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Abstract

In this paper we investigate implied volatility patterns in the Shifted Square

Root Diffusion (SSRD) model as functions of the model parameters. We begin by

recalling the Credit Default Swap (CDS) options market model that is consistent

with a market Black-like formula, thus introducing a notion of implied volatility for

CDS options. We examine implied volatilies coming from SSRD prices and char-

acterize the qualitative behavior of implied volatilities as functions of the SSRD

model parameters. We introduce an analytical approximation for the SSRD im-

plied volatility that follows the same patterns in the model parameters and that

can be used to have a first rough estimate of the implied volatility following a cal-

ibration. We compute numerically the CDS-rate volatility smile for the adopted

SSRD model. We find a decreasing pattern of SSRD implied volatilities in the

interest-rate/intensity correlation. We check whether it is possible to assume zero

correlation after the option maturity in computing the option price and provide an

upper bound for the Monte Carlo standard error in cases where this is not possible.
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1 Introduction

In the present paper we consider the issue of credit default swap (CDS) option pricing.

We briefly summarize the shifted square-root diffusion (SSRD) model for interest rate

derivatives and single-name credit derivatives introduced in Brigo and Alfonsi (2003),

by recalling that the SSRD is the unique known stochastic (positive-) intensity and

interest-rate model allowing for an analytical automatic calibration of the term struc-

ture of interest rates and of credit default swaps (CDS’s). We consider the market model

for CDS options introduced in Brigo (2004), similar in spirit to the defaultable LIBOR

and swap models introduced in Schönbucher (2000) and perfected in Jamshidian (2002),

and after pricing CDS options under the SSRD model we back out the implied volatility

for the CDS-rate underlying the CDS option market model. We analyze numerically the

dependence between dynamics parameters in the intensity process of the SSRD model

and the implied CDS volatility in the market model. We also analyze the impact of cor-

relation between stochastic intensities and interest rates on implied volatilities obtained

from the SSRD model. We analyze an approximated formula providing the CDS implied

volatility in term of SSRD dynamics parameters. This formula can be useful in quickly

characterizing implied volatility patterns in the model dynamics parameters but is of

very limited precision.

We also discuss the impact of interest-rate and default-intensity correlation ρ on SSRD

CDS option implied volatilities, analogously to what was done earlier in Brigo and Al-

fonsi (2003) for simple CDS’s, and test it by means of Monte Carlo simulation. In

particular, the possibility to set this correlation to zero from the option maturity on,

during the life of the underlying CDS, is investigated. This possibility would allow us to

value the underlying CDS at option maturity analytically in each intensity and interest

rate scenario, whereas if correlation had to be kept different from zero we would have to

go on with the simulation up to the underlying CDS final maturity.

The paper is structured as follows: Section 2 introduces notation, CDS options, and

recalls the notion of forward CDS rate and of “defaultable present value per basis point”

numeraire. Section 3 recalls briefly the market model formula for CDS options as from

Brigo (2004), where the market model is developed in detail. Section 4 recalls briefly the

SSRD model introduced in Brigo and Alfonsi (2003) and hints at how CDS options can

be priced within such model. Section 5 derives a formula that, under the assumption of

zero correlation between stochastic interest rates and stochastic intensities, provides an

approximation linking the SSRD model to the market model for CDS options, and ex-

plains how this approximation leads to an analytical formula for pricing CDS options with

the SSRD model. Section 6 presents numerical investigations of the proposed formula

and also of the way the exact CDS-rate volatility implied by Monte Carlo CDS-option

prices under the SSRD model changes as a function of the SSRD model parameters. The

SSRD volatility smile and the possibility to set ρ = 0 from the option maturity on are

also investigated. Section 7 concludes the paper summarizing the main findings.
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2 Credit Default Swaps Options

We recall briefly some basic definitions and then introduce CDS options.

Consider a CDS where we agree to receive protection payment rates R from a pro-

tection buyer at times Ta+1, . . . , Tb in exchange for a single protection payment LGD (loss

given default) at the default time τ of a reference entity, provided that Ta < τ ≤ Tb

(receiver CDS). The CDS seen from the point of view of the protection buyer is a payer

CDS, and the related discounted payoff is exactly the opposite of the receiver version.

Formally, we may write the receiver CDS discounted value at time t as

D(t, τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb} +

b∑

i=a+1

D(t, Ti)αiR1{τ>Ti} − 1{Ta<τ≤Tb}D(t, τ) LGD (1)

where t ∈ [Tβ(t)−1, Tβ(t)), i.e. Tβ(t) is the first date among the Ti’s that follows t, and αi =

Ti − Ti−1 or, more generally, αi is the year fraction between Ti−1 and Ti. The stochastic

discount factor at time t for maturity T is denoted by D(t, T ) = B(t)/B(T ), where

B(t) = exp(
∫ t

0
rudu) denotes the bank-account numeraire, r being the instantaneous

short interest rate.

Sometimes a slightly different payoff is considered for CDS contracts. Instead of

considering the exact default time τ , the protection payment LGD is postponed to the

first time Ti following default, i.e. to Tβ(τ). If the grid is three-or six months spaced,

this postponement consists in a few months at worst. With this formulation, the CDS

discounted payoff could be rewritten in a way that avoids the accrued-interest term in

(τ −Tβ(τ)−1) and brings in equivalence with approximated defaultable floaters, see Brigo

(2004) for the details.

We denote by CDS(t, [Ta+1, . . . , Tb], Ta, Tb, R,LGD) the price at time t of the above

CDS. At times some terms are omitted, such as for example the list of payment dates

[Ta+1, . . . , Tb]. The pricing formula for this product depends on the assumptions on

interest-rate dynamics and on the default time τ .

In general, we can compute the CDS price according to risk-neutral valuation (see

for example Bielecki and Rutkowski (2001)):

CDS(t, Ta, Tb, R,LGD) = E
{
D(t, τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb} (2)

+

b∑

i=a+1

D(t, Ti)αiR1{τ>Ti} − 1{Ta<τ≤Tb}D(t, τ) LGD

∣∣∣∣∣Gt

}

where Gt = Ft ∨ σ({τ < u}, u ≤ t), Ft denoting the basic filtration without default,

typically representing the information flow of interest rates, intensities and possibly

other default-free market quantities, and E denotes the risk-neutral expectation in the

enlarged probability space supporting τ .
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This expected value can also be written as

CDS(t, Ta, Tb, R,LGD) =
1{τ>t}

Q(τ > t|Ft)
E
{
D(t, τ)(τ − Tβ(τ)−1)R1{Ta<τ<Tb} (3)

+

b∑

i=a+1

D(t, Ti)αiR1{τ>Ti} − 1{Ta<τ≤Tb}D(t, τ) LGD

∣∣∣∣∣Ft

}

(see again Bielecki and Rutkowski (2001) formula (5.1) p. 143).

Now we explain shortly how the market quotes CDS prices. Usually at time t,

provided default has not yet occurred, the market sets R to a value RMID

a,b (t) that makes

the CDS fair at time t, i.e. such that CDS(t, Ta, Tb, R
MID

a,b (t),LGD) = 0. In fact, in the

market CDS’s are quoted at a time t through a bid and an ask value for this “fair”

RMID

a,b (t), for CDS’s with Ta = t and with Tb spanning a set of canonical final maturities,

Tb = t + 1y up to Tb = t + 10y. Recently the quoting mechanism has slightly changed

and a periodic maturities roll-over has been adopted, similarly to what happens in some

futures markets, see Brigo (2004). Brigo and Alfonsi (2003) illustrate in detail the notion

of implied deterministic intensity (hazard function), satisfying

Q{s < τ ≤ t} = exp(−Γ(s)) − exp(−Γ(t)).

The market Γ’s are obtained by inverting a pricing formula based on the assumption

that τ is the first jump time of a Poisson process with intensity γ(t) = dΓ(t)/dt. In this

case one can derive a formula for CDS prices based on integrals of γ, and on the initial

interest-rate curve, resulting from the above expectation. One then can extract the γ’s

corresponding to CDS market quotes and obtain market implied γmkt and Γmkt’s. It is

important to point out that usually the actual model one assumes for τ is more complex

and may involve stochastic intensity. Even so, the γmkt’s are retained as a mere quoting

mechanism for CDS rate market quotes, and are taken as inputs in the calibration of

more complex models, as we shall see in Section 4.

We finally introduce CDS options. A payer CDS option is the right to enter into a

payer CDS at its first reset time Ta > t at a pre-specified strike rate R = K. Clearly this

right will be exercised only if the payoff is positive at Ta, so that the discounted CDS

option payoff reads, at time t,

D(t, Ta)[CDS(Ta, Tb, Ra,b(Ta),LGD) − CDS(Ta, Tb, K,LGD)]+. (4)

We explicitly point out that we are assuming the offered protection amount LGD not to

depend on the CDS rate but only on the reference entity. By recalling that the fair CDS

rate R makes the CDS value equal to zero, we have that in general

CDS(t, Ta, Tb, Ra,b(t),LGD) = 0.

The idea is then solving this equation in Ra,b(t). We resort to expression (3), equate

it to zero and derive R correspondingly. Strictly speaking, the resulting R would be

defined on {τ > t} only, since elsewhere we obtain zero thanks to the indicator in front
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of the expression, regardless of R. Since the value of R does not matter when {τ < t},
the equation being satisfied automatically, we extend the value of R we find also to

{τ < t}.
To find R we equate to zero the part of the right hand side of expression (3) after

the indicator. We thus find what we may call the “forward CDS rate”

Ra,b(t) =
LGD E[D(t, τ)1{Ta<τ≤Tb}|Ft]∑b

i=a+1 αiQ(τ > t|Ft)P̄ (t, Ti) + E
{
D(t, τ)(τ − Tβ(τ)−1)1{Ta<τ<Tb}|Ft

} , (5)

where P̄ (t, T ) := E[D(t, T )1{τ>T}|Ft]/Q(τ > t|Ft) and

E[D(t, T )1{τ>T}|Gt] = 1{τ>t}E[D(t, T )1{τ>T}|Ft]/Q(τ > t|Ft) = 1{τ>t}P̄ (t, T )

is the price at time t of a defaultable bond maturing at time T . In particular, from the

above formula we can compute Ra,b(Ta). Notice that Ra,b(t) is (Ft)t adapted. The above

option payoff (4) can be rewritten in two different ways through some basic algebra and

the definition of CDS. We may write it either as

1{τ>Ta}

Q(τ > Ta|FTa
)
D(t, Ta)

[
b∑

i=a+1

αiQ(τ > Ta|FTa
)P̄ (Ta, Ti)+ (6)

+E
{
D(Ta, τ)(τ − Tβ(τ)−1)1{τ<Tb}|FTa

} ]
(Ra,b(Ta) −K)+

or, by remembering that by definition CDS(Ta, Ta, Tb, Ra,b(Ta),LGD) = 0, as

D(t, Ta)[−CDS(Ta, Ta, Tb, K,LGD)]+. (7)

The quantity inside square brackets in (6) will play a key role in the following. We will

often neglect the accrued interest term in (τ−Tβ(τ)−1) and consider the related simplified

payoff: in such a case the quantity between square brackets is denoted by Ĉa,b(Ta) and

is called “defaultable present value per basis point numeraire”. More generally, at time

t, we set

Ĉa,b(t) := Q(τ > t|Ft)C̄a,b(t), C̄a,b(t) :=
b∑

i=a+1

αiP̄ (t, Ti).

When including a survival indicator this quantity can be seen as a present value per

basis point numeraire in the defaultable bonds. Neglecting the accrued interest term,

the option discounted payoff simplifies to

1{τ>Ta}D(t, Ta)

[
b∑

i=a+1

αiP̄ (Ta, Ti)

]
(Ra,b(Ta) −K)+ (8)

The same payoff is obtained as exact payoff when using postponed CDS formulations.

For the details and for parallels with the LIBOR/SWAP market models see Brigo (2004).



D. Brigo, L. Cousot: CDS Options with shifted square root diffusion models 6

3 A market model for CDS options

As usual, one would like to quote CDS options through the implied volatility of their

underlying CDS rates R. In order to do so rigorously, one has to come up with an

appropriate dynamics for Ra,b directly, rather than modeling instantaneous default in-

tensities explicitly. This somehow parallels what we find in the default-free interest rate

market when we resort to the swap market model as opposed for example to a one-factor

short-rate model for pricing swaptions. In a one-factor short-rate model the dynamics

of the forward swap rate is a byproduct of the short-rate dynamics itself, through Ito’s

formula. On the contrary, the market model for swaptions directly postulates, under

the relevant numeraire a (lognormal) dynamics for the forward swap rate. In the case

of CDS options formulated in the context of this paper, the market model is derived in

Brigo (2004). We do not repeat the derivation here, but present instead the resulting

Black-like formula:

E{1{τ>Ta}D(t, Ta)C̄a,b(Ta)(Ra,b(Ta)−K)+|Gt} = 1{τ>t}C̄a,b(t)[Ra,b(t)N(d1(t))−KN(d2(t))]

(9)

d1,2 =

(
ln(Ra,b(t)/K) ± (Ta − t)σ2

a,b/2

)
/(σa,b

√
Ta − t).

This formula follows from assuming a dynamics

dRa,b(t) = σa,bRa,b(t)dW
a,b(t), (10)

where W a,b is a Brownian motion under Q̂a,b, the measure associated with the numeraire

Ĉa,b. As happens in most markets, this formula may be used as a quoting mechanism

rather than as a real model formula. That is, the market price is converted into its

implied volatility matching the given price when substituted in the above formula, and

the market might quote CDS options through this implied volatility.

If we have no direct quote for the initial condition of the dynamics of Ra,b, we may

compute its approximation from the market implied γmkt according to

Ra,b(0) =
−LGD

∫ Tb

Ta
P (0, u)d(e−Γmkt(u))

∑b

i=a+1 αiP (0, Ti)e−Γmkt(Ti)

4 The SSRD model for CDS options

We recall briefly the SSRD model introduced in Brigo and Alfonsi (2003).

We write the short-rate rt as a CIR++ process, i.e. as the sum of a deterministic

function ϕ and of a Markovian process xα
t :

rt = xα
t + ϕ(t;α) , t ≥ 0, (11)

where ϕ depends on the parameter vector α (which includes xα
0 ) and is integrable on

closed intervals.
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We take as reference model for x the Cox-Ingersoll-Ross (1985) process:

dxα
t = k(θ − xα

t )dt+ σ
√
xα

t dWt,

where the parameter vector is α = (k, θ, σ, xα
0 ), with k, θ, σ, xα

0 positive deterministic

constants. The condition

2kθ > σ2

ensures that the origin is inaccessible to the reference model, so that the process xα

remains strictly positive. We may input the initial market interest rate curve into ϕ

automatically, so as to calibrate the market curve exactly. We can then find the dynamic

parameters α by fitting some cap prices. We set Φ(t, α) :=
∫ t

0
ϕ(s, α)ds.

For the intensity model we adopt a similar CIR++ model, in that we set

λt = yβ
t + ψ(t; β) , t ≥ 0, (12)

where ψ is a deterministic function, depending on the parameter vector β (which includes

yβ
0 ), that is integrable on closed intervals.

We take y again of the form:

dyβ
t = κ(µ− yβ

t )dt+ ν

√
yβ

t dZt,

where the parameter vector is β = (κ, µ, ν, yβ
0 ), with κ, µ, ν, yβ

0 positive deterministic

constants. Again we assume the origin to be inaccessible, i.e.

2κµ > ν2.

For restrictions on the β’s that keep λ positive, as is required in intensity models, see

Brigo and Mercurio (2001, 2001b). We will often use the integrated process, that is

Λ(t) =
∫ t

0
λsds, and also Y β(t) =

∫ t

0
yβ

s ds and Ψ(t, β) =
∫ t

0
ψ(s, β)ds.

The function ψ can take as inputs the market curve γmkt automatically, so as to

calibrate CDS quotes exactly. The remaining dynamic parameters β are those who have

impact on CDS options pricing. For the explicit formulae and automatic calibration of ϕ

and ψ see Brigo and Alfonsi (2003). Here we only say that automatic calibration follows

when computing ϕ and ψ from

Φ(T, β) = lnP CIR (0, T ; x0, α) − lnPMkt(0, T ), Ψ(T, β) = lnP CIR(0, T ; y0, β) + Γmkt(T ),

at all relevant T , where P CIR is the bond price formula in the CIR standard model,

P CIR(t, T ; yt, β) = A(t, T ; β) exp(−B(t, T ; β)yt) (and similarly for x), with A and B the

classical expressions for the CIR model bond price (see for example Formula (3.25) in

Brigo Mercurio (2001b)).

We take the short interest-rate and the intensity processes to be correlated, by assum-

ing the driving Brownian motions W and Z to be instantaneously correlated according

to

dWt dZt = ρ dt.
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This could in principle destroy the separated calibration paradigm summarized above.

However, in Brigo and Alfonsi (2003) the issue is discussed at length and it is shown

that, in practice, one can calibrate as above even in presence of nonzero correlation. It is

shown that the parameter ρ has an impact on CDS valuation that is typically a fraction

of the bid-ask spread, so that one may safely set ρ = 0 when pricing (or calibrating)

CDS’s.

Let us now consider the CDS option price under the SSRD model.

Valuing this contract with the CIR++ model when ρ 6= 0 can be a problem, since

we have no closed form formula for P̄ or the other terms at time Ta. We would thus

be forced, in principle, to sub-simulate paths from Ta on just to be able to obtain the

underlying asset of the option at Ta. This is computationally undesirable and we need

to find alternatives. One way out is assuming zero correlation between interest rate and

intensity from Ta on. Indeed, we have already seen that said correlation has almost no

impact on CDS’s, so that we may expect no real impact on the two CDS terms concurring

to the payoff at Ta. Then, with zero correlation from Ta on, we have analytical expressions

for the terms in the payoff and we may avoid simulations from Ta on. Compute

CDS(Ta, Ta, Tb, K,LGD) = 1{τ>Ta}E

{
D(Ta, τ)(τ − Tβ(τ)−1)K1{τ<Tb}

+

b∑

i=a+1

D(Ta, Ti)αiK1{τ>Ti} − 1{τ<Tb}D(Ta, τ) LGD|GTa

}

= 1{τ>Ta}

{
K

∫ Tb

Ta

E

[
exp

(
−
∫ u

Ta

(rs + λs)ds

)
λu|FTa

]
(u− Tβ(u)−1)du

+K
b∑

i=a+1

αiE

[
exp

(
−
∫ Ti

Ta

(rs + λs)ds

)
|FTa

]

− LGD

∫ Tb

Ta

E

[
exp

(
−
∫ u

Ta

(rs + λs)ds

)
λu|FTa

]
du

}

:= 1{τ>Ta}CDSF(Ta, Ta, Tb, K,LGD; xTa
, yTa

).

Assuming ρ = 0 from Ta on, the expectations appearing in the above expression can

be computed as follows:

E

[
exp

(
−
∫ Ti

Ta

(rs + λs)ds

)
|FTa

]
= exp(Ψ(Ta, β) − Ψ(Ti, β))P CIR(Ta, Ti; yTa

, β) ×

× exp(Φ(Ta, α) − Φ(Ti, α))P CIR(Ta, Ti; xTa
, α). (13)

Further, we may compute
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E

[
exp

(
−
∫ u

Ta

(rs + λs)ds

)
λu|FTa

]
= (14)

= E

[
exp

(
−
∫ u

Ta

rsds

)
|FTa

]
E

[
exp

(
−
∫ u

Ta

λsds

)
λu|FTa

]
=

= E

[
exp

(
−
∫ u

Ta

rsds

)
|FTa

](
− d

du
E

[
exp

(
−
∫ u

Ta

λsds

)
|FTa

])
=

= − exp(Φ(Ta, α) − Φ(u, α))P CIR(Ta, u; xTa
, α) ×

× d

du

[
exp(Ψ(Ta, β) − Ψ(u, β))P CIR(Ta, u; yTa

, β)

]

so that all terms are known analytically given the simulated paths of xTa
and yTa

, which

are to be simulated with nonzero ρ from time 0 to time Ta. Putting all pieces together,

without forgetting the indicator 1{τ>Ta}, we may value the CDS option payoff (7) by

simulation.

E
[
D(t, Ta)[−CDS(Ta, Ta, Tb, K,LGD)]+|Gt

]

= E
[
D(t, Ta)1{τ>Ta}[−CDSF(Ta, Ta, Tb, K,LGD; xTa

, yTa
)]+|Gt

]

=
1{τ>t}

exp(−Λ(t))
E
[
D(t, Ta)1{τ>Ta}[−CDSF(Ta, Ta, Tb, K,LGD; xTa

, yTa
)]+|Ft

]

= 1{τ>t}E
[
D(t, Ta)exp(−Λ(Ta) + Λ(t))[−CDSF(Ta, Ta, Tb, K,LGD; xTa

, yTa
)]+|Ft

]

= 1{τ>t}E

[
exp

(
−
∫ Ta

t

(rs + λs)ds

)
[−CDSF (Ta, Ta, Tb, K,LGD; xTa

, yTa
)]+|Ft

]
(15)

The assumption above that ρ = 0 from Ta on allows us to compute the F -measurable

part of the CDS payoff, i.e. CDSF , as a function of the simulated xTa
and yTa

without

further simulation from Ta to Tb. It suffices to use formulas (13) and (14). However, we

have to check that we can set ρ = 0 from Ta on. We know from Brigo and Alfonsi (2003)

that ρ has little impact on “at the money” CDS contracts valued at time 0. We plan to

check whether this is the case with the option payoff from Ta on. We will thus compute

the option price both by taking ρ = 0 from Ta on and by keeping the nonzero ρ also

in [Ta, Tb]. In the latter case we can resort to the “sub-path” method. We simulate n

paths of λ and r from 0 to Ta, and then for each Ta realization we subsimulate m paths

up to Tb to compute the inner discounted payoff at Ta conditional on the Ta scenario.

We need a way to compute the standard error of the Monte Carlo method. In our tests

below n = 50000 and m = 5000.
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4.1 SSRD standard error upper bound under nonzero correla-

tion

Write the above option payoff at maturity Ta by collecting the expected values as

CDS(Ta, Ta, Tb, K,LGD) = 1{τ>Ta}

{
E

[
−K

∫ Tb

Ta

exp

(
−
∫ u

Ta

(rs + λs)ds

)
λu(u− Tβ(u)−1)du

−K
b∑

i=a+1

αi exp

(
−
∫ Ti

Ta

(rs + λs)ds

)
+ LGD

∫ Tb

Ta

exp

(
−
∫ u

Ta

(rs + λs)ds

)
λudu

∣∣∣∣FTa

]}+

Call X the part of this expression inside the expectation after the indicator, i.e. the

part inside the expectation inside the curly brackets. The CDS option price can be

written as

E

[
exp

(
−
∫ Ta

0

(rs + λs)ds

)
(ETa

X)+

]
= E

[
Y · (ETa

X)+
]

where Y denotes the exponential term. The method we use is generate some scenarios

ωi, i = 1, . . . , n for r and λ up to Ta. Then, conditional on each such ωi, we generate m

subpaths ωi,j, j = 1, . . . , m for r and λ from Ta to Tb. We call Y i the realization of Y

corresponding to ωi and X i,j the realization of X corresponding to ωi,j.

Our Monte Carlo estimate for the above price will then be

ΠMC =
1

n

n∑

i=1

Y i

(
1

m

m∑

j=1

X i,j

)+

Under a large number of scenarios, the central limit theorem tells us that this ΠMC

is approximately normal. Thus, if we find an upper bound for its standard deviation we

may find conservative windows for the Monte Carlo error and conservative confidence

intervals around the true mean, i.e. around the price we seek.

Compute then said variance.

var(ΠMC) = var

(
1

n

n∑

i=1

Y i

(
1

m

m∑

j=1

X i,j

)+)
= ...

Since the paths ωi are independent, we may add variances with respect to different ωi’s,

... =
1

n2

n∑

i=1

var

(
Y i

(
1

m

m∑

j=1

X i,j

)+)
= ...

Now we use a first bound. In general, it is easy to show that, given a random variable

Z, we have var(Z+) < var(Z) if E(Z+) + E(Z) > 0. Assuming the condition to hold

(one may check it on the simulated sample, more on this later) we may then write

... ≤ 1

n2

n∑

i=1

var

(

Y i

(
1

m

m∑

j=1

X i,j

))

=
1

n2m2

n∑

i=1

var

(
m∑

j=1

(Y iX i,j)

)

= ...
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Now we are computing the variance of a summation of correlated variables. This has

as upper bound the case where all correlations are one, corresponding to adding up

standard deviations and squaring:

... ≤ 1

n2m2

n∑

i=1

(
m∑

j=1

stdv(Y iX i,j)

)2

= ....

Since the “i” samples are i.i.d., all the above standard deviations are equal to each other.

Thus, if we call “stdvxy” such standard deviation, we obtain

... =
1

n2m2

n∑

i=1

(m · stdvxy)2 =
1

n
stdvxy2

The sample stdvxy above may be computed from the simulated sample: indeed, take

the simulated realizations and compute the standard deviation of the discrete random

variable taking the following values, each with 1/(n m) probability:

Y 1X1,1, Y 1X1,2, Y 1X1,3, . . . , Y 1X1,m

Y 2X2,1, Y 2X2,2, Y 2X2,3, . . . , Y 2X2,m

....

Y iX i,1, Y iX i,2, Y iX i,3, . . . , Y iX i,m

...

Y nXn,1, Y nXn,2, Y nXn,3, . . . , Y nXn,m

This standard deviation can be computed through cumulated quantities, so that it is

not necessary to store all the paths.

We get

MCerr =
stdvxy√

n
=

1√
n

√√√√
n∑

i=1

m∑

j=1

(xi,j yi)2

nm
−
(

n∑

i=1

m∑

j=1

xi,j yi

nm

)2

where x and y are the simulated realizations of X and Y (not to be confused with

the processes of the interest rate and intensity). As one simulates paths and subpaths, it

is best to keep a cumulated variable updating the sum of terms xi,j yi and a cumulated

variable also for the sum of (xi,j yi)2.

The last thing one has to check, to make sure things work, is that our assumption

E(Z+) + E(Z) > 0 applies. We need to check that

E

[(
Yi

1

m

m∑

j=1

X i,j

)+]
+ E

[(
Yi

1

m

m∑

j=1

X i,j

)]
> 0

Again, we may decide to test this condition on the simulated sample itself. For each

i we use the simulated sampled subpaths to compute the means
∑m

j=1 x
i,j/m = µi, and

then check that
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1

n

n∑

i=1

yi(µi)
+ +

1

n

n∑

i=1

yi(µi) > 0

This roughly amounts to say that the estimated CDS option price plus the opposite

of the corresponding forward-start CDS price (with a CDS rate set to K) gives a positive

value. Note that if the µi’s are strongly negative (as may happen for large K) then our

assumption may not hold. We used this MC error bounds successfully in our subsequent

tests.

5 A Formula linking the Market and SSRD models

We develop an approximated formula based on the assumption of null instantaneous

correlation ρ between stochastic interest rates r and intensities λ. A particular case is

given by deterministic rates r.

First we derive an approximated formula for the volatility of Ra,b(t) under the CIR++

model in case of zero correlation ρ = 0. In case of the CIR++ model for λ indepen-

dent of r, Formula (5) (with postponed payoff or by ignoring the accruing term in the

denominator) reads

Ra,b(t) =
LGD

∫ Tb

Ta
E[λu exp(−

∫ u

t
rsds−

∫ u

0
λsds)|Ft]du

∑b

i=a+1 αi exp(−
∫ t

0
λsds)E[exp(−

∫ Ti

t
(rs + λs)ds)|Ft]

(16)

=
LGD

∫ Tb

Ta
E[λu exp(−

∫ u

t
(rs + λs)ds)|Ft]du

∑b

i=a+1 αiE[exp(−
∫ Ti

t
(rs + λs)ds)|Ft]

Under the SSRD assumptions for λ and r this simplifies to:

Ra,b(t) =
LGD

∫ Tb

Ta
P (t, u)E[λu exp(−

∫ u

t
λsds)|Ft]du

∑b

i=a+1 αiP (t, Ti)E[exp(−
∫ Ti

t
λsds)|Ft]

(17)

= −
LGD

∫ Tb

Ta
exp(Φ(t, α) − Φ(u, α))P CIR(t, u; xt, α) d

du

[
exp(Ψ(t, β) − Ψ(u, β))P CIR(t, u; yt, β)

]
du

∑b

i=a+1 αi exp(Φ(t, α) − Φ(Ti, α))P CIR(t, Ti; xt, α) exp(Ψ(t, β) − Ψ(Ti, β))P CIR(t, Ti; yt, β)

:= Ra,b(t; xt, yt, α, β). (18)

At times we omit α and β as arguments of Ra,b. Consider the instantaneous return

variance of R, i.e. the quadratic covariation
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d〈lnRa,b(·; x·, y·)〉t =

(
∂ lnRa,b(t; xt, yt)

∂x

)2

d〈x, x〉t +

(
∂ lnRa,b(t; xt, yt)

∂y

)2

d〈y, y〉t

+ 2

(
∂ lnRa,b(t; xt, yt)

∂x

)(
∂ lnRa,b(t; xt, yt)

∂y

)
d〈x, y〉t

=

(
∂ lnRa,b(t; xt, yt)

∂x

)2

σ2xt dt+

(
∂ lnRa,b(t; xt, yt)

∂y

)2

ν2yt dt

+ 2ρ

(
∂ lnRa,b(t; xt, yt)

∂x

)(
∂ lnRa,b(t; xt, yt)

∂y

)
σν

√
xtyt dt

Since in the market model (10) we have

d〈lnRa,b(·)〉t = σ2
a,bdt,

we may consider

σCIR++

a,b (t)2 :=

(
∂ lnRa,b(t; xt, yt, α, β)

∂x

)2

σ2xt +

(
∂ lnRa,b(t; xt, yt, α, β)

∂y

)2

ν2yt (19)

+2

(
∂ lnRa,b(t; xt, yt, α, β)

∂x

)(
∂ lnRa,b(t; xt, yt, α, β)

∂y

)
ρ σν

√
xtyt

as a proxy, in the CIR++ model, for the market model volatility. Of course, while in

the market model this volatility is deterministic, here it is a random variable due to

the presence of x and y. Notice also that the above approximated formula for R in the

SSRD model holds only for ρ = 0, since our formula for Ra,b in the SSRD model holds

only under ρ = 0. We have to set ρ = 0 in (19). However, we might “cheat” and use

the above approximation even when ρ 6= 0, although this may lead to a worsening of the

approximation. We are not doing so in the present paper and, when applying the above

formula, we take always ρ = 0 even if the Monte Carlo prices are computed with ρ 6= 0.

The average return-volatility of R in the CIR++ model would thus be a random

variable given by the square root of (1/Ta)
∫ Ta

0
σCIR++

a,b (t)2dt. However, we aim at a fast

approximation which can be computed without simulation. To obtain such an approxi-

mation, we replace any occurrence of xt and yt in (19) by the respective expectations at

time 0. We compute then the volatility va,b according to

vCIR++
a,b (α, β)2 := 1

Ta

[
∫ Ta

0

(
∂ ln Ra,b(t;E0(xt),E0(yt))

∂x

)2

σ2E0(xt)dt (20)

+
∫ Ta

0

(
∂ lnRa,b(t;E0(xt),E0(yt))

∂y

)2

ν2E0(yt)dt

]

,

where for example E0(yt) = y0e
−κt +µ(1− e−κt). One may wonder about which term

in the above approximation is larger. In case we consider also deterministic interest

rates, the first integral has to be omitted and the formula simplifies. We may anticipate
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that in all our subsequent tests, the first integral gives a much smaller contribution than

the second one. Typically the difference is smaller that 0.1%, so that when the total

formula gives us a volatility 22.3%, the formula with only the second term would give

us 22.2%. This points out that what contributes to the volatility of the CDS rate is the

intensity stochasticity, while the interest-rate stochasticity has almost no impact on it.

This, however, might change in presence of nonzero ρ so that we keep stochastic r in our

tests. Below we give the results for the stochastic r case.

Again in the CIR++ model, in general, we have what we may call “SSRD-implied

CDS-rate volatility”, resulting from backing out the volatility from the market for-

mula (9) for CDS option prices in correspondence of the SSRD model option price (15).

In other terms, at time 0 we solve the equation

E0

[
e−

R Ta
0

(rs+λs)ds[−CDSF(Ta, Ta, Tb, K,LGD; xTa
, yTa

)]+
]

=

= C̄a,b(0)[Ra,b(0)N(d1(v
imp
a,b (α, β, ρ))) −KN(d2(v

imp
a,b (α, β, ρ)))]

in vimp
a,b (α, β, ρ). We do so by valuing the left hand side (depending on α, β and ρ in

general) through Monte Carlo simulation.

The first investigation we are interested in is understanding the qualitative depen-

dence of the implied volatility as a function of the model parameters κ, µ, ν, y0, ρ and

also of strike K. We assess this dependence via Monte Carlo simulation. The simulation

is however much easier, as explained earlier, if we are allowed to set ρ = 0 from Ta on.

We check this a posteriori and find that this is possible but mostly for negative ρ. En

passant, we test how close vCIR++
a,b (α, β) is to vimp

a,b (α, β, ρ). The approximation can be

helpful for a number of reasons. First, in all situations where the two quantities are close,

we may have a first quick analytical valuation of a CDS option in the SSRD model with

no need for Monte Carlo simulation. Secondly, the formula provides us with a market

quantity linked to the CIR++ dynamical parameters β. Model parameters are not too

useful to practitioners, unless they can be translated into views on market quantities.

In this sense, it is also useful to have an idea of the impact of each single model pa-

rameter onto market quantities. The correct market quantity associated to the SSRD

model would be vimp
a,b , but checking the impact of changing say κ onto this quantity can

be time-consuming, given the need to perform a Monte Carlo simulation. However, if

we know the approximated quantity vCIR++
a,b (α, β) patterns to be reliable, we may use

it to check the impact of the model parameters, since in this case we may re-value this

quantity for different parameter values analytically. The formula for vCIR++
a,b (α, β) may

thus provide us a quick means to translate the CIR++ parameters changes in market

patterns.
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6 Numerical tests and Results

6.1 Market data and Simulation Setup

Below we report the points in the (time,intensity) dimension determining the determin-

istic piecewise linear hazard rates (t, γmkt(t)) implied by CDS quotes for Parmalat on

June 26th, 2003:

Time γmkt of Parmalat

26-Jun-03 0.0374016

28-Jun-04 0.0413386

27-Jun-06 0.0442196

27-Jun-08 0.0446496

The corresponding survival probabilities (t, e−Γmkt(t)) are:

Time Survival Probability of Parmalat

26-Jun-03 1

28-Jun-04 0.96108375

27-Jun-06 0.882378007

27-Jun-08 0.807246935

The deterministic piecewise linear hazard rates implied by CDS quotes for Peugeot

on June 26th, 2003:

Time γmkt of Peugeot

26-Jun-03 0.00208589

28-Jun-04 0.00486707

27-Jun-06 0.0070899

27-Jun-08 0.00948182

The corresponding survival probabilities:

Time Survival Probability of Peugeot

26-Jun-03 1

28-Jun-04 0.996501081

27-Jun-06 0.98467302

27-Jun-08 0.968467763

We take the Euro default free interest rate curve of the same day (t, P (0, t)):
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Maturity Default Free Zero Coupon Bond Price

26-Jun-03 1

27-Jun-03 0.999940837

1-Jul-03 0.999704219

7-Jul-03 0.999340342

30-Jul-03 0.997963707

29-Aug-03 0.996180439

30-Sep-03 0.994325513

17-Dec-03 0.990175175

17-Mar-04 0.985423722

17-Jun-04 0.980568545

16-Sep-04 0.975429577

15-Dec-04 0.969927081

15-Mar-05 0.963980526

16-Jun-05 0.957470682

15-Sep-05 0.950727077

30-Jun-06 0.927244335

29-Jun-07 0.894148369

30-Jun-08 0.858510843

As concerns the Monte Carlo method, all the following simulations are obtained by

means of 50,000 paths, under variance reduction techniques, for the relevant stochastic

processes x and y. In all simulations, the α parameters of the EURO interest-rate curve

are set to

k = 0.4, θ = 0.026, σ = 14%, x0 = 0.0165,

reflecting a possible calibration to Cap volatilities.

6.2 CDS option with maturity 1y on a CDS lasting 4y

6.2.1 Calibrating ψ to Parmalat CDS Data

The At-the-money CDS option we consider here has the following features:

Ta 1 year

Tb 5 years

Ta+i+1 − Ta+i 6 months

K 311 bp

LGD 70 %

With µ = 0.045, ν = 15%, y0 = 0.035, ρ = 0 being fixed, we change κ:
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κ vimp
a,b (κ) vCIR++

a,b (κ) vimp
a,b (κ) − vCIR++

a,b (κ)

0.35 29.6 (29.4 ; 29.9) % 30.1 % -0.5 (-0.7 ; -0.2) %

0.45 25.0 (24.8 ; 25.2) % 25.4 % -0.4 (-0.6 ; -0.2) %

0.55 21.3 (21.1 ; 21.5) % 21.7 % -0.4 (-0.6 ; -0.2) %

0.65 18.4 (18.2 ; 18.5) % 18.7 % -0.3 (-0.5 ; -0.2) %

0.75 16.0 (15.8 ; 16.1) % 16.3 % -0.3 (-0.5 ; -0.2) %

With κ = 0.5, ν = 15%, y0 = 0.037, ρ = 0 being fixed, we change µ:

µ vimp
a,b (µ) vCIR++

a,b (µ) vimp
a,b (µ) − vCIR++

a,b (µ)

0.025 21.9 (21.7 ; 22.1) % 22.4 % -0.5 (-0.7 ; -0.3) %

0.03 22.3 (22.1 ; 22.5) % 22.8 % -0.5 (-0.7 ; -0.3) %

0.035 22.7 (22.5 ; 22.9) % 23.1 % -0.4 (-0.6 ; -0.2) %

0.04 23.1 (22.9 ; 23.3) % 23.5 % -0.4 (-0.6 ; -0.2) %

0.045 23.5 (23.3 ; 23.7) % 23.9 % -0.4 (-0.6 ; -0.2) %

With κ = 0.5, µ = 0.046, y0 = 0.036, ρ = 0 being fixed, we change ν:

ν vimp
a,b (ν) vCIR++

a,b (ν) vimp
a,b (ν) − vCIR++

a,b (ν)

11 % 17.5 (17.4 ; 17.7) % 17.7 % -0.2 (-0.4 ; 0.0) %

13 % 20.5 (20.3 ; 20.7) % 20.8 % -0.3 (-0.5 ; -0.1) %

15 % 23.4 (23.2 ; 23.6) % 23.7 % -0.3 (-0.5 ; -0.1) %

17 % 26.1 (25.9 ; 26.3) % 26.7 % -0.6 (-0.8 ; -0.4) %

19 % 28.7 (28.5 ; 28.9) % 29.5 % -0.8 (-1.0 ; -0.6) %

21 % 31.1 (31.0 ; 31.4) % 32.3 % -1.2 (-1.3 ; -0.9) %

With κ = 0.5, µ = 0.0475, ν = 20%, ρ = 0 being fixed, we change y0:

y0 vimp
a,b (y0) vCIR++

a,b (y0) vimp
a,b (y0) − vCIR++

a,b (y0)

0.012 21.5 (21.4 ; 21.7) % 22.8 % -1.3 (-1.4 ; -1.1) %

0.017 23.5 (23.3 ; 23.7) % 24.7 % -1.2 (-1.4 ; -1.0) %

0.022 25.4 (25.2 ; 25.6) % 26.5 % -1.1 (-1.3 ; -0.9) %

0.027 27.2 (27.0 ; 27.4) % 28.2 % -1.0 (-1.2 ; -0.8) %

0.032 28.8 (28.6 ; 29.0) % 29.8 % -1.0 (-1.2 ; -0.8) %

0.037 30.4 (30.2 ; 30.6) % 31.3 % -0.9 (-1.1 ; -0.7) %

With κ = 0.5, µ = 0.0475, ν = 20%, y0 = 0.037, ρ = 0 being fixed, we change K:

K vimp
a,b (K) vCIR++

a,b vimp
a,b (K) − vCIR++

a,b

251 bps 27.6 (27.4 ; 27.8) % 31.3 % -3.7 (-3.9 ; -3.5) %

311 bps (atm) 30.4 (30.2 ; 30.6) % 31.3 % -0.9 (-1.1 ; - 0.7) %

371 bps 31.8 (31.5 ; 32.1) % 31.3 % 0.5 (0.2 ; 0.8) %

431 bps 32.6 (32.2 ; 32.9) % 31.3 % 1.3 (0.9 ; 1.6) %
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With κ = 0.5, µ = 0.0475, ν = 20%, y0 = 0.037 being fixed we change ρ and K. Here

vCIR++
a,b = 31.3% and does not depend either on K or on ρ.

vimp
a,b (K,−1) vimp

a,b (K, ρ = 0) vimp
a,b (K, 1)

K = 251 bps 29.2 (29.0 ; 29.3) % 27.6 (27.4 ; 27.8) % 25.5 (25.3 ; 25.7) %

K = 311 bps (atm) 31.0 (30.9 ; 31.2) % 30.4 (30.2 ; 30.6) % 29.4 (29.2 ; 29.5) %

K = 371 bps 32.0 (31.8 ; 32.2) % 31.8 (31.5 ; 32.1) % 31.0 (30.8 ; 31.2) %

vimp
a,b (K,−1) − vCIR++

a,b vimp
a,b (K, 0) − vCIR++

a,b vimp
a,b (K, 1) − vCIR++

a,b

K = 251 bps -2.1 (-2.3 ; -2.0) % -3.7 (-3.9; -3.5) % -5.8 (-6.0 ; -5.6) %

K = 311 bps (atm) -0.3 (-0.4 ; -0.1) % -0.9 (-1.1 ; -0.7) % -1.9 (-2.1 ; -1.8) %

K = 371 bps 0.7 (0.5 ; 0.9) % 0.5 (0.2 ; 0.8) % -0.3 (-0.5 ; -0.1) %

In the next table, we give the coupon strikes, Kequiv(K, 1) (resp. Kequiv(K,−1) )

that match, in a 0-correlation world, the option prices obtained for a strike K and a

correlation of 1 (resp. -1). In other terms, we solve

CDSOption(Kequiv(K, 1), ρ = 0) = CDSOption(K, ρ = 1) and

CDSOption(Kequiv(K,−1), ρ = 0) = CDSOption(K, ρ = −1) respectively.

Kequiv(K,−1) Kequiv(K, 1) Kequiv(K, 1) −Kequiv(K,−1)

K = 251 bps (248 ; 250) bps (253 ; 254) bps (3 ; 6) bps

K = 311 bps (atm) (308 ; 311) bps (313 ; 316) bps (2 ; 8) bps

K = 371 bps (368 ; 371) bps (374 ; 378) bps (3 ; 10) bps

With the same parameters, we investigate in the following table the impact of non-

zero correlation from Ta on for ATM options. The prices are obtained with 50,000 paths

and the CDS prices at Ta are approximated with 5,000 paths when the correlation is not

zero after Ta.

ρTa,Tb
= −1 ρTa,Tb

= 0 ρTa,Tb
= 1

ρ0,Ta
= −1 30.7 (29.2 ; 32.2) % 31.0 (30.9 ; 31.2) % —

ρ0,Ta
= 0 31.7 (30.2 ; 33.2) % 30.4 (30.2 ; 30.6) % 30.0 (28.5 ; 31.4) %

ρ0,Ta
= 1 — 29.4 (29.2 ; 29.5) % 24.8 (23.3 ; 26.2) %

In the next table, we give the above defined Kequiv’s:

ρTa,Tb
= −1 ρTa,Tb

= 0 ρTa,Tb
= 1

ρ0,Ta
= −1 (305 ; 316) bps (308 ; 311) bps % —

ρ0,Ta
= 0 (302 ; 312) bps 311 bps (307 ; 318) bps

ρ0,Ta
= 1 — (313 ; 316) bps (324 ; 337) bps
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6.2.2 Calibrating ψ to Peugeot CDS Data

The At-the-money CDS option we consider here has the following features:

Ta 1 year

Tb 5 years

Ta+i+1 − Ta+i 6 months

K 50 bp

LGD 70 %

With µ = 0.0071, ν = 7%, y0 = 0.0019, ρ = 0 being fixed, we change κ:

κ vimp
a,b (κ) vCIR++

a,b (κ) vimp
a,b (κ) − vCIR++

a,b (κ)

0.35 23.0 (22.8 ; 23.2) % 24.1 % -1.1 (-1.3 ; -0.9) %

0.4 21.5 (21.3 ; 21.7) % 22.4 % -0.9 (-1.1 ; -0.7) %

0.5 18.8 (18.6 ; 18.9) % 19.5 % -0.7 (-0.9 ; -0.6) %

0.6 16.5 (16.4 ; 16.7) % 17.1 % -0.6 (-0.7 ; -0.4) %

0.7 14.7 (14.5 ; 14.8) % 15.1 % -0.4 (-0.6 ; -0.3) %

With κ = 0.5, ν = 7%, y0 = 0.0017, ρ = 0 being fixed, we change µ:

µ vimp
a,b (µ) vCIR++

a,b (µ) vimp
a,b (µ) − vCIR++

a,b (µ)

0.005 16.5 (16.3 ; 16.6) % 17.4 % -0.9 (-1.1 ; -0.8) %

0.006 17.4 (17.2 ; 17.5) % 18.2 % -0.8 (-1.0 ; -0.7) %

0.007 18.2 (18.0 ; 18.4) % 19.0 % -0.8 (-1.0 ; -0.6) %

0.0083 19.3 (19.1 ; 19.4) % 20.0 % -0.7 (-0.9 ; -0.6) %

With κ = 0.8, µ = 0.007, y0 = 0.0012, ρ = 0 being fixed, we change ν:

ν vimp
a,b (ν) vCIR++

a,b (ν) vimp
a,b (ν) − vCIR++

a,b (ν)

6 % 10.6 (10.5 ; 10.7) % 10.8 % -0.2 (-0.3 ; -0.1) %

7 % 12.2 (12.1 ; 12.4) % 12.6 % -0.4 (-0.5 ; -0.2) %

8 % 13.8 (13.7 ; 14.0) % 14.4 % -0.6 (-0.7 ; -0.4) %

9 % 15.4 (15.2 ; 15.6) % 16.2 % -0.8 (-1.0 ; -0.6) %

10 % 16.9 (16.8 ; 17.0) % 18.0 % -1.1 (-1.2 ; -1.0) %

With κ = 0.5, µ = 0.0083, ν = 9%, ρ = 0 being fixed, we change y0:

y0 vimp
a,b (y0) vCIR++

a,b (y0) vimp
a,b (y0) − vCIR++

a,b (y0)

0.0004 20.0 (19.8 ; 20.2) % 21.4 % -1.4 (-1.6 ; -1.2) %

0.0009 21.6 (21.4 ; 21.8) % 23.1 % -1.5 (-1.7 ; -1.3) %

0.0014 23.2 (23.0 ; 23.4) % 24.7 % -1.5 (-1.7 ; -1.3) %

0.0019 24.6 (24.4 ; 24.8) % 26.1 % -1.5 (-1.7 ; -1.3) %

With κ = 0.5, µ = 0.0083, ν = 9%, y0 = 0.0019, ρ = 0 being fixed, we change K:
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K vimp
a,b (K) vCIR++

a,b vimp
a,b (K) − vCIR++

a,b

40 bps 18.1 (18.0 ; 18.3) % 26.1 % -8.0 (-8.1 ; -7.8) %

50 bps (atm) 24.6 (24.4 ; 24.8) % 26.1 % -1.5 (-1.7 ; - 1.3) %

60 bps 27.5 (27.2 ; 27.8) % 26.1 % 1.4 (1.1 ; 1.7) %

70 bps 29.1 (28.7 ; 29.4) % 26.1 % 3.0 (2.6 ; 3.3) %

80 bps 30.0 (29.6 ; 30.4) % 26.1 % 3.9 (3.5 ; 4.3) %

With κ = 0.5, µ = 0.0083, ν = 9%, y0 = 0.0019 being fixed, we change ρ and K. Here

vCIR++
a,b = 26.1% and does not depend either on K or on ρ.

vimp
a,b (K,−1) vimp

a,b (K, 0) vimp
a,b (K, 1)

K = 45 bps 23.2 (23.1 ; 23.3) % 22.2 (22.1 ; 22.4) % 20.9 (20.7 ; 21.0) %

K = 50 bps (atm) 25.2 (25.1 ; 25.4) % 24.6 (24.4 ; 24.8) % 23.7 (23.6 ; 23.9) %

K = 55 bps 26.7 (26.5 ; 26.9) % 26.3 (26.0 ; 26.5) % 25.5 (25.3 ; 25.7) %

vimp
a,b (K,−1) − vCIR++

a,b vimp
a,b (K, 0) − vCIR++

a,b vimp
a,b (K, 1) − vCIR++

a,b

K = 45 bps -2.9 (-3.0 ; -2.8) % -3.9 (-4.0 ; -3.7) % -5.2 (-5.4 ; -5.1) %

K = 50 bps (atm) -0.9 (-1.0 ; -0.7) % -1.5 (- 1.7 ; -1.3) % -2.4 (-2.5 ; -2.2) %

K = 55 bps 0.6 (0.4 ; 0.8) % 0.2 (-0.1 ; 0.4) % -0.6 (-0.8 ; -0.4) %

In the next table, we give the above defined Kequiv’s:

Kequiv(K,−1) Kequiv(K, 1) Kequiv(K, 1) −Kequiv(K,−1)

K = 45 bps (44 ; 45) bps (45 ; 46) bps (0 ; 2) bps

K = 50 bps (atm) (49 ; 50) bps (50 ; 51) bps (0 ; 2) bps

K = 55 bps (54 ; 55) bps (55 ; 56) bps (0 ; 2) bps

With the same parameters, we investigate in the following table the impact of non-

zero correlation from Ta on for ATM options. The prices are obtained with 50,000 paths

and the CDS prices at Ta are approximated with 5,000 paths when the correlation is not

zero after Ta.

ρTa,Tb
= −1 ρTa,Tb

= 0 ρTa,Tb
= 1

ρ0,Ta
= −1 25.5 (23.9 ; 27.2) % 25.2 (25.1 ; 25.4) % —

ρ0,Ta
= 0 25.1 (23.5 ; 26.8) % 24.6 (24.4 ; 24.8) % 24.7 (23.1 ; 26.3) %

ρ0,Ta
= 1 — 23.7 (23.6 ; 23.9) % 20.3 (18.8 ; 21.9) %

In the next table, we give the above defined Kequiv’s:

ρTa,Tb
= −1 ρTa,Tb

= 0 ρTa,Tb
= 1

ρ0,Ta
= −1 (48 ; 51) bps (49 ; 50) bps % - –

ρ0,Ta
= 0 (48 ; 51) bps 50 bps (49 ; 51) bps

ρ0,Ta
= 1 — (50 ; 51) bps (52 ; 54) bps
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6.3 CDS option with maturity 4y on a CDS lasting 1y

6.3.1 Calibrating ψ to Parmalat CDS Data

he At-the-money CDS option we consider here has the following features:

Ta 4 years

Tb 5 years

Ta+i+1 − Ta+i 6 months

K 319 bp

LGD 70 %

With µ = 0.045, ν = 15%, y0 = 0.035, ρ = 0. being fixed, we change κ:

κ vimp
a,b (κ) vCIR++

a,b (κ) vimp
a,b (κ) − vCIR++

a,b (κ)

0.35 30.7 (30.5 ; 30.9) % 31.7 % -1.0 (-1.2 ; -0.8) %

0.45 27.2 (27.0 ; 27.4) % 27.9 % -0.7 (-0.9 ; -0.5) %

0.55 24.2 (24.0 ; 24.4) % 24.8 % -0.6 (-0.8 ; -0.4) %

0.65 21.8 (21.6 ; 22.0) % 22.2 % -0.4 (-0.6 ; -0.2) %

0.75 19.7 (19.5 ; 19.9) % 20.0 % -0.3 (-0.5 ; -0.1) %

With κ = 0.5, ν = 15%, y0 = 0.037, ρ = 0. being fixed, we change µ:

µ vimp
a,b (µ) vCIR++

a,b (µ) vimp
a,b (µ) − vCIR++

a,b (µ)

0.025 19.8 (19.6 ; 20.0) % 21.4 % -1.6 (-1.8 ; -1.4) %

0.03 21.4 (21.3 ; 21.6) % 22.8 % -1.4 (-1.5 ; -1.2) %

0.035 23.0 (22.8 ; 23.2) % 24.0 % -1.0 (-1.2 ; -0.8) %

0.04 24.4 (24.2 ; 24.6) % 25.2 % -0.8 (-1.0 ; -0.6) %

0.045 25.8 (25.6 ; 26.0) % 26.4 % -0.6 (-0.8 ; -0.4) %

With κ = 0.5, µ = 0.046, y0 = 0.036, ρ = 0. being fixed, we change ν:

ν vimp
a,b (ν) vCIR++

a,b (ν) vimp
a,b (ν) − vCIR++

a,b (ν)

11 % 19.7 (19.5 ; 19.9) % 19.8 % -0.1 (-0.3 ; 0.1) %

13 % 22.9 (22.7 ; 23.1) % 23.2 % -0.3 (-0.5 ; -0.1) %

15 % 26.0 (25.8 ; 26.2) % 26.5 % -0.5 (-0.7 ; -0.3) %

17 % 28.9 (28.6 ; 29.1) % 29.7 % -0.8 (-1.0 ; -0.5) %

19 % 31.5 (31.3 ; 31.8) % 32.8 % -1.3 (-1.5 ; -1.0) %

21 % 34.0 (33.8 ; 34.3) % 35.8 % -1.8 (-2.0 ; -1.5) %

With κ = 0.5, µ = 0.0475, ν = 20%, ρ = 0 being fixed, we change y0:

y0 vimp
a,b (y0) vCIR++

a,b (y0) vimp
a,b (y0) − vCIR++

a,b (y0)

0.012 31.6 (31.4 ; 31.9) % 32.6 % -1.0 (-1.2 ; -0.7) %

0.017 32.0 (31.7 ; 32.2) % 33.1 % -1.1 (-1.4 ; -0.9) %

0.022 32.3 (32.1 ; 32.6) % 33.5 % -1.2 (-1.4 ; -0.9) %

0.027 32.7 (32.5 ; 33.0) % 34.0 % -1.3 (-1.5 ; -1.0) %

0.032 33.1 (32.8 ; 33.3) % 34.4 % -1.3 (-1.6 ; -1.1) %

0.037 33.4 (33.2 ; 33.7) % 34.9 % -1.5 (-1.7 ; -1.2) %
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With κ = 0.5, µ = 0.0475, ν = 20%, y0 = 0.037, ρ = 0. being fixed, we change K:

K vimp
a,b (K) vCIR++

a,b vimp
a,b (K) − vCIR++

a,b

199 bps 33.3 (33.0 ; 33.6) % 34.9 % -1.6 (-1.9 ; -1.3) %

259 bps 33.5 (33.3 ; 33.8) % 34.9 % -1.4 (-1.6 ; -1.1) %

319 bps (atm) 33.4 (33.2 ; 33.7) % 34.9 % -1.5 (-1.7 ; - 1.2) %

379 bps 33.2 (33.0 ; 33.5) % 34.9 % -1.7 (-1.9 ; -1.4) %

439 bps 32.9 (32.7 ; 33.2) % 34.9 % -2.0 (-2.2 ; -1.7) %

With κ = 0.5, µ = 0.0475, ν = 20%, y0 = 0.037 being fixed, we change ρ and K. Here

vCIR++
a,b = 34.9% and does not depend either on K or on ρ.

vimp
a,b (K,−1) vimp

a,b (K, 0) vimp
a,b (K, 1)

K = 259 bps 35.3 (35.1 ; 35.5) % 33.5 (33.3 ; 33.8) % 30.9 (30.7 ; 31.2) %

K = 319 bps (atm) 34.7 (34.5 ; 34.9) % 33.4 (33.2 ; 33.7) % 31.4 (31.2 ; 31.7) %

K = 379 bps 34.3 (34.1 ; 34.5) % 33.2 (33.0 ; 33.5) % 31.5 (31.3 ; 31.8) %

vimp
a,b (K,−1) − vCIR++

a,b vimp
a,b (K, 0) − vCIR++

a,b vimp
a,b (K, 1) − vCIR++

a,b

K = 259 bps 0.4 (0.2 ; 0.6) % -1.4 (-1.6; -1.1) % -4.0 (-4.2 ; -3.7) %

K = 319 bps (atm) -0.2 (-0.4 ; 0.0) % -1.5 (- 1.7 ; -1.2) % -3.5 (-3.7 ; -3.2) %

K = 379 bps -0.6 (-0.8 ; -0.4) % -1.7 (-1.9 ; - 1.4) % -3.4 (-3.6 ; -3.1) %

As for Kequiv, we obtain

Kequiv(K,−1) Kequiv(K, 1) Kequiv(K, 1) −Kequiv(K,−1)

K = 259 bps (250 ; 254) bps (268 ; 271) bps (14 ; 21) bps

K = 319 bps (atm) (309 ; 314) bps (329 ; 335) bps (15 ; 26) bps

K = 379 bps (367 ; 373) bps (390 ; 399) bps (17 ; 32) bps

With the same parameters, we investigate in the following table the impact of non-

zero correlation from Ta on for ATM options. The prices are obtained with 50,000 paths

and the CDS prices at Ta are approximated with 5,000 paths when the correlation is not

zero after Ta.

ρTa,Tb
= −1 ρTa,Tb

= 0 ρTa,Tb
= 1

ρ0,Ta
= −1 33.4 (32.7 ; 34.2) % 34.7 (34.5 ; 34.9) % —

ρ0,Ta
= 0 33.0 (32.3 ; 33.7) % 33.4 (33.2 ; 33.7) % 33.3 (32.6 ; 34.1) %

ρ0,Ta
= 1 — 31.4 (31.2 ; 31.7) % 30.7 (30.0 ; 31.4) %

In the next table, we give the above defined Kequiv’s:

ρTa,Tb
= −1 ρTa,Tb

= 0 ρTa,Tb
= 1

ρ0,Ta
= −1 (313 ; 327) bps (309 ; 314) bps % —

ρ0,Ta
= 0 (316 ; 328) bps 319 bps (313 ; 326) bps

ρ0,Ta
= 1 — (329 ; 335) bps (331 ; 342) bps
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6.3.2 Calibrating ψ to Peugeot CDS Data

The At-the-money CDS option we consider here has the following features:

Ta 4 years

Tb 5 years

Ta+i+1 − Ta+i 6 months

K 63 bp

LGD 70 %

With µ = 0.0071, ν = 7%, y0 = 0.0019, ρ = 0. being fixed, we change κ:

κ vimp
a,b (κ) vCIR++

a,b (κ) vimp
a,b (κ) − vCIR++

a,b (κ)

0.35 25.6 (25.4 ; 25.8) % 27.0 % -1.4 (-1.6 ; -1.2) %

0.4 24.6 (24.4 ; 24.8) % 25.7 % -1.1 (-1.3 ; -0.9) %

0.5 22.6 (22.4 ; 22.8) % 23.2 % -0.6 (-0.8 ; -0.4) %

0.6 20.7 (20.5 ; 20.9) % 21.0 % -0.3 (-0.5 ; -0.1) %

0.7 18.8 (18.6 ; 19.0) % 19.1 % -0.3 (-0.5 ; -0.1) %

With κ = 0.5, ν = 7%, y0 = 0.0017, ρ = 0. being fixed, we change µ:

µ vimp
a,b (µ) vCIR++

a,b (µ) vimp
a,b (µ) − vCIR++

a,b (µ)

0.005 18.7 (18.5 ; 18.8) % 19.8 % -1.1 (-1.3 ; -1.0) %

0.006 20.6 (20.4 ; 20.8) % 21.4 % -0.8 (-1.0 ; -0.6) %

0.007 22.4 (22.2 ; 22.6) % 23.0 % -0.6 (-0.8 ; -0.4) %

0.0083 24.5 (24.3 ; 24.7) % 24.9 % -0.4 (-0.6 ; -0.2) %

With κ = 0.8, µ = 0.007, y0 = 0.0012, ρ = 0. being fixed, we change ν:

ν vimp
a,b (ν) vCIR++

a,b (ν) vimp
a,b (ν) − vCIR++

a,b (ν)

6 % 14.7 (14.5 ; 14.8) % 14.8 % -0.1 (-0.3 ; 0.0) %

7 % 16.9 (16.8 ; 17.1) % 17.2 % -0.3 (-0.4 ; -0.1) %

8 % 19.2 (19.0 ; 19.3) % 19.7 % -0.5 (-0.7 ; -0.4) %

9 % 21.3 (21.1 ; 21.5) % 22.1 % -0.8 (-1.0 ; -0.6) %

10 % 23.3 (23.1 ; 23.6) % 24.5 % -1.2 (-1.4 ; -0.9) %

With κ = 0.5, µ = 0.0083, ν = 9%, ρ = 0. being fixed, we change y0:

y0 vimp
a,b (y0) vCIR++

a,b (y0) vimp
a,b (y0) − vCIR++

a,b (y0)

0.0004 29.9 (29.6 ; 30.1) % 31.1 % -1.2 (-1.5 ; -1.0) %

0.0009 30.1 (29.9 ; 30.4) % 31.4 % -1.3 (-1.5 ; -1.0) %

0.0014 30.4 (30.1 ; 30.6) % 31.7 % -1.3 (-1.6 ; -1.1) %

0.0019 30.6 (30.4 ; 30.9) % 31.9 % -1.3 (-1.5 ; -1.0) %

With κ = 0.5, µ = 0.0083, ν = 9%, y0 = 0.0019, ρ = 0. being fixed, we change K:
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K vimp
a,b (K) vCIR++

a,b vimp
a,b (K) − vCIR++

a,b

43 bps 29.8 (29.5 ; 30.0) % 31.9 % -2.1 (-2.4 ; -1.9) %

53 bps 30.3 (30.1 ; 30.6) % 31.9 % -1.6 (-1.8 ; -1.3) %

63 bps (atm) 30.6 (30.4 ; 30.9) % 31.9 % -1.3 (-1.5 ; -1.0) %

73 bps 30.7 (30.4 ; 31.0) % 31.9 % -1.2 (-1.5 ; -0.9) %

83 bps 30.7 (30.4 ; 31.0) % 31.9 % -1.2 (-1.5 ; -0.9) %

With κ = 0.5, µ = 0.0083, ν = 9%, y0 = 0.0019 being fixed, we change ρ and K. Here

vCIR++
a,b = 31.9% and does not depend either on K or on ρ.

vimp
a,b (K,−1) vimp

a,b (K, 0) vimp
a,b (K, 1)

K = 58 bps 32.0 (31.8 ; 32.1) % 30.5 (30.3 ; 30.7) % 28.2 (28.0 ; 28.5) %

K = 63 bps (atm) 31.9 (31.7 ; 32.1) % 30.6 (30.4 ; 30.9) % 28.6 (28.4 ; 28.8) %

K = 68 bps 31.8 (31.6 ; 32.0) % 30.7 (30.4 ; 30.9) % 28.9 (28.6 ; 29.1) %

vimp
a,b (K,−1) − vCIR++

a,b vimp
a,b (K, 0) − vCIR++

a,b vimp
a,b (K, 1) − vCIR++

a,b

K = 58 bps 0.1 (-0.1 ; 0.2) % -1.4 (-1.6 ; -1.2) % -3.7 (-3.9 ; -3.4) %

K = 63 bps (atm) 0.0 (-0.2 ; 0.2) % -1.3 (- 1.5 ; -1.0) % -3.3 (-3.5 ; -3.1) %

K = 68 bps -0.1 (-0.3 ; 0.1) % -1.2 (-1.5 ; - 1.0) % -3.0 (-3.3 ; -2.8) %

As for Kequiv, we obtain:

Kequiv(K,−1) Kequiv(K, 1) Kequiv(K, 1) −Kequiv(K,−1)

K = 58 bps (56 ; 57) bps (60 ; 61) bps (3 ; 5) bps

K = 63 bps (atm) (60 ; 62) bps (65 ; 67) bps (3 ; 7) bps

K = 68 bps (65 ; 67) bps (70 ; 72) bps (3 ; 7) bps

With the same parameters, we investigate in the following table the impact of non-

zero correlation from Ta on for ATM options. The prices are obtained with 50,000 paths

and the CDS prices at Ta are approximated with 5,000 paths when the correlation is not

zero after Ta.

ρTa,Tb
= −1 ρTa,Tb

= 0 ρTa,Tb
= 1

ρ0,Ta
= −1 31.2 (30.5 ; 32.0) % 31.9 (31.7 ; 32.1) % —

ρ0,Ta
= 0 30.7 (30.0 ; 31.5) % 30.7 (30.4 ; 30.9) % 31.1 (30.3 ; 31.8) %

ρ0,Ta
= 1 — 28.6 (28.4 ; 28.8) % 28.5 (27.8 ; 29.2) %

In the next table, we give the above defined Kequiv’s:

ρTa,Tb
= −1 ρTa,Tb

= 0 ρTa,Tb
= 1

ρ0,Ta
= −1 (61 ; 64) bps (60 ; 62) bps % - –

ρ0,Ta
= 0 (61 ; 64) bps 63 bps (61 ; 64) bps

ρ0,Ta
= 1 — (65 ; 67) bps (65 ; 68) bps
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7 Comments on numerical results and conclusions

We now interpret the numerical results obtained above. A first general comment is

that in the Monte Carlo method we did not resort to a huge number of paths in order

to keep the computational time limited. The 99% standard error for the price in each

simulation is given between brackets at the side of each Monte Carlo estimate in terms of

implied volatilities. As we can see, standard errors are not always negligible with respect

to the estimates, but allow anyway to deduce qualitative patterns of market quantities

with respect to model parameters. In all studied cases, with the obvious exceptions of

the strike K and correlation ρ patterns, we find that qualitative patterns are always

respected by the approximated formula, in that the approximated volatility increases or

decreases with respect to a parameter exactly in the same cases as the exact implied

volatility does. Patterns are summarized in Table 1.

param vimp
a,b vCIR++

a,b

κ ↑ ↓ ↓
µ ↑ ↑ ↑
ν ↑ ↑ ↑
y0 ↑ ↑ ↑

K ↑, ρ = 0 ↑/flat Const

K ↑, ρ = −1 ↑ / ↓/flat -

K ↑, ρ = 1 ↑/flat -

ρ ↑ ↓ -

Table 1: Volatility patterns in terms of the parameters κ, µ, ν, y0, ρ and of the strike K

The patterns in K are a particular feature, describing what we might call the “CDS

volatility smile” implied by the CIR++ model.

The accuracy of the analytical formula is not satisfactory for trading purposes in

general. Clearly, we expected this to happen, especially in the strike and correlation

dimensions, since the formula assumes ρ = 0 and does not depend on K. If we exclude

the K and ρ tables accordingly, the situation improves and the error is often below

1% (and always below 1.8%), especially for κ, µ, ν. This confirms the formula to be

suited more to deducing patterns or first guesses for market volatilities rather than for

precise relative-value trading. See also the exact analytical formula in Brigo (2004)

under deterministic interest rates. Here, under stochastic rates, results are good enough

to conclude that the approximated formula reflects well the market patterns implied by

the model parameters.

To find said patterns, we chose two data sets representing two different default situ-

ations: Peugeot and Parmalat. At the time the paper is written, Peugeot is a company

whose risk-neutral probabilities of default, stripped from CDS through a deterministic

intensity model, are relatively low. The probability that Peugeot does not default before

five years is 98.85%. On the contrary, Parmalat shows higher probabilities of default, in
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that the analogous value for the five-year risk neutral probability is 80.72%. Indeed, in

the following months Parmalat will enter a crisis.

We chose also two basic options for our tests: one to enter a CDS in one year with a

final payment maturity of five years (thus with a four years length, similar to the options

currently proposed on the market), and a second one to enter a CDS in four years with

a final payment maturity of five years (thus with a one-year length).

In all experiments we set the β parameters affecting the time-homogeneous core yβ

of the stochastic intensity λ to typical values ensuring that the resulting calibrating shift

ψ be positive. We then calibrate exactly CDS quotes (through their implied γmkt) via

ψ in each case. We operate analogously for the interest-rate part, for which however we

only consider one case, our focus being on the credit side.

We observe the following.

The influence of κ on the CDS volatility vimp
a,b is that, all things being equal (except

for ψ, always chosen to calibrate CDS’s exactly), increasing κ decreases vimp
a,b . This is

expected, since by increasing the speed of convergence to the mean reversion parameter, y

flattens earlier around its mean reversion level µ, showing less stochasticity along its life.

It is interesting to notice that in all cases (with a little single exception) the difference

between the approximated analytical volatility and the exact implied volatility decreases

in absolute value as κ increases. This is expected too, since with stochasticity collapsing

earlier around the mean reversion, the “replace y by its expectation” effect on which the

approximated formula is based has less impact.

The influence of µ on the CDS volatility vimp
a,b is that, all things being equal (except

for ψ, always chosen to calibrate CDS’s exactly), increasing µ increases vimp
a,b . This is

expected, since by increasing the final mean reversion level amounts to have a final

higher intensity and larger intensities in general. Since the instantaneous volatility of

the intensity is ν
√
y, this also is typically larger for larger µ, adding stochasticity to

the system. It is interesting to notice that, in the 4y-1y option case, as µ increases, the

difference between the approximated analytical volatility and the exact implied volatility

decreases in absolute value. This tells us that even if µ increases stochasticity, the

“replace y by its expectation and integrate” approach is improved by an increase in µ,

at least in the 4y-1y case.

Now we turn to examine the impact of ν on the CDS volatility vimp
a,b . Since ν is the

main volatility parameter in the intensity core y, and since Ra,b(t) is a function of yt,

we expect ν to have a direct link with the volatility vimp
a,b . Indeed, we can see from all

cases that increasing ν amounts to increasing vimp
a,b , and the relationship is quite strong.

The same holds for the approximated analytical volatility. We see that in all cases the

analytical formula overestimates the implied volatility of an amount that increases with

ν. This is again natural, since with stochasticity increasing (with ν) the “replace y by

its expectation” approximation worsens.

An increase in y0 implies and increase in the approximated analytical volatility, and

in our tests it implies also an increase in the MC implied volatility. Recall that the

change on the initial intensity level implied by the change of y0 is irrelevant, given that

ψ offsets y0 in calibrating CDS’s automatically. However, at future times the impact of
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y0 cannot be neglected and increasing y0 amounts to increase the initial level of the core

y of the intensity, giving a larger time homogeneous part of the intensity process and

thus a larger implied volatility.

At this point a comment is in order on the “CDS-rate volatility smile”. The CIR++

dynamics for the intensity implies an increasing or constant pattern in the implied volatil-

ity when the strike increases, with the exception of the 4y-1y case (especially for Par-

malat, with an almost flat pattern for Peugeot) when ρ = −1. Clearly the approximated

analytical implied volatility formula cannot take into account the smile, and should be

used only for at the money CDS options, where K = Ra,b(0).

As a last aspect, we investigate the impact of ρ. In all our tests the implied volatility

decreases as the correlation increases, and the effect is typically marked for “in the

money” payer options (K < Ra,b(0)). The impact of a nonzero correlation on the CDS

option price is further analyzed by means of the equivalent strike Kequiv, which assesses

the impact of correlation on CDS option prices in the CDS rates dimension. We see that

in all cases we have maximum excursions due to correlations lower than 10bps, except

for the Parmalat case where we have wider excursions. However, due to higher default

probability, for Parmalat at times even the sizes of the bid ask spreads for the underlying

CDS rates R is comparable in size to the excursion we have found in the worst case.

Also, Peugeot shows an excursion that is always comparable to the bid ask spread in the

underlying CDS rate R. We thus notice that in our tests correlation has little impact

on options as well, with one exception. CDS options are starting to be offered in the

market even as we write, but with quite large bid ask spreads. In the future, however,

spreads might narrow and in cases with high default probability a fine tuning of ρ, based

on historical estimation with judgemental adjustments or on a few implied quotes can be

considered. All our tests were based on the assumption that we could set ρ = 0 from Ta

on. But is this possible? We test this by computing the option prices when ρ is not set

to zero from Ta on, by resorting to the sub-paths method. The results we obtain show

that the approximation is not good only when we have positive (and high) correlation, as

our case with ρ = 1 show. Since it is known that in general this correlation is negative,

see for example Longstaff and Schwartz (1995), we see that we may set ρ = 0 from Ta

on in realistic situations.

To sum up, we have investigated implied volatility patterns in the SSRD model as

functions of the model parameters. We have found an analytical approximation for the

implied volatility that follows the same patterns and that can be used to have a first rough

estimate of the implied volatility following a calibration. We have found an increasing

or flat CDS-rate volatility smile for the adopted SSRD model, with one exception in the

negative interest-rate/ intensity correlation, which can thus be considered as one of the

parameters affecting the smile shape. We find a decreasing pattern in the correlation

itself and, comparing with the underlying CDS bid ask spreads, we find one case out of

four where correlation has a possibly relevant impact on CDS options prices. We have

to keep in mind that all the tests are done under the assumption that ρ = 0 from Ta on,

which we test a posteriori finding that this is working better in cases with negative ρ.
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