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INTRODUCTION

INTRODUCTION

A holomorphic germ f : (Cn,O)→ (Cn,O) is tangent to the identity if
dfO = id, that is if it can be written as

f (z) = z + Pν+1(z) + · · ·

where ν + 1 ≥ 2 is the order of f , and Pν+1 6≡ O is a n-uple of homogeneous
polynomials of degree ν + 1 ≥ 2.
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A holomorphic germ f : (Cn,O)→ (Cn,O) is tangent to the identity if
dfO = id, that is if it can be written as

f (z) = z + Pν+1(z) + · · ·

where ν + 1 ≥ 2 is the order of f , and Pν+1 6≡ O is a n-uple of homogeneous
polynomials of degree ν + 1 ≥ 2.

Goal: to describe (at least topologically) the dynamics in a full neighborhood
of the origin.
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INTRODUCTION

INTRODUCTION (n = 1)

Leau-Fatou flower theorem (1920).
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INTRODUCTION (n = 1)

f (z) = z− z3

MARCO ABATE (UNIVERSITÀ DI PISA) MAPS TANGENT TO THE IDENTITY LONDON 2016 3 / 32



INTRODUCTION

INTRODUCTION (n = 1)

Leau-Fatou flower theorem (1920).
Remark: the number of (attracting or repelling) petals is equal to ν.
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INTRODUCTION

INTRODUCTION (n = 1)

Leau-Fatou flower theorem (1920).

Camacho’s theorem (1978): the germ f is topologically locally conjugated to
the time-1 map f0 of the homogeneous vector field zν+1 ∂

∂z , given by

f0(z) =
z

(1− νzν)1/ν .
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INTRODUCTION (n = 1)

Leau-Fatou flower theorem (1920).

Camacho’s theorem (1978): the germ f is topologically locally conjugated to
the time-1 map f0 of the homogeneous vector field zν+1 ∂

∂z , given by

f0(z) =
z

(1− νzν)1/ν .

Thus in dimension one the topological local dynamics is completely
determined by the order, and time-1 maps of homogeneous vector fields
provide a complete list of models.
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INTRODUCTION

INTRODUCTION (n ≥ 2)

Aim of this talk is to advertise a geometric approach that in principle might
lead to a description of the local topological dynamics in a full neighborhood
of the origin for generic germs — and that surely works for time-1 maps of
(even non-generic) homogeneous vector fields.
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INTRODUCTION

INTRODUCTION (n ≥ 2)

Aim of this talk is to advertise a geometric approach that in principle might
lead to a description of the local topological dynamics in a full neighborhood
of the origin for generic germs.

The ingredients we are going to use are:

a singular holomorphic foliation in Riemann surfaces of Pn−1(C);

two meromorphic connections defined along the leaves of the foliation;

the real geodesic flow along the leaves induced by the connections.
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INTRODUCTION

INTRODUCTION (n ≥ 2)

Aim of this talk is to advertise a geometric approach that in principle might
lead to a description of the local topological dynamics in a full neighborhood
of the origin for generic germs.

Results already obtained:

description of the dynamics for many families of examples;

discovery of unexpected examples, and explanation of previously known
puzzling examples;

explanation of why the case n ≥ 3 is substantially more difficult than the
case n = 2;

suggestion of many related (and interesting) open questions.
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INTRODUCTION

INTRODUCTION (n ≥ 2)

Aim of this talk is to advertise a geometric approach that in principle might
lead to a description of the local topological dynamics in a full neighborhood
of the origin for generic germs.

Results already obtained:

description of the dynamics for many families of examples;

discovery of unexpected examples, and explanation of previously known
puzzling examples;

explanation of why the case n ≥ 3 is substantially more difficult than the
case n = 2;

suggestion of many related (and interesting) open questions.

Joint work with F. Tovena (Roma Tor Vergata) and F. Bianchi (Pisa-Toulouse).
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INTRODUCTION

INTRODUCTION (n ≥ 2)

A parabolic curve for a germ f tangent to the identity is a injective
holomorphic curve ϕ : Ω→ U \ {O} such that:

Ω ⊂ C is a simply connected domain with 0 ∈ ∂Ω;

ϕ is continuous at 0 and ϕ(0) = O;

ϕ(Ω) is f -invariant;

{f k|ϕ(Ω)} converges to O as k→ +∞.
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A parabolic curve for a germ f tangent to the identity is a injective
holomorphic curve ϕ : Ω→ U \ {O} such that:

Ω ⊂ C is a simply connected domain with 0 ∈ ∂Ω;

ϕ is continuous at 0 and ϕ(0) = O;

ϕ(Ω) is f -invariant;

{f k|ϕ(Ω)} converges to O as k→ +∞.

Let [·] : Cn \ {O} → Pn−1(C) be the canonical projection.

A parabolic curve ϕ is tangent to [v] ∈ Pn−1(C) if [ϕ(ζ)]→ [v] as ζ → 0.

A Fatou flower is a set of ν disjoint parabolic curves tangent to the same
direction [v], where ν + 1 is the order of f .
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INTRODUCTION

INTRODUCTION (n ≥ 2)

Let f (z) = z + Pν+1(z) + · · · .
A direction [v] ∈ Pn−1(C) is characteristic if Pν+1(v) = λv for some λ ∈ C;
it is degenerate if λ = 0, non-degenerate otherwise.

THEOREM (ÉCALLE, 1985; HAKIM, 1998)

Let f : (Cn,O)→ (Cn,O) be tangent to the identity at O ∈ Cn, and
[v] ∈ Pn−1(C) a non-degenerate characteristic direction. Then f admits a
Fatou flower tangent to [v].
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Remark: f is dicritical if all directions are characteristic.
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Parabolic curves are 1-dimensional objects inside an n-dimensional space.
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Let f : (Cn,O)→ (Cn,O) be tangent to the identity at O ∈ Cn, and
[v] ∈ Pn−1(C) a non-degenerate characteristic direction. Then f admits a
Fatou flower tangent to [v].

Parabolic curves are 1-dimensional objects inside an n-dimensional space.

Hakim (1998) has given sufficient conditions for the existence of
k-dimensional parabolic manifolds. Her work has been later extended and
generalized; see, e.g., Vivas (2012), Rong (2014), Lapan (2015), . . .
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INTRODUCTION

INTRODUCTION (n ≥ 2)

THEOREM (ÉCALLE, 1985; HAKIM, 1998)

Let f : (Cn,O)→ (Cn,O) be tangent to the identity at O ∈ Cn, and
[v] ∈ Pn−1(C) a non-degenerate characteristic direction. Then f admits a
Fatou flower tangent to [v].

Parabolic curves are 1-dimensional objects inside an n-dimensional space.

Hakim (1998) has given sufficient conditions for the existence of
k-dimensional parabolic manifolds. Her work has been later extended and
generalized; see, e.g., Vivas (2012), Rong (2014), Lapan (2015), . . .

But even when k = n these techniques are not enough for describing the
dynamics in a full neighborhood of the origin; new techniques are needed.
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GEOMETRY OF FIXED POINT SETS

BLOWING UP

Let π : (M, S)→ (Cn,O) be the blow-up of the origin in Cn. The exceptional
divisor S = π−1(O) can be identified with Pn−1(C).

Any germ fo : (Cn,O)→ (Cn,O) tangent to the identity can be lifted to a
holomorphic self-map f : (M, S)→ (M, S) fixing pointwise the exceptional
divisor.

To study the dynamics of fo in a neighborhood of the origin is equivalent to
study the dynamics of f in a neighborhood of S; e.g., (characteristic)
directions for fo becomes (special) points in S.
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GEOMETRY OF FIXED POINT SETS

ORDER OF CONTACT

Let f : M → M be a holomorphic self-map of a complex n-dimensional
manifold M leaving a complex smooth hypersurface S ⊂ M pointwise fixed
(actually, it suffices having f defined in a neighborhood of S).

We denote by OM the sheaf of germs of of holomorphic functions on M, and
by IS the ideal subsheaf of germs of holomorphic functions vanishing on S.

REMARK

If fo has order ν + 1 then

νf =

{
ν if fo is non-dicritical,
ν + 1 if fo is dicritical.
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manifold M leaving a complex smooth hypersurface S ⊂ M pointwise fixed.
We denote by OM the sheaf of germs of of holomorphic functions on M, and
by IS the ideal subsheaf of germs of holomorphic functions vanishing on S.
Given p ∈ S and h ∈ OM,p, set

νf (h; p) = max
{
µ ∈ N

∣∣ h ◦ f − h ∈ IµS,p
}
.

The order of contact of f with S is

νf = min{νf (h; p) | h ∈ OM,p} .
It is independent of p.
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GEOMETRY OF FIXED POINT SETS

CANONICAL MORPHISM

In coordinates (U, z) adapted to S, that is such that S ∩ U = {z1 = 0}, setting
f j = zj ◦ f we can write

f j(z) = zj + (z1)νf gj(z) ,

where z1 does not divide at least one gj, for j = 1, . . . , n.
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In coordinates (U, z) adapted to S, that is such that S ∩ U = {z1 = 0}, setting
f j = zj ◦ f we can write

f j(z) = zj + (z1)νf gj(z) ,

where z1 does not divide at least one gj, for j = 1, . . . , n.

The gj’s depend on the local coordinates. However, if we set

X̃f =
n∑

j=1

gj ∂

∂zj ⊗ (dz1)⊗νf

then Xf = X̃f |S is independent of the local coordinates, and defines a global
canonical section of the bundle TM|S ⊗ (N∗S )⊗νf , where NS is the normal
bundle of S in M, and thus a canonical morphism Xf : N⊗νf

S → TM|S.
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GEOMETRY OF FIXED POINT SETS

CANONICAL FOLIATION

We say that f is tangential if the image of Xf is contained in TS. In coordinates
adapted to S, this is equivalent to requiring g1|S ≡ 0, that is to z1|g1.

REMARK

When n = 2, S is a Riemann surface; so the canonical foliation reduces to the
data of its singular points. This is the reason why (as we’ll see) the dynamics
in dimension 2 is substantially simpler to study than the dynamics in
dimension n ≥ 3.
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GEOMETRY OF FIXED POINT SETS

PARTIAL MEROMORPHIC CONNECTIONS

Assume we have a complex vector bundle F on a complex manifold S, and a
morphism X : F → TS. Let E be another complex vector bundle on S, and
denote by E (respectively, F) the sheaf of germs of holomorphic sections of E
(respectively, F).
A partial meromorphic connection on E along X is a C-linear map
∇ : E → F∗ ⊗ E satisfying the Leibniz condition

∇(hs) = (dh ◦ X)⊗ s + h∇s

for every h ∈ OS and s ∈ E . In other words, we can differentiate the sections
of E only along directions in X(F). The poles of the connection are the points
where X is not injective.
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GEOMETRY OF FIXED POINT SETS

PARTIAL MEROMORPHIC CONNECTIONS

In the tangential case, we can take F = N⊗νf
S and X = Xf . Then we get:

a partial meromorphic connection∇ on E = NS along Xf by setting

∇u(s) = π
(
[X̃f (ũ), s̃]|S

)
where: s ∈ NS; u ∈ N⊗νf

S ; π : TM,S → NS is the canonical projection; s̃
is any element in TM,S such that π(s̃) = s; and ũ is any element of T ⊗νf

M,S
such that π(ũ) = u. Small miracle: ∇ is independent of all the choices.

a partial meromorphic connection, still denoted by∇, on N⊗νf
S along Xf ;

a partial meromorphic connection∇o on the tangent bundle to the
foliation Ff along the identity
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a partial meromorphic connection∇ on E = NS along Xf

a partial meromorphic connection, still denoted by∇, on N⊗νf
S along Xf ;

a partial meromorphic connection∇o on the tangent bundle to the
foliation Ff along the identity by setting

∇o
vs = Xf

(
∇X−1

f (v)X
−1
f (s)

)
.

Notice that∇o induces a (classical) meromorphic connection on each
leaf of the canonical foliation.
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GEOMETRY OF FIXED POINT SETS

PARTIAL MEROMORPHIC CONNECTIONS

In the tangential case, we can take F = N⊗νf
S and X = Xf . Then we get:

a partial meromorphic connection∇ on E = NS along Xf

a partial meromorphic connection, still denoted by∇, on N⊗νf
S along Xf ;

a partial meromorphic connection∇o on the tangent bundle to the
foliation Ff along the identity.

In local coordinates (U, z) adapted to S (that is, U ∩ S = {z1 = 0}) and to Ff

(that is a leaf is given by {z3 = cst., . . . , zn = cst.}), ∇ is represented by the
meromorphic 1-form

η = − νf
1
g2
∂g1

∂z1

∣∣∣∣
S

dz2 ,

while∇o is represented by the meromorphic 1-form

ηo = η − 1
g2
∂g2

∂z2

∣∣∣∣
S

dz2 .
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GEOMETRY OF FIXED POINT SETS

GEODESICS

A geodesic is a smooth curve σ : I → So, with I ⊆ R, such that the image of σ
is contained in a leaf of Ff and

∇o
σ′σ
′ ≡ O .

PROPOSITION

σ is a geodesic for∇o if and only if X−1(σ′) is an integral curve of G.

MARCO ABATE (UNIVERSITÀ DI PISA) MAPS TANGENT TO THE IDENTITY LONDON 2016 13 / 32



GEOMETRY OF FIXED POINT SETS

GEODESICS

A geodesic is a smooth curve σ : I → So, with I ⊆ R, such that the image of σ
is contained in a leaf of Ff and

∇o
σ′σ
′ ≡ O .

If ηo = k dz2 is the form representing∇o in suitable coordinates then σ is a
geodesic if and only if

σ′′ + (k ◦ σ)(σ′)2 = 0 .

Notice that k is meromorphic.

PROPOSITION

σ is a geodesic for∇o if and only if X−1(σ′) is an integral curve of G.

MARCO ABATE (UNIVERSITÀ DI PISA) MAPS TANGENT TO THE IDENTITY LONDON 2016 13 / 32



GEOMETRY OF FIXED POINT SETS

GEODESICS

A geodesic is a smooth curve σ : I → So, with I ⊆ R, such that the image of σ
is contained in a leaf of Ff and

∇o
σ′σ
′ ≡ O .

If ηo = k dz2 is the form representing∇o in suitable coordinates then σ is a
geodesic if and only if

σ′′ + (k ◦ σ)(σ′)2 = 0 .

The geodesic field G on the total space of N⊗νf
S is given by

G =
n∑

p=2

gp|S v
∂

∂zp + νf
∂g1

∂z1

∣∣∣∣
S

v2 ∂
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where (z2, . . . , zn; v) are local coordinates on N⊗νf
E . It is globally defined!
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MARCO ABATE (UNIVERSITÀ DI PISA) MAPS TANGENT TO THE IDENTITY LONDON 2016 13 / 32



GEOMETRY OF FIXED POINT SETS

GEODESICS

A geodesic is a smooth curve σ : I → So, with I ⊆ R, such that the image of σ
is contained in a leaf of Ff and

∇o
σ′σ
′ ≡ O .

If ηo = k dz2 is the form representing∇o in suitable coordinates then σ is a
geodesic if and only if

σ′′ + (k ◦ σ)(σ′)2 = 0 .

The geodesic field G on the total space of N⊗νf
S is given by

G =
n∑

p=2

gp|S v
∂

∂zp + νf
∂g1

∂z1

∣∣∣∣
S

v2 ∂

∂v
.

PROPOSITION

σ is a geodesic for∇o if and only if X−1(σ′) is an integral curve of G.

MARCO ABATE (UNIVERSITÀ DI PISA) MAPS TANGENT TO THE IDENTITY LONDON 2016 13 / 32



DYNAMICS

HEURISTIC PRINCIPLE

Heuristic guiding principle: the dynamics of the geodesic flow represents the
dynamics of f in a neighborhood of S, at least in generic cases.
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DYNAMICS

HEURISTIC PRINCIPLE

Heuristic guiding principle: the dynamics of the geodesic flow represents the
dynamics of f in a neighborhood of S, at least in generic cases.

When f comes from a fo tangent to the identity, “generic" means “when fo
only has non-degenerate characteristic directions."
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DYNAMICS

HEURISTIC PRINCIPLE

Heuristic guiding principle: the dynamics of the geodesic flow represents the
dynamics of f in a neighborhood of S, at least in generic cases.

This becomes a rigorous statement, valid even in non-generic situations, when
f comes from the time-1 map of a homogeneous vector field.
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DYNAMICS

HOMOGENEOUS VECTOR FIELDS

A homogeneous vector field of degree ν + 1 ≥ 2 on Cn is given by

Q = Q1 ∂

∂z1 + · · ·+ Qn ∂

∂zn

where Q1, . . . ,Qn are homogeneous polynomials in z1, . . . , zn of degree ν+ 1.
We say that Q is non-dicritical if it is not a multiple of the radial vector field.
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where Q1, . . . ,Qn are homogeneous polynomials in z1, . . . , zn of degree ν+ 1.
We say that Q is non-dicritical if it is not a multiple of the radial vector field.

The time-1 map of a homogeneous vector field of degree ν + 1 is a
holomorphic self-map of Cn tangent to the identity at the origin of order
ν + 1, dicritical if and only if Q is dicritical.
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∂z1 + · · ·+ Qn ∂

∂zn

where Q1, . . . ,Qn are homogeneous polynomials in z1, . . . , zn of degree ν+ 1.
We say that Q is non-dicritical if it is not a multiple of the radial vector field.

The time-1 map of a homogeneous vector field of degree ν + 1 is a
holomorphic self-map of Cn tangent to the identity at the origin of order
ν + 1, dicritical if and only if Q is dicritical.

A characteristic leaf is a Q-invariant line Lv = Cv ⊂ Cn. A line Lv is a
characteristic leaf if and only if [v] is a characteristic direction of the time-1
map of Q. The dynamics of Q inside a characteristic leaf is 1-dimensional and
easy to study.
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DYNAMICS

HOMOGENEOUS VECTOR FIELDS

THEOREM (A.-TOVENA, 2011)
Let Q be a homogeneous vector field in Cn of degree ν + 1 ≥ 2. Let S be the
exceptional set in the blow-up of the origin in Cn, and denote by π : N⊗νS → S
and by [·] : Cn \ {O} → Pn−1(C) the canonical projections. Then there exists
a ν-to-1 holomorphic covering map χν : Cn \ {O} → N⊗νS \ S such that
π ◦ χν = [·] and dχν(Q) = G.

Therefore:

(I) γ is a real integral curve of G (outside the characteristic leaves) if and
only if χν ◦ γ is an integral curve of G;

(II) if γ is a real integral curve then [γ] is a geodesic;

(III) every geodesic in Pn−1(C) is covered by exactly ν integral curves of Q.
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exceptional set in the blow-up of the origin in Cn, and denote by π : N⊗νS → S
and by [·] : Cn \ {O} → Pn−1(C) the canonical projections. Then there exists
a ν-to-1 holomorphic covering map χν : Cn \ {O} → N⊗νS \ S such that
π ◦ χν = [·] and dχν(Q) = G. Therefore:

(I) γ is a real integral curve of G (outside the characteristic leaves) if and
only if χν ◦ γ is an integral curve of G;

(II) if γ is a real integral curve then [γ] is a geodesic;

(III) every geodesic in Pn−1(C) is covered by exactly ν integral curves of Q.

Thus the study of integral curves of homogeneous vector fields is equivalent
to the study of geodesics for partial meromorphic connections on Pn−1(C).
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THEOREM (A.-TOVENA, 2011)
Let Q be a homogeneous vector field in Cn of degree ν + 1 ≥ 2. Let S be the
exceptional set in the blow-up of the origin in Cn, and denote by π : N⊗νS → S
and by [·] : Cn \ {O} → Pn−1(C) the canonical projections. Then there exists
a ν-to-1 holomorphic covering map χν : Cn \ {O} → N⊗νS \ S such that
π ◦ χν = [·] and dχν(Q) = G. Therefore:

(I) γ is a real integral curve of G (outside the characteristic leaves) if and
only if χν ◦ γ is an integral curve of G;

(II) if γ is a real integral curve then [γ] is a geodesic;

(III) every geodesic in Pn−1(C) is covered by exactly ν integral curves of Q.

The geodesic σ(t) = [γ(t)] gives the complex line containing γ(t); the
“speed” X−1

f

(
σ′(t)

)
gives the position of γ(t) in that line. In particular,

γ(t)→ O if and only if X−1
(
σ′(t)

)
→ O.

MARCO ABATE (UNIVERSITÀ DI PISA) MAPS TANGENT TO THE IDENTITY LONDON 2016 16 / 32



DYNAMICS

HOMOGENEOUS VECTOR FIELDS

(At least) two main advantages:

1 use of geometric tools (curvature, Gauss-Bonnet, etc.);
2 the variables have been separated (in the coefficients of G).
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DYNAMICS

HOMOGENEOUS VECTOR FIELDS

(At least) two main advantages:
1 use of geometric tools (curvature, Gauss-Bonnet, etc.);
2 the variables have been separated (in the coefficients of G).

Three main steps:

1 study of the global properties of the canonical foliation (only if n ≥ 3);
2 study of the global recurrence properties of the geodesics: it depends on

the residues of (the local meromorphic 1-form representing)∇o.
3 study of the local behavior of the geodesics near the poles: it depends on

the residues of (the local meromorphic 1-form representing)∇.
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DYNAMICS

A POINCARÉ-BENDIXSON THEOREM

THEOREM (A.-TOVENA, 2011, R = P1(C); A.-BIANCHI, 2016, ANY R)

Let σ : [0,T)→ R \ {poles} be a maximal geodesic for a meromorphic
connection∇o on a compact Riemann surface R. Then:

1 σ tends to a pole p0 of ∇o; or
2 σ is closed or accumulates the support of a closed geodesic; or
3 σ accumulates a boundary graph of saddle connections; or
4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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3 σ accumulates a boundary graph of saddle connections; or
4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

A recurring geodesic is closed, dense or self-intersects infinitely many times.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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connection∇o on a compact Riemann surface R. Then:

1 σ tends to a pole p0 of ∇o; or
2 σ is closed or accumulates the support of a closed geodesic; or
3 σ accumulates a boundary graph of saddle connections; or
4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

Closed does not mean periodic.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

A saddle connection is a geodesic connecting two poles.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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3 σ accumulates a boundary graph of saddle connections; or
4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

Case (4) cannot happen when R = P1(C). We do not have examples of cases
(3) or (4).

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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3 σ accumulates a boundary graph of saddle connections; or
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6 σ self-intersects infinitely many times.
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then (5) might happen only in case (6).
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If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

Case (1) is generic; cases (2), (3), (4) and (6) can happen only if the poles of
the connection satisfy some necessary conditions expressed in terms of the
residues of∇o.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
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4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

If R = P1(C), closed geodesics or boundary graphs of saddle connections can
appear only if the real part of the sum of some residues is −1; a similar
condition holds for R generic.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

If R = P1(C) geodesics self-intersecting infinitely many times can appear
only if the real part of the sum of some residues belongs to
(−3/2,−1) ∪ (−1,−1/2); a similar condition holds for R generic.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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3 σ accumulates a boundary graph of saddle connections; or
4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

We have a less precise statement for non-compact Riemann surfaces.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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connection∇o on a compact Riemann surface R. Then:
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2 σ is closed or accumulates the support of a closed geodesic; or
3 σ accumulates a boundary graph of saddle connections; or
4 the ω-limit set of σ has non-empty interior and non-empty boundary

consisting of boundary graphs of saddle connections; or
5 σ is dense in R; or
6 σ self-intersects infinitely many times.

Main tools for the proof:
∇o is flat;
Gauss-Bonnet theorem relating geodesics and residues;
a Poincaré-Bendixson theorem for smooth flows.

COROLLARY

If γ is a recurrent integral curve of a homogeneous vector field then γ is
periodic or [γ] intersects itself infinitely many times.
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DYNAMICS

LOCAL BEHAVIOR NEAR THE POLES (n = 2)

In dimension 2

G = g2|S v
∂

∂z2 + νf
∂g1

∂z1

∣∣∣∣
S

v2 ∂

∂v
.

Three classes of singularities:

apparent if 1 ≤ ordp(g2|S) ≤ ordp

(
∂g1

∂z1

∣∣∣
S

)
, that is p is not a pole of∇;

Fuchsian if ordp(g2|S) = ordp

(
∂g1

∂z1

∣∣∣
S

)
+ 1, that is p is a pole of order 1;

irregular if ordp(g2|S) > ordp

(
∂g1

∂z1

∣∣∣
S

)
+ 1, that is p is a pole of order

larger than 1.

THEOREM (A.-TOVENA, 2011)
Local holomorphic classification of apparent and Fuchsian singularities, and
formal classification of irregular singularities.
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DYNAMICS

LOCAL BEHAVIOR NEAR THE POLES: APPARENT

SINGULARITIES (n = 2)

Let p0 ∈ S an apparent singularity, and µ = ordp0(g2|S) ≥ 1. Assume µ = 1
(we have a complete statement for µ > 1 too). Take p ∈ So close enough
to p0. Then:

for an open half-plane of initial directions the geodesic issuing from p
tends to p0;

for the complementary open half-plane of initial directions the geodesic
issuing from p escapes;

for a line of initial directions the geodesic issuing from p is periodic.
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DYNAMICS

LOCAL BEHAVIOR NEAR THE POLES: APPARENT

SINGULARITIES (n = 2)

Furthermore, if Q is a homogeneous vector field having a characteristic leaf
Lv such that [v] is an apparent singularity with µ = 1:

no integral curve of Q tends to the origin tangent to [v];
there is an open set of initial conditions whose integral curves tend to a
non-zero point of Lv;

Q admits periodic integral curves of arbitrarily long periods
accumulating at the origin.
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DYNAMICS

LOCAL BEHAVIOR NEAR THE POLES: FUCHSIAN

SINGULARITIES (n = 2)

Let p0 ∈ S a Fuchsian singularity, and µ = ordp0(g2|S) ≥ 1. Assume µ = 1
(we have an almost complete statement for µ > 1 too: resonances appear).
Let ρ = Resp0(∇) (necessarily ρ 6= 0 since µ = 1). Take p ∈ So close enough
to p0. Then:

if Re ρ < 0 then p0 is attracting, that is all geodesics σ issuing from p
except one tends to p0 with X−1

(
σ′(t)

)
→ O; the only exceptional

geodesic escapes;

if Re ρ > 0 then p0 is repelling, that is all geodesics σ issuing from p
except one escape, and the only exceptional geodesic tends to p0 in finite
time with

∣∣X−1
(
σ′(t)

)∣∣→ +∞;

if Re ρ = 0 then issuing from p there are closed geodesics (with “speed”
converging either to 0 or to +∞), geodesics accumulating the support of
a closed geodesic, and escaping geodesics.
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DYNAMICS

LOCAL BEHAVIOR NEAR THE POLES: FUCHSIAN

SINGULARITIES (n = 2)

Furthermore, if Q is a homogeneous vector field having a characteristic leaf
Lv such that [v] is a Fuchsian singularity with µ = 1 and residue ρ 6= 0:

if Re ρ < 0 there is an open set of initial conditions whose integral
curves tend to the origin tangent to [v];
if Re ρ > 0 then no integral curve outside of Lv tends to O tangent to [v];
if Re ρ = 0 then there are integral curves converging to O without being
tangent to any direction.
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DYNAMICS

LOCAL BEHAVIOR NEAR THE POLES: IRREGULAR

SINGULARITIES (n = 2)

?
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DYNAMICS

LOCAL BEHAVIOR NEAR THE POLES: IRREGULAR

SINGULARITIES (n = 2)

?
Results by Vivas (2012) on the existence of parabolic domains.
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DYNAMICS

LOCAL BEHAVIOR NEAR THE POLES: IRREGULAR

SINGULARITIES (n = 2)

?
Results by Vivas (2012) on the existence of parabolic domains.
Possibly Stokes phenomena.
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FAMILIES

FAMILIES OF HOMOGENEOUS VECTOR FIELDS (n = 2)

Interesting families of homogenous vector fields of fixed degree ν + 1 can be
obtained by fixing the number and (whenever possible) the location of distinct
characteristic directions, and then using the residues at the characteristic
directions as parameters.
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FAMILIES OF HOMOGENEOUS VECTOR FIELDS (n = 2)

Interesting families of homogenous vector fields of fixed degree ν + 1 can be
obtained by fixing the number and (whenever possible) the location of distinct
characteristic directions, and then using the residues at the characteristic
directions as parameters.
Non-dicritical quadratic (ν = 1) homogeneous vector fields can have at most
3 distinct characteristic directions. Up to holomorphic conjugation there are:

1 3 distinct quadratic fields with exactly one characteristic direction;
2 2 distinct families of quadratic fields with exactly two characteristic

directions, parametrized by the residue at (any) one of them;
3 1 family of quadratic fields with three distinct characteristic directions,

parametrized by the residues at (any) two of them.
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FAMILIES

TWO DISTINCT CHARACTERISTIC DIRECTIONS

Given ρ ∈ C take

Qρ(z,w) = −ρz2 ∂

∂z
+ (1− ρ)zw

∂

∂w
.

Two characteristic directions:

[1 : 0]: Fuchsian singularity of order µ = 1 and residue ρ (unless ρ = 0,
when it is an apparent singularity of order 1);

[0 : 1]: Fuchsian singularity of order µ = 2 and residue 1− ρ.
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FAMILIES

TWO DISTINCT CHARACTERISTIC DIRECTIONS

Qρ(z,w) = −ρz2 ∂

∂z
+ (1− ρ)zw

∂

∂w
.

If Re ρ < 0 then almost all integral curves converge to the origin tangent
to [1 : 0]; each Lv contains exactly one line of exceptional initial values
of integral curves diverging to infinity tangent to L[0:1].

If Re ρ > 0 the roles of [1 : 0] and [0 : 1] are reversed.

If Re ρ = 0 but ρ 6= 0 then almost all integral curves converge to the
origin without being tangent to any direction; each Lv contains exactly
one line of exceptional initial values of integral curves diverging to
infinity without being tangent to any direction.

If ρ = 0 then almost all integral curves go from one point in L[1:0] to
infinity toward L[0:1]; each Lv contains exactly one real curve of
exceptional initial values of periodic integral curves, and these periodic
integral curves accumulate at the origin.
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FAMILIES

THREE DISTINCT CHARACTERISTIC DIRECTIONS

Qρ,τ (z,w) =
(
−ρz2 + (1− τ)zw

) ∂
∂z

+
(
(1− ρ)zw− τw2) ∂

∂w
.

Three characteristic directions:

[1 : 0]: Fuchsian singularity of order µ = 1 and residue ρ (unless ρ = 0,
when it is an apparent singularity of order 1);

[0 : 1]: Fuchsian singularity of order µ = 1 and residue τ (unless τ = 0,
when it is an apparent singularity of order 1);

[1 : 1]: Fuchsian singularity of order µ = 1 and residue 1− ρ− τ (unless
ρ+ τ = 1, when it is an apparent singularity of order 1).

MARCO ABATE (UNIVERSITÀ DI PISA) MAPS TANGENT TO THE IDENTITY LONDON 2016 26 / 32



FAMILIES

THREE DISTINCT CHARACTERISTIC DIRECTIONS
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PICTURES

MOVIES

Movies!
(If there is time. . . )
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PICTURES

Q(z, w) = −0.1iz2 ∂
∂z + (1 + 0.1i)zw ∂

∂w
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PICTURES

Q(z, w) = (−0.1z2 + (1− 0.2i)zw) ∂∂z + (1.1zw− 0.2iw2) ∂
∂w

-2 -1 1 2

-2

-1

1

2

MARCO ABATE (UNIVERSITÀ DI PISA) MAPS TANGENT TO THE IDENTITY LONDON 2016 30 / 32



PICTURES
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THE END

THANKS!
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