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1 Introduction: SDEs and mixtures

Let us consider the scalar stochastic differential equation (SDE)

dXt = ft(Xt)dt + σt(Xt)dWt, (1)

of diffusion type, with deterministic initial condition X0 = x0, and where {Wt, t ≥ 0}
is a standard Brownian motion. We assume that

(A1) The stochastic differential equation (1) characterized by the coefficients f , σ,

and by the initial condition x0 admits a unique strong solution, whose support

is assumed to be the interval (b,∞) at all time instants. The symbol b denotes

either a real number (typically 0) or −∞.

Under (A1), we can analyze the distribution of our SDE’s solution at all time instants.

In describing the evolution of the distribution of a diffusion process, the Fokker–

Planck partial differential equation is a fundamental tool. We assume that

(A2) The unique solution Xt of (1) admits a density pt that is absolutely continuous

with respect to the Lebesgue measure in (b,∞) and that satisfies the Fokker–

Planck equation:

∂pt

∂t
= − ∂

∂x
(ftpt) + 1

2

∂2

∂x2
(atpt), at(·) = σ2

t (·) .

The other main ingredients in the present paper are mixtures of densities. More

specifically, we will consider a basic parametric family of densities, say

D = {p(·, θ), θ ∈ Θ},

with Θ open in Rd, being d a suitable integer, and where all densities in the family

share a common support (b,∞). We are interested in considering a particular mixture

of densities in this family. In other words, we fix a set of non-negative weights

λ1, . . . , λm, λ ≥ 0,
∑

i λi = 1. We take the space of all possible mixtures of densities

in D with fixed weights λ:

M(D, λ) := {λ1p(·, θ1) + . . . + λmp(·, θm), θ1, . . . , θm ∈ Θ}.
We will refer to this set of densities as to the λ-mixture family for D, or shortly

as to the “mixture family” when λ is clear from the context. We are interested in

finding an SDE whose solution Xt has a density pt that follows a prescribed evolution

in a given mixture family. More precisely, we require the curve t 7→ pt, in the space

of all densities, to match a given curve t 7→ ∑m
i=1 λip(·, θi(t)) in a given M(D, λ).

Problem 1.1. Let be given a mixture familyM(D, λ) of densities with support (b,∞),

and a drift ft(x) satisfying

(A3) lim
y→b+

ft(y)p(y, θ) = 0 for all t ≥ 0, θ ∈ Θ.



D. Brigo: Mixture diffusion SDEs and volatility-asset covariance 4

Let Σ(f, x0) denote the set of all real-valued diffusion coefficients σf such that the

related SDE (1) satisfies assumptions (A1) and (A2), and such that

(A4) lim
y→b+

σf
t (y)2p(y, θ) = 0, lim

y→b+

∂

∂y

(
σf

t (y)2p(y, θ)
)

= 0 for all t ≥ 0, θ ∈ Θ.

Assume Σ(f, x0) to be non-empty. Then, given the curve t 7→ ∑m
i=1 λip(·, θi(t))

in M(D, λ) (where t 7→ θi(t) are C1–curves in the parameter space Θ), find a dif-

fusion coefficient in Σ(f, x0) whose related SDE has a solution with density pt =∑m
i=1 λip(·, θi(t)).

This problem is the analogous of the drift search problem described and solved in

Brigo and Mercurio (1998) and Brigo (2000). The solution of this problem is given

by the following.

Proposition 1.2. (Solution of Problem 1.1) Assumptions and notation of Prob-

lem 1.1 in force. Consider the stochastic differential equation

dYt = ft(Yt)dt + σf
t (Yt)dWt, Y0 = x0, (2)

(σf
t (y))2 =

2∑m
i=1 λip(y, θi(t))

[∫ y

b

(∫ x

b

m∑
i=1

λi
∂p(u, θi(t))

∂t
du

)
dx

+

∫ y

b

ft(x)
m∑

i=1

λip(x, θi(t))dx

]
.

If σf ∈ Σ(f, x0), then the SDE (2) solves Problem 1.1, in that

pYt(y) =
m∑

i=1

λi p(y, θi(t)), t ≥ 0.

Proof. Write the Fokker–Planck equation for the candidate diffusion Y with the can-

didate solution
∑m

i=1 λip(·, θi(t)) already inside, and then back-out the diffusion co-

efficient via two subsequent integrations starting from the lower point b.

We will use a particular case of this proposition.

Corollary 1.3. Assumptions as in the above proposition. If the basic densities

p(·, θi(t)) evolving in M(D, λ) are the marginal densities of a family of (instrumental)

SDEs

dX i
t = f i

t (X
i
t)dt + σi

t(X
i
t)dWt, x0, p(x, θi(t)) := pXi

t
(x),

all satisfying assumptions (A1), (A2), (A3) (with f i’s replacing f) and such that

σi ∈ Σ(f i, x0), then the solution of Problem (1.1) takes the form

(σf
t (y))2 =

m∑
i=1

Λi
t(y)(σi

t(y))2 +
2
∑m

i=1 λi

∫ y

b
(ft(x)− f i

t (x))p(x, θi(t))dx∑m
j=1 λjp(y, θj(t))

, (3)

Λi
t(y) :=

λip(y, θi(t))∑m
j=1 λjp(y, θj(t))

(with
m∑

j=1

Λi
t(y) = 1).



D. Brigo: Mixture diffusion SDEs and volatility-asset covariance 5

An interesting particular case occurs when f satisfies

ft(y) =
m∑

i=1

Λi
t(y)f i

t (y). (4)

In this case the second term in the right hand side of (3) vanishes, and we have that

requiring the marginal of our final SDE to be a given λ-mixture of the marginals of

the instrumental processes results in a drift and squared diffusion coefficients that are

(state-dependent) Λ-“mixtures” of the drifts and squared diffusion coefficients of the

instrumental processes. We move from the combinators λ (density) to the combinators

Λ (coefficients).

Proof. It suffices to use the previous result by noticing that the Fokker–Planck equa-

tion for the instrumental processes reads:

∂p(x, θi(t))

∂t
= −∂[f i

t (x)p(x, θi(t))]

∂x
+ 1

2

∂2[σi
t(x)2p(x, θi(t))]

∂x2

and substituting in (2) the right hand sides of such Fokker–Planck equations.

The problem solved in the above proposition could have been formulated to track

a generic density-evolution t 7→ qt which does not necessarily occur in a mixture

family. In such a case, given assumptions analogous to (A3) and (A4), the appropriate

diffusion coefficient would be

(σf
t (y))2 =

2

qt(y)

[∫ y

b

(∫ x

b

∂qt(u)

∂t
du

)
dx +

∫ y

b

ft(x)qt(x)dx

]

which generalizes the solution in the above proposition. We preferred to present

directly the parametric case. In the next sections, we shall consider first an interesting

application of the above corollary to the fundamental cases of mixtures of normal

and lognormal families, and second an application of the latter to the option pricing

problem in mathematical finance, in particular as a possible means to model the so

called “smile” phenomenon.

2 Diffusions whose densities follow mixtures of nor-

mal distributions

Mixtures of normals are ubiquitous in statistics, representing the standard in many

applications. Also, mixture of normals are often used in econometrics to model time

series that have tails fatter than the Gaussian. See for example Alexander (2001) for

a discussion on normal mixtures applied to financial data, also in comparison with

different distributions. In general, normal mixtures represent in a sense the least

departure from the Gaussian family allowing for skewness and kurtosis different from

the Gaussian ones. However, to the best of our knowledge, no explicit attempt has

been made so far to design continuous time diffusion models displaying this kind of
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marginal distributions. The subject can be relevant at least in mathematical finance,

as we will show when addressing the smile problem, but bears also an interest of

its own in the study of the interaction between a diffusion process dynamics and

particular families of distributions.

Let us then start from the normal family, that we parameterize via its first two

moments. In this case

D = {pN (m,v2), m, v ∈ R}, b = −∞.

We are given a curve in the λ-mixtures of normals, t 7→ ∑m
i=1 λipN (mi(t),vi(t)2), and we

wish to find a diffusion process compatible with such a law. It is easy to see that if

we consider the instrumental processes

dX i
t = µi(t) dt + σi(t)dWt,

∫ t

0

µi(s)ds = mi(t),

∫ t

0

(σi(s))2ds = vi(t)
2

with deterministic µ and σ’s and null initial condition, by applying the above corollary

in the particular case (4) we end up with the diffusion process whose drift and squared

diffusion coefficient are given respectively by

ft(y) =
m∑

i=1

Λi
t(y)µi(t), σf

t (y)2 =
m∑

i=1

Λi
t(y)σi(t)2, (5)

Λi
t(y) =

λipN (mi(t),vi(t)2)(y)∑m
j=1 λjpN (mj(t),vj(t)2)(y)

.

Now assume the coefficients t 7→ µ(t)’s and t 7→ σ(t)’s to be at least C1 (and

hence bounded on all finite time intervals), with the σ’s bounded away from zero,

σi(t) ≥ L > 0 for all i and t. There are possible problems for a regular behaviour of

the above f and σf when (t, y) → (0, 0). In order to avoid this, we may decide to

modify our coefficients by imposing µi(t) = µ̄, σi(t) = σ̄ for all i and t ∈ [0, ε), with ε

a given positive real number, typically small. We can then assume suitable transitory

trajectories for the µ’s and the σ’s in say [ε, 2ε) that recover the correct integrals m

and v2 for times larger than 2ε. The desired mixture is thus unmatched only in the

(typically negligible) time interval [0, 2ε]. Now Λi
t(y) = λi for all t < ε and all y.

From the above assumptions, since by definition 0 ≤ Λi
t(y) ≤ 1 for all t and y,

we have also that f and σf are bounded in all regions with bounded time, implying

non-explosion for the related SDE in all intervals of the kind t ≤ T for some T > 0.

Furthermore, f and (σf )2 are also seen to be C1 in both t and y. This in turn implies

that f is locally Lipschitz, whereas the fact that the σ(t)’s are bounded away from

zero implies that so is σf in both t and y, thus ensuring that (σf )2 ∈ C1 implies

σf ∈ C1. Therefore σf is locally Lipschitz, and now we have all the elements to apply

Theorem 12.1 in Section V.12 of Rogers and Williams (1996) to conclude that our

SDE admits a unique strong solution. We have thus produced a diffusion process

compatible with a given mixture of normal densities, and can state the following
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Theorem 2.1. (SDEs whose marginal law follows a given normal mixture)

Consider an SDE

dYt = ft(Yt)dt + σf
t (Yt)dWt, Y0 = 0,

with drift and diffusion coefficient f and σf as in (5), where the m’s and v’s are

C2 time functions. Assume moreover that in an initial time interval t ∈ [0, ε) we

have mi(t) = µ̄t and vi(t)
2 = σ̄2t. Then the considered SDE admits a unique strong

solution and its solution has as marginal density the λ-normal mixture

pYt =
m∑

i=1

λipN (mi(t),vi(t)2)

at time t.

An interesting feature of the obtained process concerns the covariance between

the process itself and the diffusion coefficient in its dynamics. This quantity is of

interest, for example, in mathematical finance. Let us denote by “corrt” the correla-

tion between two random variables, and by “covt” the covariance, both conditional

on the information available at time t, the time being omitted if t = 0. We have, for

the above SDE, the following “instantaneous” correlation between the instantaneous

change in the process and the instantaneous change in the related diffusion coefficient

at a given instant:

corrt(dYt, d σf
t (Yt)) =

d〈Y, σf
· (Y·)〉t√

d〈Y 〉t d〈σf
· (Y·)〉t

=
dYt d σf

t (Yt)
√

dYt dYt

√
d σf

t (Yt) d σf
t (Yt)

= 1,

as is obvious from the fact that the diffusion coefficient is a deterministic function of

the current value of Y .

However, things are rather different for the terminal correlation. A straightfor-

ward if lengthy computation is needed to show that

cov(Yt, σ
f
t (Yt)

2) = E0(Yt σf
t (Yt)

2)− E0(Yt) E0(σ
f
t (Yt)

2)

=
m∑

i=1

λimi(t)σ
2
i (t)−

(
m∑

i=1

λimi(t)

)(
m∑

i=1

λiσ
2
i (t)

)
.

Consider now the case where all the means in the normal mixture densities

are equal: µi(·) = µ(·) for all i, and correspondingly mi(·) = m(·). In this case

ft(y) = µ(t) for all y and, perhaps surprisingly, especially if compared to the perfect

instantaneous correlation, the above formula gives

corr(Yt, σ
µ
t (Yt)

2) = cov(Yt, σ
µ
t (Yt)

2) = 0.

This is a case where the instantaneous correlation is 1, whereas the terminal

correlation after a time t, no matter how small, is 0. Thus we have a stochastic process

whose instantaneous changes are perfectly correlated with the instantaneous changes
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of its squared diffusion coefficient, whereas at any time its value has 0 correlation

with the squared diffusion coefficient value. It seems then that the squared diffusion

coefficient has a special shape that immediately “decorrelates” itself from the process

even after an arbitrarily small time. It is not difficult to prove an analogous statement

for the average squared diffusion coefficient:

corr

(
YT ,

∫ T

0

σµ
t (Yt)

2 dt

)
= 0.

Such interesting results on terminal correlation versus instantaneous correlation

will be further discussed in the financial applications.

Finally, going back to the above theorem, we notice that by reasoning along the

same lines, diffusions displaying mixtures of lognormals as marginal densities can be

easily obtained. Indeed, if Y is the diffusion process from the above theorem, we can

set St := exp(Yt) and derive easily the SDE for S via Ito’s formula:

dSt = Stft(ln(St))dt + 1
2
Stσ

f
t (ln(St))

2dt + Stσ
f
t (ln(St))dWt, S0 = 1.

It is a straightforward exercise to verify that the equality

pSt(y) = pYt(ln y)/y

implies that S is distributed as a mixture of lognormals if Y is distributed as a mixture

of normals.

3 The smile phenomenon in option pricing

Now we briefly review a stylized version of the smile problem in financial modeling and

explain the possible use of diffusions whose marginals follow λ-mixtures of lognormals.

3.1 The smile problem and market implied distributions

Let us consider a financial market with a “money market account” process Bt, with

positive deterministic instantaneous interest rate r(t) > 0, so that dBt = r(t)Btdt.

Let us also consider a process St modeling the evolution of some traded financial

(risky) asset in our market, typically a stock.

The resulting financial market might admit arbitrage opportunities. A sufficient

condition which ensures arbitrage-free dynamics is the existence of an equivalent mar-

tingale measure Q, sometimes termed risk-neutral measure. An equivalent martingale

measure is a probability measure that is equivalent to the initial one and under which

the process {St/Bt : t ≥ 0} is a martingale. Let us assume, in line with the basic

Black and Scholes (1973) setup, that the risk-neutral dynamics of S is modeled by

dSt = r(t)Stdt + ν(t)St dWt, S0 = s0, t ∈ [0, T ], (6)
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where s0 is a positive deterministic initial condition, and ν is a well-behaving deter-

ministic function of time (instantaneous volatility). The above process is a geometric

Brownian motion and the probability density pSt of St, at any time t, is lognormal.

Indeed,

ln
St

S0

∼ N (
R(0, t)− 1

2
V (t)2, V (t)2

)
, R(a, t) :=

∫ t

a

r(s)ds, V (t)2 :=

∫ t

0

ν(s)2ds. (7)

When a = 0, we write shortly R(t) for R(0, t). In the above equation (6) we modeled

directly the risky asset dynamics under the unique equivalent martingale measure, so

that W is assumed to be a Brownian motion under that measure, and it is immediate

to check that St/Bt is indeed a martingale. It is this dynamics that matters when

pricing options, as opposed to the real world one, which is related instead to historical

estimation, statistical analysis and similar matters. Indeed, by applying the results by

Harrison and Pliska (1981), the unique no-arbitrage price for a given FT -measurable

contingent claim HT ∈ L2(Q) is Vt = BtE
Q {HT /BT | Ft} =: BtE

Q
t {HT /BT} where

{Ft : t ≥ 0} denotes the filtration associated to the process S. The contingent claim

is said to be a simple one when it is of the form HT = h(ST ) for a suitable function

h.

One of the most common simple claims is a European call option written on the

stock, with maturity T and strike K, which pays H = (ST − K)+ at time T . Its

price is obtained by computing the expectation of the discounted payoff according

to the lognormal distribution implied by (7), leading to the celebrated Black and

Scholes (1973) call option formula, which we denote by “BSCall” and whose explicit

expression we omit for brevity:

EQ
0 [(ST −K)+/B(T )] = BSCall(S0, K, T, R(T ), V (T )).

The quantity V (T )/
√

T is the (average) volatility of the option, and according to

this formulation, does not depend on the strike K of the option. Indeed, in this

formulation, volatility is a characteristic of the stock S underlying the contract, and

has nothing to do with the nature of the contract itself. In particular, it has nothing

to do with the strike K of the option.

Now take two different strikes K1 and K2. Suppose that the market provides

us with the prices of two related options on our stock with the same maturity T :

MKTCall(S0, K1, T ) and MKTCall(S0, K2, T ).

Life would be simple if the market followed Black and Scholes’ formula in a con-

sistent way. But is this the case? Does there exist a single volatility parameter V (T )

such that both the following equations hold?

MKTCall(S0, K1, T ) = BSCall(S0, K1, T, R(T ), V (T )),

MKTCall(S0, K2, T ) = BSCall(S0, K2, T, R(T ), V (T )).

The answer is a resounding “no”. In general, market option prices do not behave

like this. What one sees when looking at the market is that two different volatilities
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V (T,K1) and V (T, K2) are required to match the observed market prices if one is to

use Black and Scholes’ formula:

MKTCall(S0, K1, T ) = BSCall(S0, K1, T, R(T ), V (T,K1)),

MKTCall(S0, K2, T ) = BSCall(S0, K2, T, R(T ), V (T,K2)).

In other terms, each market option price requires its own Black and Scholes (im-

plied) volatility V MKT(T, K)/
√

T depending on the option strike K.

The market therefore uses Black and Scholes’ formula simply as a metric to express

option prices as volatilities. The curve K 7→ V MKT(T, K)/
√

T is the so called volatility

smile of the T -maturity option. If Black and Scholes’ model were consistent along

different strikes, this curve would be flat, since volatility should not depend on the

strike K. Instead, this curve is commonly seen to exhibit “smiley” or “skewed”

shapes.

Clearly, only some strikes K = Ki and maturities T = Tj are quoted by the mar-

ket, so that usually the remaining points have to be determined through interpolation

or through an alternative model. Interpolation in K, for a fixed maturity T , can be

easy but it does not give any insight as to the underlying stock dynamics compatible

with such prices.

Indeed, suppose that we have a few market option prices for expiries T = Tj and

for a set of strikes K = Ki.

For each fixed T = Tj, by smooth interpolation we can obtain the price for every

other possible K, i.e. we can build a function K 7→ MKTCall(S0, K, T ). Now, if this

strike-K price corresponds really to an expectation, we have

MKTCall(S0, K, T ) = e−
R T
0 r(s)dsEQ

0 (ST −K)+ = e−
R T
0 r(s)ds

∫ ∞

K

(x−K)pT (x) dx, (8)

where pT is the true risk-neutral density of the underlying stock at time T . If Black

and Scholes’ formula were consistent, this density would be the lognormal density,

coming for example from a dynamics such as (6), i.e. pT = pST
. We have seen that

this is not the case in the market. However, by differentiating the above integral

twice with respect to K we see that, see also Breeden and Litzenberger (1978),

∂2MKTCall(S0, K, T )

∂K2
= e−

R T
0 r(s)dspT (K),

so that by differentiating the interpolated-prices curve we can find the density pT

of the underlying stock at time T that is compatible with the given interpolated

prices. Nevertheless, the method of interpolation may interfere with the recovery of

the density, since a second derivative of the interpolated curve is involved. Moreover,

what kind of dynamics, alternative to (6), do the densities pT1 , pT2 , . . . , pTj
, . . . come

from?
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3.2 Local and stochastic volatility models

A partial answer to these issues can be given the other way around, by starting from

an alternative dynamics. Indeed, assume that

dSt = r(t)Stdt + σ(t, St) St dWt, S0 = s0, (9)

where σ can be either a deterministic or a stochastic function of St. In the latter

case we would be using a so called “stochastic-volatility model”, where for example

σ(t, S) = ξ(t), with ξ following a second stochastic differential equation, such as:

d(ξ(t)2) = b(t, ξ(t)2)dt + χ(t, ξ(t)2)dZt,

with the important specification

dZtdWt = ρ dt.

Instead, in the so-called “local volatility models” the diffusion coefficient σ(t, St) is a

deterministic function of St.

One feature of stochastic volatility models that is usually deemed to render them

superior with respect to local volatility models is “instantaneous decorrelation”. In-

deed, for stochastic volatility models we can have

Corr(dSt, dσ2(t, St)) = ρ < 1

whereas

Corr(dSt, dσ2(t, St)) = 1

for local volatility models, including our mixture dynamics models. This superiority

no longer holds when considering terminal correlations, as we will remark later on.

For the time being we concentrate on deterministic σ(t, ·)’s, leading to local-volatility

models, such as for example σ(t, S) = η Sγ (CEV model, see Cox (1975)), where γ

ranges in a suitable interval and where η is a positive deterministic constant. Below

we will propose a new σ(t, ·) of our own, flexible enough for practical purposes.

We have seen above how the “true” risk-neutral densities pT1 , pT2 , . . . , pTj
, . . . of

the underlying asset are linked to market option prices through second-order differ-

entiation. The problem we will face is finding a dynamics alternative to (6) and as

compatible as possible with the densities pT1 , pT2 , . . . , pTj
, . . . ideally associated with

market prices. This will be done by fitting directly the prices implied by our alterna-

tive model to the market prices MKTCall(S0, K, T ) for the considered set of strikes

Ki and maturities Tj. To further clarify this point, it may be helpful to explain

explicitly how an alternative dynamics such as (9) leads to a volatility smile to be

fitted to the market smile. The way in which an alternative local-volatility model

dynamics generates a smile is clarified by the following stylized operational scheme:

1. Set the pair (T, K) to a starting value;
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2. Compute the model option price

Π(T, K) = e−
R T
0 r(s)dsEQ

0 (ST −K)+

with S obtained through the no-arbitrage alternative dynamics (9).

3. Invert Black and Scholes’ formula for this strike and maturity, i.e. solve

Π(T, K) = BSCall(S0, K, T,R(T ), V (T, K))

in V (T,K), thus obtaining the model implied volatility V (T, K).

4. Change (T, K) and restart from point 2 until the last maturity/strike pair

(T, K) is reached.

The fact that the alternative dynamics is not lognormal implies that we obtain curves

in the strike K 7→ V (T, K) that are not flat. Clearly, one needs to choose σ(t, ·)
flexible enough for the surface (T, K) 7→ V (T, K)/

√
T to be able to resemble or even

match the corresponding volatility surfaces coming from the market. Indeed, the

model implied volatilities V (Tj, Ki)/
√

Tj corresponding to the observed strikes and

maturities have to be made as close as possible to the corresponding market implied

volatilities V MKT(Tj, Ki)/
√

Tj, by acting on the coefficient σ(·, S) in the alternative

dynamics.

At this point it should be clear why a λ-mixture dynamics can be of help. Existing

local volatility models have either too little flexibility to calibrate a large number of

points in a volatility surface, or are specified in a too general way requiring interpo-

lation and other possibly dangerous artifices in order to be implemented. The CEV

model for example has only one more parameter γ with respect to the basic Black

and Scholes “flat” model in the time-homogeneous case, so that its fitting capabilities

are rather poor. Dupire’s (1997) approach is quite general, but if applied straight-

forwardly in its most general form, it requires a continuum of traded strikes and

maturities, with the possible interpolation problems observed above, not to mention

the lack of guarantees on existence of solutions for the resulting SDE.

3.3 Local volatility lognormal mixture diffusion dynamics

Consider instead our approach and write the λ-lognormal mixture diffusion. Set the

instrumental processes to Black and Scholes processes,

dX i
t = r(t)X i

tdt + νi(t)X
i
tdWt, s0

and derive the diffusion coefficient corresponding to f(t, y) = r(t)y. Notice that

here all instrumental processes have the same drift fi = f as the final process. In

this particular case, taking into account the lognormal marginal distributions of the

instrumental processes, by applying (3) under (4) we have

σ2
mix(t, y)y2 := σf

t (y)2 = y2

m∑
i=1

Λi(t, y)νi(t)
2,
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Λi(t, y) =
λi pN (ln s0+R(t)−Vi(t)2/2, Vi(t)2)(ln y)∑m

j=1 λj pN (ln s0+R(t)−Vj(t)2/2, Vj(t)2)(ln y)
,

where R and V ’s are defined as in (7). In Brigo and Mercurio (2001b) we show that

the SDE resulting from such coefficients, i.e.

dSt = r(t)St dt + σmix(t, St) St dWt, s0 (10)

admits a unique strong solution, provided one takes suitable regularity conditions on

the time functions t 7→ νi(t)’s analogous to those on the t 7→ σi(t)’s illustrated in

Section 2. Indeed, it is straightforward to prove such existence and uniqueness result

starting from the proof given in Section 2 for the normal-mixture case.

For our process S in (10), we confirm the curious result obtained in Section 2

from the comparison between instantaneous and terminal correlations. Notice that

also in this case we have

corrt(dSt, dσ2
mix(t, St)) = 1,

considered to be a drawback of local volatility models. Yet, when considering terminal

correlations, things change considerably.

Theorem 3.1. (Terminal correlation between underlying asset and average

percentage variance in the lognormal mixture dynamics model for the

smile)

Consider the random variable

v(T ) :=

∫ T

0

σ2
mix(t, St)dt ,

v(T )/T being the “average percentage variance” of the process S. Then

corr(σ2
mix(T, ST ), ST ) = 0, and corr(v(T ), ST ) = 0 for all T . (11)

Proof. First we show that

corr(σ2
mix(T, ST ), ST ) = 0,

i.e. that

E{σ2
mix(T, ST ) ST} − E{σ2

mix(T, ST )}E{ST} = 0. (12)

This is immediate by direct calculation:

E{σ2
mix(T, ST ) ST} =

∫ m∑
i=1

Λi(T, y)νi(T )2y pST
(y)dy =

∫ m∑
i=1

Λi(T, y)νi(T )2y

m∑
j=1

λjpXj
T
(y)dy =

∫ m∑
i=1

λipXj
T
(y)νi(T )2y dy

= s0e
R T
0 r(s)ds

m∑
i=1

λiνi(T )2
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given the definition of the Λ’s. Similarly, one computes

E{σ2
mix(T, ST )} =

m∑
i=1

λiνi(T )2,

from which (12) follows.

To show the other equality, notice that

dv(t) = σ2
mix(t, St)dt,

and compute

d(v(t)St) = Stσ
2
mix(t, St)dt + r(t)v(t)Stdt + (. . .)dWt.

Taking expectations and Fubini’s theorem

dE(v(t)St) = E(Stσ
2
mix(t, St))dt + rE(v(t)St)dt.

Set At = E(Stσ
2
mix(t, St)), which we computed above, and Ct = E(v(t)St). The above

equation reads

Ċt = r(t)Ct + At,

whose solution is

Ct = e
R t
0 r(s)ds

∫ t

0

e−
R u
0 r(s)dsAudu.

By carrying out the computations one obtains E(v(t)St). At this point it is easy to

prove that

E(v(t)St)− E(v(t))E(St) = 0

by computing E(v(t)) trough Fubini’s theorem.

The above result is partly weakened by the fact that correlation is not a satisfac-

tory measure of dependence outside the Gaussian world. However, a striking feature

remains of two processes that are instantaneously perfectly correlated but such that

for any infinitesimal time T = ε have zero terminal correlation.

Let us now set apart this correlation result and go back to understanding the

reason why a λ-mixture dynamics is particularly appealing when pricing options.

One of the main reasons lies in the price becoming a linear combination of prices

with respect to underlying assets modeled according to the instrumental processes.

Indeed, one has immediately, for a call option,

Π(T, K) = e−
R T
0 r(s)dsEQ

{
(ST −K)+

}
= e−

R T
0 r(s)ds

∫ +∞

0

(y −K)+

m∑
i=1

λipXi
T
(y)dy

=
m∑

i=1

λie
− R T

0 r(s)ds

∫ ∞

0

(y −K)+pXi
T
(y)dy =

m∑
i=1

λi BSCall(S0, K, T, R(T ), Vi(T )) ,

the last equality following from the geometric Brownian motion structure of the

underlying instrumental processes. This procedure is very general, and the price of
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a European-style simple claim is always the linear combination of the corresponding

prices for the instrumental processes. In the lognormal-mixture case, when pricing a

call option we obtain a linear combination of Black and Scholes prices. This is very

appreciated by traders, who usually prefer to contain departures from the lognormal

distribution and the corresponding Black and Scholes formula. In a sense, when in

need of generalizing a lognormal distribution, a mixture of lognormals is the least

departure from the original lognormal paradigm.

Important calibration benefits that should not go unnoticed are a consequence of

the fact that a λ mixture-of-lognormals dynamics can price call options analytically.

This is very helpful for calibrating the model to the market. In such a case one runs

an optimization to find the values of the parameters Vi and λi that best reproduce

a given set of market prices, and the target function of this optimization can be

computed in closed form without resorting to numerical methods such as Monte Carlo

simulation, trees, and finite difference schemes. Notice also that since we are free to

select an arbitrary number m of instrumental processes, in principle our diffusion

model features a limitless number of calibrating parameters. Once the model has

been calibrated, one can use it to price more complicated (for example early exercise

or path dependent) claims that have no quoted price in the market. Monte Carlo

simulation through the Euler or Milstein discretization schemes (see for example

Klöden and Platen (1995)) applied to our dynamics or recombining trees in the spirit

of Nelson and Ramaswamy (1990) can be attempted, thanks to the explicit diffusion

dynamics we provided.

In the present paper we have presented the mixture diffusion model in its most

mathematical aspects. Other advantages and characteristics of these models and of

their variants, based on shifted dynamics, and numerical investigation and calibra-

tions to market data have been illustrated in Brigo and Mercurio (2000a, 2000b,

2001a, 2001b).

The introduction of general drift rates µi(t) not necessarily all equal to r in the

instrumental processes and possible mixtures of densities coming from hyperbolic-sine

processes are considered in Brigo, Mercurio and Sartorelli (2002).

A study of particular forms of time dependence of the ν’s leading to desirable

properties of the lognormal mixture dynamics and to a simple specification of the

parameters in the model is carried out in Alexander and Brintalos (2003).

A generalization of the mixture dynamics apparatus to multivariate underlying as-

sets and possible applications to the pricing of basket options in presence of volatility

smile are considered in Rapisarda (2002) and Brigo, Mercurio and Rapisarda (2002).

3.4 Uncertain volatility geometric Brownian motion

We conclude the paper by pointing out an important relationship between the lognormal-

mixture diffusion dynamics and an analogous uncertain volatility model given by a

geometric Brownian motion with uncertain volatility.

In general it is known (Derman, Kani and Kamal (1997), Britten-Jones and Neu-
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berger (2000), Gatheral (2001)) that every stochastic volatility model has a local

volatility (i.e. scalar-diffusion) version that features the same marginal distributions

in time (and thus the same initial prices for all plain vanilla options such as European

calls). We may wonder whether our lognormal mixture diffusion dynamics (10) is the

local volatility version of some stochastic volatility model. The answer is affirmative

and we introduce the related model below.

Consider the following uncertain volatility model:

dSt = r(t)Stdt + ξ(t)StdWt, S0 = s0, (13)

(t 7→ ξ(t)) =





(t 7→ ν1(t)) with probability λ1,

. . .

(t 7→ νm(t)) with probability λm,

ξ independent of W and drawn at random at (an almost zero) time ε > 0,

where all ν’s are assumed to be regular enough and have a common value in [0, ε],

νi(t) = ν̄ for all i and t ≤ ε. We assume ξ to be independent of W and that the

original probability space is large enough to allow for such a ξ (otherwise we may

define ξ on a different space and then take the product space). Conditional on ξ, the

process S is a geometric Brownian motion as in the Black-Scholes model. Thanks to

independence, it is easy to show that for t > ε > u,

Q{St ∈ A|Su = y} =
m∑

i=1

λiQ{St ∈ A|Su = y, ξ = νi}

so that in particular

pSt|Su(x; y) =
m∑

i=1

λipSt|Su,ξ(x; y, νi),

i.e. the transition density of our uncertain volatility model is a mixture of lognormal

transition densities, each corresponding to a volatility function νi. If we condition

on an instant u > ε, including the information on which value νi of ξ has realized

itself at time ε < u, an information that is contained in the path of S up to u >

ε, the transition density between u and t reduces merely to a lognormal density

characterized by the relevant νi.

By considering the case u = 0, it is immediate to see that this model has the

same marginals as the lognormal mixture diffusion seen earlier, although it leads to

an incomplete market. Then at the initial time 0 it implies the same prices as the

local volatility version seen earlier. Hedging is thus different and more complicated,

and has to be based on additional hedging instruments. But what is interesting now

is that transition densities are also known, not only marginals. This is not true for

the local volatility version seen earlier.

There is, however, a close relationship between the lognormal mixture diffusion

dynamics (10) and the uncertain volatility mixture dynamics (13).
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Proposition 3.2. The lognormal mixture diffusion dynamics (10) is the local volatil-

ity version of the uncertain volatility mixture dynamics (13). The two models are

linked by the relationship

σ2
mix(t, x) = E{ξ(t)2|St = x}.

Proof. The proof is immediate by resorting to a variant of Bayes’ formula:

E{ξ(t)2|St = x} = E[ξ(t)2

m∑

k=1

1{ξ = νk}|St = x] =
m∑

k=1

E[ξ(t)2 1{ξ = νk}|St = x]

=
m∑

k=1

E[ξ(t)2|St = x, ξ = νk]Q{ξ = νk|St = x} =
m∑

k=1

ν2
k(t)Q{ξ = νk|St = x} = σ2

mix(t, x)

since, by Bayes’ formula,

Q{ξ = νk|St = x} = Q{St ∈ dx|ξ = νk}Q{ξ = νk}/Q{St ∈ dx} = Λk(t, x).

Remark 3.3. (Casting some light on the “zero terminal correlation” result of The-

orem 3.1) The terminal correlation computed at time 0 between the asset S and its

average variance
∫ T

0
ξ2(t)dt is easily seen to be zero, due to independence of ξ and

W . The same property is shared by the local volatility version, as was pointed out in

Theorem 3.1. Now we see that the local volatility version maintains the decorrelation

pattern between volatility and underlying asset that is so natural for its uncertain

volatility originator. The result of Theorem 3.1 looks less surprising in the light of

this result for the uncertain volatility version.

3.5 Evolution of the volatility smile in the two models

We now look at another important feature of the lognormal mixture diffusion that

has not been investigated in our earlier papers. We are interested in looking at the

smile evolution in time as implied by the model.

We investigate this matter numerically as follows. We consider a set of parameters

coming from a possible calibration of model (10) with m = 2 to the foreign exchange

market. The initial foreign exchange rate as from february 10, 2003 is S0 = 1.07 US

Dollars for 1 Euro. Calibration of the model to market data provides us with the

parameters (we assume the ν’s to be constant in time, except for a negligible initial

time-interval [0, 2ε])

λ1 = 0.9747, λ2 = 0.0253, ν1(t) = 0.7572, ν2(t) = 0.0899.

The risk-neutral drift r(t) is taken consistently with the differences of interest rates

in the domestic and foreign curves: indeed, we know that under the risk neutral

measure, the drift of an exchange rate is the difference of instantaneous interest
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rates between the domestic and the foreign markets, r(t) := rd(t) − rf (t), where

interest rates are assumed to be deterministic and rd, rf , Rd, Rf denote respectively

the domestic and foreign instantaneous interest rates and their integrals. The initial

smile for an option maturing in one year, K 7→ V (1y, K) is given in the 0y-row of

Table 2. We perform the following test. We consider options with one-year time to

maturity T − t = 1y set at future times t > 0, conditional on the average underlying

being realized, i.e. conditional on St = S̄t := E0(St), the expectation taken under the

risk neutral measure. We therefore price the option with our model (10), by resorting

to an Euler scheme with time step of 1/1000y (Antignani (2003)) and inverting then

the corresponding Black Scholes formula. Indeed, let us define V (t, T, K) as the

solution of the equation

e−Rd(t,T )Et[(ST −K)+|St = S̄t] = BSCall(S̄t, K, T − t, Rd(t, T ), Rf (t, T ), V (t, T,K)).

(14)

By solving the above equation we infer what we call the conditional future smile at

t for maturity T , i.e. K 7→ V (t, T, K)/
√

T − t. We will take t = 1y, 2y, 3y, 6y, 7y

and T = t + 1y. We thus focus on options maturing in one year and on their smile

as implied by model (10), which has been employed to compute the expectation on

the left hand side of (14). Interest rates are taken from the market and assumed to

be deterministic. Table 1 reports the market values we used. We recall that in a

deterministic interest-rates world R(t, T ) = R(0, T )−R(0, t).

T e−Rd(0,T ) e−Rf (0,T )

1y 0.974454 0.985738

2y 0.946724 0.960891

3y 0.914757 0.925555

4y 0.879548 0.885228

5y 0.841922 0.84227

6y 0.803363 0.799019

7y 0.764915 0.756466

Table 1: Domestic and foreign discount factors (Euro and USD)

We obtain the results reported in Table 2 as annualized percentage implied volatil-

ities. We notice that the one-year smile flattens considerably in time (and similar

considerations apply to longer maturity smiles). The initial smile (first row) shows

an excursion from 16.17% to 10.72% and then up to 13.61%, whereas the last smile

(7y/8y smile, last row) moves from 10.26% down to 9.55% and up again to 9.77%.

As we see by looking at the rows of the table, the smile flattens considerably in time.

Again, the one-dimensional diffusion model (10) mimics the uncertain volatility

model (13) of which it is the local volatility version. Indeed, since after time ε we know

the realization of ξ, we know which volatility νi realized itself and, conditional on this,

our process (13) is a geometric Brownian motion and implies a flat smile. Therefore,
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K/S̄t

t S̄t 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0y 1.07 16.17 13.73 11.98 11.02 10.72 10.84 11.30 12.26 13.61

1y 1.08257 11.23 10.44 10.10 9.98 9.96 10.00 10.10 10.30 10.62

2y 1.08628 10.10 9.95 9.86 9.83 9.83 9.88 9.97 10.07 10.24

3y 1.08294 10.60 10.09 9.92 9.83 9.81 9.82 9.85 9.91 10.02

6y 1.06401 11.14 10.20 9.84 9.71 9.68 9.66 9.67 9.72 9.85

7y 1.05773 10.26 9.83 9.67 9.60 9.57 9.55 9.57 9.64 9.77

Table 2: Conditional future 1y smile K 7→ V (t, t + 1y,K) for t = 0, 1, 2, 3, 6, 7 years

after time ε the smile flattens completely around the realized ξ in the model (13),

and the one-dimensional diffusion version mimics this behaviour by progressively

flattening the implied smile in time.

4 Conclusions and further research

In the present paper, we have found a candidate diffusion process whose marginal

law follows a given evolving mixture of probability densities. We derived a stochastic

differential equation (SDE) admitting a unique strong solution whose density evolves

as a mixture of Gaussian densities. We introduced a seemingly paradoxical result on

the comparison between the instantaneous and the terminal correlation between the

obtained process and its time-averaged squared diffusion coefficient. As an applica-

tion to option pricing, we considered diffusion processes whose marginal densities are

mixtures of lognormal densities, showing how such processes can be used to model

the market smile phenomenon. Furthermore, we have pointed out how the lognormal

mixture dynamics is the one-dimensional diffusion version of a geometric Brown-

ian motion with uncertain volatility, leading to an uncertain volatility Black-Scholes

model, which allowed us to suitably reinterpret the earlier correlation result. Finally,

we checked numerically the evolution of the smile in time and found that the diffusion

model mimics again the uncertain volatility model by a substantial flattening of the

smile implied curve in time.

References

[1] Antignani, V. (2003). Private communication.

[2] Alexander, C., Narayanan, S. (2001). Option Pricing with Normal Mixture Re-

turns: Modelling Excess Kurtosis and Uncertainty in Volatility, ISMA Centre

Discussion Paper 2001-10.



D. Brigo: Mixture diffusion SDEs and volatility-asset covariance 20

[3] Alexander, C., Brintalos, G. (2003). Pricing Options with a Term Structure for

Kurtosis: An extension of the Finite Normal Mixture Local Volatility Model,

ISMA center working paper.

[4] Black, F., Scholes, M. (1973) The Pricing of Options and Corporate Liabilities.

Journal of Political Economy 81, 637-654.

[5] Breeden, D.T. and Litzenberger, R.H. (1978) Prices of State-Contingent Claims

Implicit in Option Prices. Journal of Business 51, 621-651.

[6] Britten-Jones, M., and Neuberger, M. (2000). Option prices, implied price pro-

cesses, and stochastic volatility. Journal of Finance 55, 839-866.

[7] Brigo, D. (2000), On SDEs with marginal laws evolving in finite–dimensional

exponential families, Statistics and Probability letters 49, pp. 127–134.

[8] Brigo, D., and Mercurio, F. (1998), Discrete-Time Versus Continuous-Time

Stock-Price Dynamics and Implications for Option Pricing, IMI-PDG Internal

Report. Available at www.damianobrigo.it and at www.fabiomercurio.it, reduced

version published in Finance and Stochastics 4 (2000), pp. 147-160.

[9] Brigo, D., and Mercurio, F. (2000a), Lognormal-mixture dynamics and cali-

bration to market volatility smiles, International Journal of Theoretical and

Applied Finance, Vol. 5, No. 4, 427-446. Extended version with F. Rapisarda

featuring surface calibration presented by F. Rapisarda at the Annual Research

Conference in Financial Risk, July 12-14, 2001 - Budapest, Hungary, download-

able at F. Rapisarda’s web site http://it.geocities.com/rapix/frames.html and

at www.damianobrigo.it

[10] Brigo, D., Mercurio, F. (2000b) A Mixed-up Smile. Risk, September, 123-126.

Extended version available at www.damianobrigo.it and at www.fabiomercurio.it

[11] Brigo, D., and Mercurio, F. (2001a), Interest Rate Models: Theory and Practice.

Springer, Berlin.

[12] Brigo, D., and Mercurio, F. (2001b), Displaced and Mixture Diffusions for

Analytically-Tractable Smile Models, in: Geman, H., Madan, D.B., Pliska,

S.R., Vorst, A.C.F. (Editors), Mathematical Finance - Bachelier Congress 2000,

Springer, Berlin.

[13] Brigo, D., Mercurio, F., and Rapisarda, F. (2002), An alternative correlated

dynamics for multivariate option pricing, to be presented at the 2002 Conference

of the Bachelier Society, Crete, June 12-15, 2002.

[14] Brigo, D., Mercurio, F., and Sartorelli, G. (2002), Alternative asset-price dy-

namics and volatility smile, preprint. A related working paper is Lognormal-

mixture dynamics under different means. Both papers can be downloaded at

www.fabiomercurio.it.



D. Brigo: Mixture diffusion SDEs and volatility-asset covariance 21

[15] Cox, J.C. (1975) Notes on Option Pricing I: Constant Elasticity of Variance

Diffusions. Working paper. Stanford University.

[16] Derman, E., Kani, I., and Kamal, M. (1997). Trading and hedging of local

volatility. Journal of Financial Engineering 6, 233-270.

[17] Dupire, B. (1997) Pricing and Hedging with Smiles. Mathematics of Derivative

Securities, edited by M.A.H. Dempster and S.R. Pliska, Cambridge University

Press, Cambridge, 103-111.

[18] Gatheral J. (2001). Stochastic volatility and local volatility. Lecture notes for

case studies in financial modeling, New York University.

[19] Harrison, J.M. , and Pliska, S. R. (1981), Martingales and Stochastic Integrals in

the Theory of Continuous Trading, Stochastic Processes and Their Applications,

11, 215–260.
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