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Assume |f(0)] < R. Let A be a component of f~1({z: |z| > R}).

— H
A
W

Y
S

Put W = exp~!(A) and H = {z: Rez > log R}.

Can lift f to map F: W — H, and F maps every component of W
univalently onto H. This is the logarithmic change of variable.
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Koebe's theorem: %KF_I)/(W)‘ Rew < dist(z,0U) < 7.
1
/ 2 _ .
= |F'(2)] o Re F(z)

Lemma: For p in the straight line connecting z to dU we have
1
F’ > — Re F(2).
F(p)] > 5 ReF(2)

Proof: Harnack's inequality for positive harmonic function Re F(z).
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Since exp F(u) = f(e") we have, with zg = e*°,

[#(20)] ~ exp(Re F"(uo)) ~ exp((1+)")

and
(7Y @)l = 1)l [P o) 2 [Pl B2 ).
This yields
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(")~ s 2wl (- ).

Hence

||m|nf Ioglog(f") (20) = log(1 + o).

Actually will choose o = a, > A(f) and 8 = B, — A(f).
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