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ABSTRACT

We develop and test a fast and accurate semi-analytical formula for single-name default swaptions in the
context of the shifted square root jump diffusion (SSRJD) default intensity model. The formula consists of
a decomposition of an option on a summation of survival probabilities in a summation of options on the
underlying survival probabilities, where the strike for each option is adjusted1.
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1 INTRODUCTION

We develop and test a semi-analytical formula for single-name default swaptions in the context of
an affine jump diffusion default intensity model. We specifically consider the shifted square root
jump diffusion (SSRJD) model discussed in Brigo and El-Bachir (2006) and its restricted version,
the diffusion-only SSRD model introduced earlier by Brigo and Alfonsi (2005) whose properties
were further analyzed in Brigo and Cousot (2006). The semi-analytical formula is based on the
celebrated decomposition due to Jamshidian (1989) for the valuation of options on coupon bonds
in one-factor affine models. The formula for default swaptions has been first discussed in an
unpublished version of Brigo and Alfonsi (2005) for the SSRD model. We extend it here to the
SSRJD model, and give a more detailed and complete proof. Finally, we address its practical
implementation and confirm its accuracy.

2 THE SSRJD DEFAULT INTENSITY MODEL

We denote the market filtration by G = (Gt)(t≥0) and let Q be a risk-neutral probability measure.
We follow the intensity based approach to default risk modeling and introduce the default time
as a totally inaccessible G−stopping time τ. We further assume the usual structure for G, namely
that G = F ∨H, where F = (Ft)(t≥0) is the filtration generated by the stochastic market variables
(interest rates, default intensities, etc) except default events and H = (Ht)(t≥0) is the filtration
generated by the default process: Ht = σ (1{τ<u}, u ≤ t). It is also assumed that there exists a
strictly positive F−adapted process (λt)(t≥0) such that the process (Mt)(t≥0) given by

Mt = 1{τ≤t} −
∫ t

0
1{τ>s}λsds = 1{τ≤t} −

∫ t∧τ

0
λsds (1)

is a uniformly integrable G−martingale under Q. The process (λt)(t≥0) is referred to as the G

marginal intensity of the stopping time τ under Q or risk-neutral pre-default intensity. This setup
is commonly referred to as a doubly stochastic Poisson default process or the Cox process frame-
work. In the SSRJD model, the intensity λt is written as the sum of a positive deterministic function
ψ(t) and of a positive stochastic process yt:

λt = yt + ψ(t), t ≥ 0 (2)

where ψ is a deterministic function of time, and is integrable on closed intervals. The dynamics of
(yt)(t≥0) satisfy

dyt = κ(µ− yt)dt + ν
√

ytdWt + dJt (3)
y(0) = y0

with the following condition to ensure the process cannot reach zero:

2κµ > ν2 (4)

where h =
√

κ2 + 2ν2. (Wt)(t≥0) is a Wiener process and (Jt)(t≥0) is a pure jump process with
jumps arrival rate α and exponentially distributed jump sizes with mean γ. All the parameters
y0, κ, µ, ν, α, γ are also constrained to nonnegative values. Since this model belongs to the tractable
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Affine Jump Diffusion (AJD) class of models, the survival probability S has the typical “log-affine"
shape before default

S(t, T) = 1{τ>t}S(t, T) = 1{τ>t}EQ

[
exp

(
−

∫ T

t
λsds

)
|Ft

]

= 1{τ>t}EQ

[
exp

(
−

∫ T

t
[ψ(s) + ys]ds

)
|Ft

]

= 1{τ>t}A(t, T) exp
(
−

∫ T

t
ψ(s)ds− B(t, T)yt

)
(5)

where:
A(t, T) = ξ(t, T)ζ(t, T) (6)

with

ζ(t, T) =


 2h exp

(
h+κ+2γ

2 (T − t)
)

2h + (κ + h + 2γ)(eh(T−t) − 1)




2αγ

ν2−2κγ−2γ2

(7)

Note that when γ = h−κ
2 , the denominator in the exponent of ζ(t, T) goes to zero, i.e. ν2 − 2κγ−

2γ2 = 0, leading to potential numerical instabilities due to division by zero. However, one can
check in this case that the base of ζ(t, T) is then equal to one. Thus for robustness of the im-
plementation, it is necessary to set ζ(t, T) = 1 when γ = h−κ

2 . Finally, ξ(t, T), B(t, T) are given
by:

ξ(t, T) =

(
2h exp

(
h+κ

2 (T − t)
)

2h + (κ + h)(eh(T−t) − 1)

) 2κµ

ν2

(8)

B(t, T) =
2(eh(T−t) − 1)

2h + (κ + h)(eh(T−t) − 1)
(9)

The SSRD model is a diffusion-only restriction of the SSRJD model obtained by setting the jump
intensity α to zero, also resulting in ζ(t, T) = 1 in the survival probability formula.

For default swap computations we also make use of the formula for the following transform:

EQ

[
exp

(
−

∫ T

t
λsds

)
λT|Ft

]
= −∂TS(t, T) (10)

which can be expressed after differentiation as:

∂TS(t, T) = S(t, T)
[

1
ξ(t, T)

∂Tξ(t, T)− yt∂TB(t, T) +
1

ζ(t, T)
∂Tζ(t, T)− ψ(T)

]
(11)

∂Tξ(t, T) =
−2κµ

(
eh(T−t) − 1

)

2h + (κ + h) (eh(T−t) − 1)
ξ(t, T) (12)

∂TB(t, T) =
4h2eh(T−t)

[2h + (κ + h) (eh(T−t) − 1)]2 (13)

∂Tζ(t, T) =
−2αγ

(
eh(T−t) − 1

)

2h + (κ + h + 2γ) (eh(T−t) − 1)
ζ(t, T) (14)

Again for the SSRD model, the corresponding formulae can be obtained by simply using the fact
that ζ(t, T) = 1 and ∂Tζ(t, T) = 0.

Copyright © 2007 Brigo and El-Bachir 2
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3 PRICING EQUATIONS FOR DEFAULT SWAPS AND SWAPTIONS

3.1 Credit Default swaps

In this section, we briefly review default swaps pricing and refer to Brigo and Alfonsi (2005) for
further details. A (credit) default swap is a financial instrument used by two counterparties to
buy or sell protection against the default risk of a reference credit name. In a default swap signed
at time t starting at time Ta with maturity Tb, the protection buyer pays a periodic fee or spread
Ra,b(t) at the payment dates Ta+1, . . . , Tb (typically quarterly) as long as the reference entity does
not default. In case of a default occurring at time τ with Ta < τ ≤ Tb, the protection seller
compensates the protection buyer for his loss given default that we assume to be a known constant
LGD. In addition, the protection seller receives from the protection buyer the spread accrued since
the last payment date before default. In the case where t < Ta, the contract is a forward default
swap, while if t = Ta we are dealing with a spot default swap.

Default swaps have been shown in Brigo and Alfonsi (2005) to be relatively insensitive to the corre-
lation between brownians driving the intensity and interest rate processes when both are modeled
as SSRD processes, while Brigo and Cousot (2006) confirm that it is also relatively insignificant for
default swaptions. Furthermore, Brigo and Cousot (2006) find that the short rate volatility has rel-
atively little impact on the valuation of typically traded default swaptions characterized by short
maturities, thus concluding that the randomness of the short rate adds little value to stochastic
intensity models for default swaptions. Therefore, we assume a deterministic term structure of
interest rates, and denote the price at time t of the default-free discount factor for maturity T or
risk-free T-zero coupon bond by D(t, T) = exp

(
− ∫ T

t rsds
)

.

From the perspective of a protection buyer, the value at time t denoted by CDS(t, Υ, R, LGD) of a
default swap with a payment schedule Υ = {Ta+1, . . . , Tb}, a spread R and a loss given default LGD

is given by the following expression:

CDS(t, Υ, R, LGD) = −1{τ>t}

[
RCa,b(t) + LGD

∫ Tb

Ta

D(t, u)∂uS(t, u)du
]

(15)

where

Ca,b(t) =

[
b

∑
i=a+1

αiD(t, Ti)S(t, Ti)−
∫ Tb

Ta

(u− T(β(u)−1))D(t, u)∂uS(t, u)du

]
(16)

and Tβ(t) is the first date in the set {Ta, . . . , Tb} that follows t and αi = Ti − Ti−1 is the year fraction
between Ti−1 and Ti.

Hence, the fair spread Ra,b(t) as long as default has not occurred can be computed as the value of
R that equates the default swap value to zero:

1{τ>t}Ra,b(t) = −1{τ>t}
LGD

∫ Tb
Ta

D(t, u)∂uS(t, u)du

Ca,b(t)
(17)

Copyright © 2007 Brigo and El-Bachir 3
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3.2 Credit Default swaptions

A default swaption is an option written on a default swap. In the sequel, we will restrict the
analysis to European payer default swaptions. A payer default swaption entitles its holder the
right but not the obligation to become a protection buyer in the underlying default swap at the
expiration of the option, paying a protection fee equal to the strike spread. Most traded single
name default swaptions are canceled (or knocked out) at default of the underlying reference name
if this occurs before the option’s maturity. The maturity of the option will typically be equal to the
starting date of the underlying default swap Ta. That is, the default swaption holder enters a spot
default swap if she chooses to exercise the option at maturity.

For the pricing of a default swaption at a valuation date t, the underlying reference is thus the
Ta maturity forward default swap with payment dates Ta+1, . . . , Tb. The strike K specified in the
contract is the periodic fixed rate that is to be paid in exchange for the default protection of the
default swap in case of exercise, instead of the fair market spread Ra,b(Ta) that will be available
at time Ta only. The Ta−defaultable payoff can be valued at time t by taking the risk-neutral
expectation of its discounted value. Hence, the payer default swaption can be valued as in Brigo
and Alfonsi (2005):

PSO(t, Ta, Υ, K) = D(t, Ta)EQ

[
(CDS(Ta, Υ, K, LGD))+ |Gt

]
(18)

Brigo and Alfonsi (2005) proposed a formula for solving this pricing equation in the case of the
SSRD model. The formula is based on the insightful decomposition of Jamshidian (1989), where
in a 1-factor yield curve model, an option on a portfolio of cash flows is decomposed in a portfolio
of options on each cash flow, where the strike for each option is judiciously adjusted. In the next
section, we prove and extend this formula for the SSRJD model.

4 ANALYTICAL FORMULA FOR DEFAULT SWAPTIONS PRICING

The derivation of the formula follows three main steps. In proposition 1, we rewrite the pricing
equation (18) in a suitable form for the application of the decomposition, i.e. as an option on an
integral of multiples of survival probabilities. Then we use our decomposition in corollary 1, re-
sulting in the appearance of an integral of terms that are akin to options on survival probabilities.
And lastly, we give an explicit formula for these options in proposition 2.

Proposition 1. The default swaption price satisfies the following formula:

PSO(t, Ta, Υ, K) = 1{τ>t}D(t, Ta)EQ

[
e−

∫ Ta
t λsds

(
LGD −

∫ Tb

Ta

h(u)S(Ta, u)du
)+

|Ft

]
(19)

where h is defined as:

h(u) = D(Ta, u)
[
LGD

(
ru + δTb(u)

)
+ K

(
1− (u− Tβ(u)−1)ru

)]
(20)

with δTb(u) the Dirac delta function centered at Tb.

Proof. Starting from equation (18), we substitute the default swap Ta−value from equations (15)

Copyright © 2007 Brigo and El-Bachir 4
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and (16) resulting in the following formula:

PSO(t, Ta, Υ, K) = D(t, Ta)EQ

[
1{τ>Ta}

(
K

∫ Tb

Ta
D(Ta, u)(u− Tβ(u)−1)∂uS(Ta, u)du

− K
b

∑
i=a+1

αiD(Ta, Ti)S(Ta, Ti)− LGD

∫ Tb

Ta
D(Ta, u)∂uS(Ta, u)du

)+

|Gt

]

We can integrate by parts the last integral of the above expression:
∫ Tb

Ta

D(Ta, u)∂uS(Ta, u)du =
[

D(Ta, u)S(Ta, u)
]Tb

Ta
−

∫ Tb

Ta

S(Ta, u)∂uD(Ta, u)du

= D(Ta, Tb)S(Ta, Tb)− 1−
∫ Tb

Ta

S(Ta, u)∂uD(Ta, u)du

For the other integral appearing in the default swaption price, we first decompose it in a sum of
integrals where the limits of integration are the default swap payment dates:

∫ Tb

Ta

D(Ta, u)(u− Tβ(u)−1)∂uS(Ta, u)du =
b−1

∑
i=a

∫ Ti+1

Ti

D(Ta, u)(u− Ti)∂uS(Ta, u)du

where we used the fact that for Ti < u < Ti+1, Tβ(u)−1 = Ti. And we can now integrate by parts
these integrals:

∫ Ti+1

Ti

D(Ta, u)(u− Ti)∂uS(Ta, u)du =
[

D(Ta, u)(u− Ti)S(Ta, u)
]Ti+1

Ti

−
∫ Ti+1

Ti

D(Ta, u)S(Ta, u)du

−
∫ Ti+1

Ti

S(Ta, u)(u− Ti)∂uD(Ta, u)du

Using the fact that Ti − Ti−1 = αi, we obtain after summation:
∫ Tb

Ta

D(Ta, u)(u− Tβ(u)−1)∂uS(Ta, u)du =
b

∑
i=a+1

αiD(Ta, Ti)S(Ta, Ti)

−
∫ Tb

Ta

D(Ta, u)S(Ta, u)du

−
∫ Tb

Ta

S(Ta, u)(u− Tβ(u)−1)∂uD(Ta, u)du

Note that ∂uD(Ta, u) = −ruD(Ta, u), substitute the expressions obtained for the integrals back in
the original formula, using

D(Ta, Tb)S(Ta, Tb) =
∫ Tb

Ta

D(Ta, u)S(Ta, u)δTb(u)du

and finally, using the formula

EQ[1{τ>Ta}YTa |Gt] = 1{τ>t}EQ

[
exp

(
−

∫ Ta

t
λsds

)
YTa |Ft

]

(see for example Bielecki and Rutkowski (2001), Corollary 5.1.1 p.145), we obtain the result of the
proposition after rearranging.

Copyright © 2007 Brigo and El-Bachir 5
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Jamshidian (1989) decomposes an option on a portfolio of zero-coupon bonds in a portfolio of
options on the zero-coupon bonds. The rewriting of the pricing problem as in equation (19) will
now allow us to achieve a similar result. Indeed, the term

∫ Tb
Ta

h(u)S(Ta, u)du is akin to a portfo-
lio of survival probabilities of infinitely many maturities. We also note that survival probabilities
satisfy the same formulas as zero-coupon bonds where the default intensity plays the role of the
short rate. Hence, the expectation in equation (19) can be seen as a put option on a portfolio of
zero-coupon bonds (although with infinitely many) where the strike is LGD and the interest rate is
given by the default intensity λt. Therefore, it is only natural that we are able to decompose it as
a portfolio of infinitely many options on survival probabilities.

Corollary 1. If the following integral is positive

∫ Tb

Ta

[
LGDD(Ta, u)∂uS(Ta, u; 0) + KS(Ta, u; 0)D(Ta, u)

(
1− (u− Tβ(u)−1)ru

)
]

du (21)

then the default swaption price is the solution to the following formula:

1{τ>t}D(t, Ta)
∫ Tb

Ta

h(u)E

[
exp

(
−

∫ Ta

t
λsds

) (
S(Ta, u; y∗)− S(Ta, u; yTa)

)+|Ft

]
du (22)

where y∗ ≥ 0 satisfies: ∫ Tb

Ta

h(u)S(Ta, u; y∗)du = LGD (23)

Otherwise, the default swaption price is simply given by the corresponding forward default swap value:

CDS(t, Υ, K, LGD)

Proof. Recall the definition of h(u):

h(u) = D(Ta, u)
[
LGD

(
ru + δTb(u)

)
+ K

(
1− (u− Tβ(u)−1)ru

)]

Assume the short rate ru is nonnegative and bounded by 100%, that is 0 ≤ ru ≤ 1. Also, suppose
that the spread payments occur at least once a year (usually spreads are paid quarterly) such that
0 ≤ u− Tβ(u)−1 ≤ 1. It follows that

h(u) ≥ 0, for all u

Also note that h(u) is a deterministic function that does not depend on y, while the survival
probability S(Ta, u; y) given by equation (5) is clearly monotonically decreasing in y for all Ta and
u. Hence, ∫ Tb

Ta

h(u)S(Ta, u; y)du

is a monotonically decreasing function of y. Furthermore, it is easy to see from equation (5) that

lim
y→∞

∫ Tb

Ta

h(u)S(Ta, u; y)du = 0 < LGD

or just recall that S(Ta, u; y) is a survival probability and y is the initial value of the stochastic
process driving the default intensity.

Copyright © 2007 Brigo and El-Bachir 6
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We are interested in finding if there exists y∗ ≥ 0 satisfying equation (23). Now, recall that

h(u) = LGDruD(Ta, u)− K(u− Tβ(u)−1)ruD(Ta, u) + LGDδTb(u)D(Ta, u) + KD(Ta, u)

and note that (integrating by parts):
∫ Tb

Ta

ruD(Ta, u)S(Ta, u)du = 1− D(Ta, Tb)S(Ta, Tb) +
∫ Tb

Ta

D(Ta, u)∂uS(Ta, u)du

Hence, substituting back in the original integral, we obtain the following:

∫ Tb

Ta

h(u)S(Ta, u)du = LGD +
∫ Tb

Ta

[
LGDD(Ta, u)∂uS(Ta, u)

+ KS(Ta, u)D(Ta, u)
(
1− (u− Tβ(u)−1)ru

)
]

du

So that:

lim
y→0+

∫ Tb

Ta

h(u)S(Ta, u; y)du = LGD +
∫ Tb

Ta

[
LGDD(Ta, u)∂uS(Ta, u; 0)

+ KS(Ta, u; 0)D(Ta, u)
(
1− (u− Tβ(u)−1)ru

)
]

du

As we already observed,
(
1− (u− Tβ(u)−1)ru

)
should normally be positive since ru is the short rate

at time u and (u− Tβ(u)−1) is smaller than the period between two spread payment dates which
is typically a quarter of a year. And since S(Ta, u; 0) and D(Ta, u) are both nonnegative being
respectively the survival probability and the discount factor at time Ta for maturity u, it follows
that:

KS(Ta, u; 0)D(Ta, u)
(
1− (u− Tβ(u)−1)ru

) ≥ 0 for all u ≥ Ta

On the other hand, ∂uS(Ta, u; 0) ≤ 0 since the survival probability is decreasing with maturity.

We can then consider two cases depending on whether the integral

∫ Tb

Ta

[
LGDD(Ta, u)∂uS(Ta, u; 0) + KS(Ta, u; 0)D(Ta, u)

(
1− (u− Tβ(u)−1)ru

)
]

du

is negative or not.

In the first case, i.e. when the integral is negative:

lim
y→0+

∫ Tb

Ta

h(u)S(Ta, u; y)du < LGD

and then the equation (23) does not admit a solution in y. However, in this case the payoff of
the option is Q− a.s. strictly positive and hence the payoff of the option simplifies to a forward
default swap payoff.

Copyright © 2007 Brigo and El-Bachir 7
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In the other case (i.e. when the integral is nonnegative), by the intermediate value theorem the
equation (23) admits a unique solution y∗ by continuity and monotonicity, and we can replace
LGD by

∫ Tb
Ta

h(u)S(Ta, u; y∗)du in (19). Since S(Ta, u; y) is a monotonic function in y, then the terms
S(Ta, u; y∗)− S(Ta, u; yTa) will be all of the same sign for all values of u, and therefore:

(∫ Tb

Ta

h(u)
(
S(Ta, u; y∗)− S(Ta, u; yTa)

)
du

)+

=
∫ Tb

Ta

h(u)
(
S(Ta, u; y∗)− S(Ta, u; yTa)

)+
du

which we can substitute back in the expression (19) for the default swaption value, and use Fu-
bini’s theorem to change the order of the integrations, resulting in equation (22), thus completing
the proof.

Having decomposed the default swaption price in terms of options on survival probabilities, we
are left with the task of computing these option values. Indeed, to further compute the quantity
given in equation (22), recall that:

∫ T

t
λsds =

∫ T

t
ψ(s)ds +

∫ T

t
ysds

and that the survival probabilities S(t, T) satisfy equation (5). Substituting these in formula (22)
result in the following expression for the default swaption:

1{τ>t}D(t, Ta) exp
(
− ∫ Ta

t ψ(s)ds
)
∗ (24)

∫ Tb
Ta

h(u)A(Ta, u)e−
∫ u

Ta ψ(s)dsE
[
exp

(
− ∫ Ta

t ysds
) (

e−B(Ta ,u)y∗ − e−B(Ta ,u)yTa
)+ |Ft

]
du

The above expression is analytic up to an integral if we are able to find a formula for the expecta-
tion involved. We take up that task in the next proposition where:

Ψ(t, T, yt, ς, $) := E

[
exp

(
−

∫ T

t
ysds

)
(e−$ς − e−$yT )+ |Ft

]

where ς and $ are positive values.

Proposition 2.
Ψ(t, T, yt, ς, $) = e−$ςΠ(T− t, yt, ς, 0)−Π(T − t, yt, ς, $) (25)

where

Π(T, y0, ς, $) =
1
2

αψ(T)e−βψ(T)y0 − 1
π

∫ ∞

0

eUy0 [S cos(Wy0 + vς) + R sin(Wy0 + vς)]
v

dv (26)

with

βψ(T) =
2$h + (2 + $(h− κ)) (ehT − 1)

2h + (h + κ + $ν2)(ehT − 1)
(27)

αψ(T) =

[
2h exp

(
κ+h

2 T
)

2h + (h + κ + $ν2)(ehT − 1)

] 2κµ

ν2

∗

 2h(1 + $γ) exp

(
(h2−(κ+2γ)2)(1− $

2 (h+κ))
2(h−κ−2γ+$(γ(h+κ)−ν2)) T

)

2h(1 + $γ) + [h + κ + $ν2 + γ(2 + $(h− κ))] (ehT − 1)




2αγ

ν2−2κγ−2γ2

(28)

Copyright © 2007 Brigo and El-Bachir 8
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and

R = (J2 + K2)
D
2 eG[E cos(H + D arctan(K/J))− F sin(H + D arctan(K/J))]

S = (J2 + K2)
D
2 eG[F cos(H + D arctan(K/J)) + E sin(H + D arctan(K/J))]

U =
δ + εehT + φe2hT

N

W = −4vh2ehT

N

E = (x̃2 + ỹ2)
κµ

ν2 cos
(

2κµ

ν2 arctan
(

ỹ
x̃

))

F = (x̃2 + ỹ2)
κµ

ν2 sin
(

2κµ

ν2 arctan
(

ỹ
x̃

))

x̃ =
2he(h+κ) T

2 [2h + (h + κ + $ν2)(ehT − 1)]
N

ỹ = −2he(h+κ) T
2 vν2[ehT − 1]

N

D =
−2γα

ν2 − 2γκ − 2γ2

G =
αγT[(2− $(h + κ))(h− κ − 2γ− $[ν2 − γ(h + κ)]) + v2(h + κ)[ν2 − γ(h + κ)]]

(h− κ − 2γ− $[ν2 − γ(h + κ)])2 + v2[ν2 − γ(h + κ)]2

H =
αγTv[(2− $(h + κ))[ν2 − γ(h + κ)]− (h + κ)(h− κ − 2γ− $[ν2 − γ(h + κ)])]

(h− κ − 2γ− $[ν2 − γ(h + κ)])2 + v2[ν2 − γ(h + κ)]2

J = 1 +
(ehT − 1)[(h + κ + 2γ)(1 + $γ) + (ν2 + γ(h− κ))[$($γ + 1) + v2γ]]

2h(1 + $γ)2 + 2hv2γ2

K = − (ehT − 1)v[2γκ + 2γ2 − ν2]
2h(1 + $γ)2 + 2hv2γ2

N = (2h + (h + κ + $ν2)[ehT − 1])2 + v2ν4[ehT − 1]2

δ = 2(h− κ)− 4ν2$ + $2ν2(h + κ) + v2ν2(h + κ)

ε = 4κ − 4κ2$− 2κ$2ν2 − 2v2ν2κ

φ = −2(h + κ)− 4ν2$− $2ν2(h− κ)− v2ν2(h− κ)

Proof. First note the equivalence between the following events:

{e−$ς ≥ e−$yT} ⇔ {yT ≥ ς}
Hence:

Ψ(t, T, yt, ς, $) = e−$ςE

[
exp

(
−

∫ T

t
ysds

)
1{yT≥ς}|Ft

]

− E

[
exp

(
−$yT −

∫ T

t
ysds

)
1{yT≥ς}|Ft

]

We define Π as follows:

Π(T, y0, ς, $) := E

[
exp

(
−$yT −

∫ T

0
ysds

)
1{yT≥ς}

]
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Christensen (2002) derived a formula for Π that is analytic up to an integral. His formula is also
reported in Lando (2004) Appendix E. We recall it below:

Π(T, y0, ς, $) =
1
2

ψ(T, y0, $)− 1
π

∫ ∞

0

Im [eivςψ(T, y0,−$− iv)]
v

dv

with
ψ(T, y0, $) = αψ(T)e−βψ(T)y0

where αψ and βψ satisfy formulae (28) and (27) respectively. The imaginary part appearing above
admits an explicit expression as given in the statement of the proposition.

Since the process yt is a homogenous and markovian jump-diffusion

E

[
exp

(
−$yT −

∫ T

t
ysds

)
1{yT≥ς}|Ft

]
= Eyt

[
exp

(
−$yT−t −

∫ T−t

0
ysds

)
1{yT−t≥ς}

]

= Π(T − t, yt, ς, $)

In summary, if

∫ Tb

Ta

[
LGDD(Ta, u)∂uS(Ta, u; 0) + KS(Ta, u; 0)D(Ta, u)

(
1− (u− Tβ(u)−1)ru

)
]

du > 0

then it is possible to solve for a positive y∗ satisfying
∫ Tb

Ta
h(u)S(Ta, u; y∗)du = LGD, and such that

the default swaption price is given by:

1{τ>t}D(t, Ta)e−
∫ Ta

t ψ(s)ds
∫ Tb

Ta

h(u)A(Ta, u)e−
∫ u

Ta ψ(s)dsΨ(t, Ta, yt, y∗, B(Ta, u))du

On the other hand, if

∫ Tb

Ta

[
LGDD(Ta, u)∂uS(Ta, u; 0) + KS(Ta, u; 0)D(Ta, u)

(
1− (u− Tβ(u)−1)ru

)
]

du < 0

the default swaption is so deeply in the money that the probability of it moving out of the money
is null. Therefore, in this case the default swaption is equivalent to a forward default swap, hence
it can be valued by computing the price of the equivalent forward default swap.

5 IMPLEMENTATION AND NUMERICAL RESULTS

To implement the formula presented in the previous section, we need to compute the relevant
integrals numerically. We first focus on deriving a quadrature formula for computing the integral
appearing in the formula for Π:

∫ ∞

0

eUy0 [S cos(Wy0 + vς) + R sin(Wy0 + vς)]
v

dv (29)
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Define f (v) := S cos(Wy0 + vς) + R sin(Wy0 + vς). In the following lemma, we simplify the
equation for the function and prove that our integrand is continuous and bounded on the interval
(0, ∞) with finite limits on both ends of the interval.

Lemma 1. The function eUy0
v f (v) is continuous and bounded for v ∈ (0, ∞). Moreover,

lim
v→∞

eUy0

v
f (v) = 0 (30)

lim
v→0

eUy0

v
f (v) = C (31)

where C is a constant depending on the model parameters.

Proof. Since the function eUy0
v f (v) is obtained by combinations and compositions of continuous

functions on (0, ∞), it is therefore continuous.

Let φ be the angle such that2:

sin φ =
S√

S2 + R2
, S =

√
S2 + R2 sin φ

cos φ =
R√

S2 + R2
, R =

√
S2 + R2 cos φ

tan φ =
S
R

, and φ = arctan
S
R

then

f (v) =
√

S2 + R2 [sin φ cos(Wy0 + vς) + cos φ sin(Wy0 + vς)]

=
√

S2 + R2 sin
(

Wy0 + vς + arctan
S
R

)

Also, note that

√
S2 + R2 = (J2 + K2)

D
2 eG

√
E2 + F2 = (J2 + K2)

D
2 eG

(
4h2e(h+κ)T

N

) κµ

ν2

since

E2 + F2 = (x̃2 + ỹ2)2 κµ

ν2

[
cos2

(
2

κµ

ν2
arctan

ỹ
x̃

)
+ sin2

(
2

κµ

ν2
arctan

ỹ
x̃

)]

= (x̃2 + ỹ2)2 κµ

ν2 =
(

4h2e(h+κ)T

N

)2 κµ

ν2

In summary, the integrand can be written as follows:

eUy0

v
f (v) = eUy0+G(J2 + K2)

D
2

(
4h2e(h+κ)T

N

) κµ

ν2 sin
(
Wy0 + vς + arctan S

R

)

v
2We thank Aanand Venkatramanan for pointing this out.
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To compute the limit for v → ∞, one can easily verify that
∣∣∣∣sin

(
Wy0 + vς + arctan

S
R

)∣∣∣∣ ≤ 1

(
4h2e(h+κ)T

N

) κµ

ν2

−→ 0

K −→ 0

J −→ 1 +
(ν2 + γ(h− κ))(ehT − 1)

2hγ

G −→ αγT(h + κ)
ν2 − γ(h + κ)

U −→ κ

ν2
+

h(1− e2hT)
ν2(ehT − 1)2

We can therefore conclude that

lim
v→∞

eUy0

v
f (v) = 0

We now consider the limit at zero. First, we can further write:

S
R

=
F cos(H + D arctan K

J ) + E sin(H + D arctan K
J )

E cos(H + D arctan K
J )− F sin(H + D arctan K

J )

=
sin(H + D arctan K

J + arctan F
E )

cos(H + D arctan K
J + arctan F

E )

arctan
S
R

= H + D arctan
K
J

+ arctan
F
E

Furthermore,

F
E

=
sin

(
2κµ

ν2 arctan
(

ỹ
x̃

))

cos
(

2κµ

ν2 arctan
(

ỹ
x̃

))

arctan
F
E

=
2κµ

ν2
arctan

(
ỹ
x̃

)

Hence,

arctan
S
R

= H + D arctan
K
J

+
2κµ

ν2
arctan

ỹ
x̃

Therefore,

lim
v→0

sin
(
Wy0 + vς + arctan S

R

)

v
= lim

v→0

sin
(

Wy0 + vς + H + D arctan K
J + 2κµ

ν2 arctan ỹ
x̃

)

v
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ICMA Centre Discussion Papers in Finance DP2007-14

Note from the formulae for W, H, K, J, x̃, ỹ, that we can write:

H =
c1v

c2 + c3v2

K
J

=
c4v2 + c5v3

c6 + c7v2 + c8v4

ỹ
x̃

= c9v

Wy0 + vς =
(

c10

c11 + c12v2
+ ς

)
v

where the constants c1, . . . , c12 depend on the model parameters but not on v. This yields the
following limit:

lim
v→0

sin
(
Wy0 + vς + arctan S

R

)

v
=

c1

c2
+

2κµ

ν2
c9 + ς +

c10

c11
+ D

c4

c6

Furthermore, since eUy0
v f (v) = eUy0+G(J2 + K2) D

2

(
4h2e(h+κ)T

N

) κµ

ν2
is defined and equals some constant,

say c0, for v = 0, we can conclude that for some constant C depending on the model parameters:

lim
v→0

eUy0

v
f (v) = C

Finally, we show that the function eUy0
v f (v) is bounded since it is a product of bounded functions.

Indeed recall that

U =
δ + εehT + φe2hT

N

In addition, note that N is a positive and increasing function of v, and

δ + εehT + φe2hT = · · ·+ v2ν2(1− ehT)
[
h + κ + ehT(h− κ)

]

Since hT > 0, and h =
√

κ2 + 2ν2 > κ then 1 − ehT < 0 and the term multiplied by v2 in the
expression above is negative. Hence U is decreasing in v. As a consequence, eUy0 is a positive and
decreasing function of v attaining its maximum eU(0)y0 for v = 0.

We have thus shown that the infinite integral is well defined. For a visual view of the integrand
eUy0

v f (v), we plot it for a given set of parameter values in figure (1). For the numerical compu-
tation of the integral we use the four-point adaptive Gauss-Lobatto quadrature with seven point
Kronrod refinement provided by Matlab’s "quadl" routine based on Gander and Gautschi (2000).
Numerical convergence can be verified in table (1). Experiments -not reported here- against a
mid-point trapezoidal and Simpson’s quadratures confirmed the accuracy of the faster and more
convenient adaptive Gauss-Lobatto algorithm. For the outer integral appearing in the formula
(22), some experimentation shows that Simpson’s rule with at worst two quadrature points per
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FIGURE 1: Plot of eUy0
v f (v) when v ∈ (0, 250] for y0 = 0.005, κ = 0.196, µ = 0.065, ν = 0.1594,

α = 0.5, γ = 0.025, T − t = 1

Integral bound: N 102 103 104 105 106 107

Numerical integral -0.75859 -0.76983 -0.77173 -0.77178 -0.77178 -0.77178

TABLE 1: Numerical approximation of
∫ ∞

0
eUy0

v f (v)dv by
∫ N

0
eUy0

v f (v)dv using adaptive Gauss-Lobatto
quadrature for y0 = 0.005, κ = 0.196, µ = 0.065, ν = 0.1594, α = 0.5, γ = 0.025, T − t = 1,
$ = B(0, 3), ς = 0.0062
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FIGURE 2: Payer default swaption prices (bps) for different strike values (bps) in SRJD model with no
deterministic shifts and parameters: Ta = 1y, Tb = 5y, r = 0.03, LGD = 0.7, y0 = 0.005, κ = 0.229,
µ = 0.0134, ν = 0.078, α = 1.5, γ = 0.0067. The fair value of the underlying forward default swap rate
is 204 bps.

quarterly spread payment period is usually enough for convergence of the numerical approxima-
tion, while using the spread payment dates as the only quadrature points in most cases leads to a
good accuracy.

In figure (2) we present some numerical results for payer default swaption prices for different
strikes, obtained using the quasi-analytic formula developed3. These are for a homogenous non-
shifted version of the model with constant short rate. The set of parameters used are reported on
the figure. We refer the interested reader to Brigo and El-Bachir (2006) for a detailed analysis of
the SSRJD model, its implied volatility smile patterns and calibration procedures.

6 CONCLUSION

The SSRJD model can fit the current default swap term structure while being consistent with some
dynamic future deformations and implying a volatility smile for default swaptions. The quasi-
analytic formula presented in this paper permits fast and accurate pricing of default swaptions.
Hence, the model could be calibrated to the CDS term structure and a few default swaptions, to
price and hedge other credit derivatives consistently.

3Notice that the jumps in the intensity process can only take positive values. If one thinks in terms of zero-mean
shocks, the long term mean reversion level of the process including jumps is no longer the purely diffusive long term
mean µ but the larger µ + αγ

κ as summarized in the following equivalent way of writing the dynamics of the process yt:

dyt = κ(µ +
αγ

κ
− yt)dt + ν

√
ytdWt + (dJt − αγdt)

where the jump process Jt is centered. This is why, in particular, we find a fair value of the underlying forward default
swap rate is 204 bps when both the initial condition y0 and the basic long term mean µ are much smaller.
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