

$$|(f^n)'(z_0)| = \frac{1}{|z_0|} |f^n(z_0)| \cdot |(F^n)'(u_0)| \gtrsim |f^n(z_0)| \exp\left(\frac{\beta}{\alpha} (1+\alpha)^n\right).$$

This yields

$$(f^n)^{\#}(z_0) pprox \frac{|(f^n)'(z_0)|}{|f^n(z_0)|^2} \gtrapprox \exp\left(\left(\frac{\beta}{\alpha} - 1\right)(1 + \alpha)^n\right).$$

$$\operatorname{\mathsf{Re}} F^n(u_0) pprox (1+lpha)^n \quad \operatorname{\mathsf{and}} \quad |(F^n)'(u_0)| \gtrapprox \exp\left(rac{eta}{lpha}(1+lpha)^n
ight).$$

Since $\exp F(u) = f(e^u)$ we have, with $z_0 = e^{u_0}$,

$$|f^n(z_0)| \approx \exp(\operatorname{Re} F^n(u_0)) \approx \exp((1+\alpha)^n)$$

and

$$|(f^n)'(z_0)| = \frac{1}{|z_0|} |f^n(z_0)| \cdot |(F^n)'(u_0)| \gtrsim |f^n(z_0)| \exp\left(\frac{\beta}{\alpha}(1+\alpha)^n\right).$$

This yields

$$(f^n)^{\#}(z_0) pprox rac{|(f^n)'(z_0)|}{|f^n(z_0)|^2} \gtrapprox \exp\left(\left(rac{eta}{lpha} - 1
ight)(1+lpha)^n\right).$$

Hence

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^{\#}(z_0)\geqslant\log(1+\alpha).$$

$$\operatorname{Re} F^n(u_0) \approx (1+\alpha)^n$$
 and $|(F^n)'(u_0)| \gtrsim \exp\left(\frac{\beta}{\alpha}(1+\alpha)^n\right)$.

Since $\exp F(u) = f(e^u)$ we have, with $z_0 = e^{u_0}$,

$$|f^n(z_0)| \approx \exp(\operatorname{Re} F^n(u_0)) \approx \exp((1+\alpha)^n)$$

and

$$|(f^n)'(z_0)| = \frac{1}{|z_0|} |f^n(z_0)| \cdot |(F^n)'(u_0)| \gtrsim |f^n(z_0)| \exp\left(\frac{\beta}{\alpha} (1+\alpha)^n\right).$$

This yields

$$(f^n)^{\#}(z_0) pprox rac{|(f^n)'(z_0)|}{|f^n(z_0)|^2} \gtrapprox \exp\left(\left(rac{eta}{lpha} - 1
ight)(1+lpha)^n\right).$$

Hence

$$\liminf_{n\to\infty}\frac{1}{n}\log\log(f^n)^{\#}(z_0)\geqslant\log(1+\alpha).$$

Actually will choose $\alpha = \alpha_n \to \lambda(f)$ and $\beta = \beta_n \to \lambda(f)$.

Thank you very much for your attention

Thank you very much for your attention

Gelukkige verjaardag, Sebastian!